Items tagged with system system Tagged Items Feed

equidistant_curve_MP.mw  Equidistant curves to the curves on the surface. (Without any sense, but real.)







hi .please help me for solve this equations.

bbb2.mw

restart; d[11] := 1; mu[11] := 1; q[311] := 1; d[33] := 1; mu[33] := 1; a[11] := 1; e[311] := 1; a[33] := 1; A := 1; g[111111] := 1; c[1111] := 1; g[113113] := 1; f[3113] := 1; beta[11] := 1; `ΔT` := 1; II := 1; L := 1

J := d[11]*(diff(Phi(x, z), x, x))+mu[11]*(diff(psi(x, z), x, x))+q[311]*(diff(w(x), x, x))+d[33]*(diff(Phi(x, z), z, z))+mu[33]*(diff(psi(x, z), z, z));

diff(diff(Phi(x, z), x), x)+diff(diff(psi(x, z), x), x)+diff(diff(w(x), x), x)+diff(diff(Phi(x, z), z), z)+diff(diff(psi(x, z), z), z)

(1)

B := a[11]*(diff(Phi(x, z), x, x))+d[11]*(diff(psi(x, z), x, x))+e[311]*(diff(w(x), x, x))+a[33]*(diff(Phi(x, z), z, z))+d[33]*(diff(psi(x, z), z, z));

diff(diff(Phi(x, z), x), x)+diff(diff(psi(x, z), x), x)+diff(diff(w(x), x), x)+diff(diff(Phi(x, z), z), z)+diff(diff(psi(x, z), z), z)

(2)

R := A*(g[111111]*(diff(u[0](x), x, x, x, x))-c[1111]*(diff(u[0](x), x, x)+(1/2)*(diff((diff(w(x), x))^2, x)))+e[311]*(diff(diff(Phi(x, z), z), x))+q[311]*(diff(diff(psi(x, z), z), x)));

diff(diff(diff(diff(u[0](x), x), x), x), x)-(diff(diff(u[0](x), x), x))-(diff(w(x), x))*(diff(diff(w(x), x), x))+diff(diff(Phi(x, z), x), z)+diff(diff(psi(x, z), x), z)

(3)

S := -II*g[111111]*(diff(w(x), x, x, x, x, x, x))-II*c[1111]*(diff(w(x), x, x, x, x))+A*g[113113]*(diff(w(x), x, x, x, x))-A*f[3113]*(diff(diff(Phi(x, z), z), x, x))-A*(c[1111]*(diff(u[0](x), x, x)+(1/2)*(diff((diff(w(x), x))^2, x)))+e[311]*(diff(diff(Phi(x, z), z), x))+q[311]*(diff(diff(psi(x, z), z), x)))*(diff(w(x), x))-A*(diff(w(x), x, x))*(c[1111]*(diff(u[0](x), x)+(1/2)*(diff(w(x), x))^2)+e[311]*(diff(Phi(x, z), z))+q[311]*(diff(psi(x, z), z))-beta[11]*`ΔT`);

-(diff(diff(diff(diff(diff(diff(w(x), x), x), x), x), x), x))-(diff(diff(diff(Phi(x, z), x), x), z))-(diff(diff(u[0](x), x), x)+(diff(w(x), x))*(diff(diff(w(x), x), x))+diff(diff(Phi(x, z), x), z)+diff(diff(psi(x, z), x), z))*(diff(w(x), x))-(diff(diff(w(x), x), x))*(diff(u[0](x), x)+(1/2)*(diff(w(x), x))^2+diff(Phi(x, z), z)+diff(psi(x, z), z)-1)

(4)

dsys := {B, J, R, S}; BCS := {D@@2*w(0) = 0, D@@2*w(L) = 0, Phi(x = 0) = 0, Phi(x = L) = 0, Phi(z = -(1/2)*h) = 0, Phi(z = (1/2)*h) = 0, psi(x = 0) = 0, psi(x = L) = 0, psi(z = -(1/2)*h) = 0, psi(z = (1/2)*h) = 0, w(x = 0) = 0, w(x = L) = 0, u[0](x = 0) = 0, u[0](x = L) = 0, (D(w))(0) = 0, (D(w))(L) = 0, (D(u[0]))(0) = 0, (D(u[0]))(L) = 0}

{D@@2*w(0) = 0, D@@2*w(L) = 0, Phi(x = 0) = 0, Phi(x = L) = 0, Phi(z = -(1/2)*h) = 0, Phi(z = (1/2)*h) = 0, psi(x = 0) = 0, psi(x = L) = 0, psi(z = -(1/2)*h) = 0, psi(z = (1/2)*h) = 0, w(x = 0) = 0, w(x = L) = 0, u[0](x = 0) = 0, u[0](x = L) = 0, (D(w))(0) = 0, (D(w))(L) = 0, (D(u[0]))(0) = 0, (D(u[0]))(L) = 0}

(5)

dsol5 := dsolve(dsys, numeric)

Error, (in dsolve/numeric/process_input) missing differential equations and initial or boundary conditions in the first argument: dsys

 

NULL

NULL

NULL

if former equations are not solvable , please help me for another way, in which at first two equation solve..in this way in equation [J and B] assume that q[311]=e[311]=0 and dsolve perform to find Φ and  ψ

after by finding Φ and  ψ is use for detemine w and u0

please see attached file below[bbb2_2.mw]

bbb2_2.mw

Download bbb2.mw

Dear All,

I am going to solve the following systems of ODEs but get the error: Newton iteration is not converging.
Could you please share your idea with me. In the case of AA=-0.2,0,0.2,0.4,...; I could get the solution.
Thank you in advance.


restart;
with(plots);
Pr := 2; Le := 2; nn := 2; Nb := .1; Nt := .1; QQ := .1; SS := .1; BB := .1; CC := .1; Ec := .1; MM := .2;AA:=-0.4;

Eq1 := diff(f(eta), `$`(eta, 3))+f(eta).(diff(f(eta), `$`(eta, 2)))-2.*nn/(nn+1).((diff(f(eta), eta))^2)-MM.(diff(f(eta), eta)) = 0; Eq2 := 1/Pr.(diff(theta(eta), `$`(eta, 2)))+f(eta).(diff(theta(eta), eta))-4.*nn/(nn+1).(diff(f(eta), eta)).theta(eta)+Nb.(diff(theta(eta), eta)).(diff(h(eta), eta))+Nt.((diff(theta(eta), eta))^2)+Ec.((diff(f(eta), `$`(eta, 2)))^2)-QQ.theta(eta) = 0;
Eq3 := diff(h(eta), `$`(eta, 2))+Le.f(eta).(diff(h(eta), eta))+Nt/Nb.(diff(theta(eta), `$`(eta, 2))) = 0;

bcs := f(0) = SS, (D(f))(0) = 1+AA.((D@@2)(f))(0), theta(0) = 1+BB.(D(theta))(0), phi(0) = 1+CC.(D(phi))(0), (D(f))(etainf) = 0, theta(etainf) = 0, phi(etainf) = 0

Error, (in dsolve/numeric/ComputeSolution) Newton iteration is not converging

Hello everyone,
I would like to get a symbolic result of each variable x,y and z for the following 3 nonlinear equations. Maple does not respond to the following code at all. (Not even an error report.)

restart;

eq1 := x^2+y^2+z^2-134*x+800*y-360*z+31489, 2;
eq2 := x^2+y^2+z^2-934*x+900*y-370*z+321789, 2;
eq3 := x^2+y^2+z^2-614*x+1350*y-1110*z+70048, 97;
solve({eq1, eq2, eq3}, {x, y, z});

Thanks in advance.

P.S: Afterwards my intention is to solve these equaitons numerically for different variable values, and transfer to MatLab in order to plot animations and graphs. 

     It is known that ODE boundary value problem is similar to the problem of solving systems of nonlinear equations. Equations are the boundary conditions, and the variables are the values of the initial data.
For example:

y '' = f (x, y, y '), 0 <= x <= 1,

y (0) = Y0, y (1) = Y1;

Where y (1) = Y1 is the equation, and Z0 is variable, (y '(0) = Z0).

     solve () and fsolve () are not directly suitable for such tasks. Directly should work the package of optimization in relation to a system of nonlinear equations. (Perhaps it has already been implemented in Maple.)
Personally, I am very small and unprofessional know Maple and cannot do it. Maybe there is someone who would be interested, and it will try to implement this approach to solving ODE boundary value problems?  

I have a system of equations e.g.

A^2+B*A+C=0

where A,B,C are Matrices and I want to solve for A.

Sure I can write every equations in brakets [..=0], but isn'T it possible to just use the matrix notation?

How I can found stabilty of system by Routh, Jury, Liapunov, Nequist on maple?

Hi Maple community

I'm running an algorithm where a non-linear equation system must be solved, in this case is a 26x26 system.

After 16116 succesful previous computations, fsolve stops giving me results.
I checked why and I was first expecting that, for some reason, the 26x26 system had an error and I ended with something like 25x26 or vice versa. But that was not the case.

So I tried the command solve and it not only worked fine but also gave me two results, but I only need one. I guess I could check for the wrong solution and discard it, but I still wondering why fsolve is failing and if there is anything to help fsolve not to fail.

These are the set of equations if somebody wants to check them:

EQ[16117][1] := W[1, 16117]*(-0.3860115660e-1*HRa[1, 16117]-0.1876793978e-1*ga[1, 16117]+0.7836678184e-1) = 2.040147478*10^6*SR[1, 16118], W[1, 16117]*(-0.3915554290e-1*HRa[1, 16117]-0.1903748329e-1*ga[1, 16117]+0.8260795999e-1) = 3.876387504, W[1, 16117]*(-0.1876794098e-1*HRa[1, 16117]-0.9892449327e-2*ga[1, 16117]+0.3810204607e-1) = 2.040147478*10^6*v[1, 16118], HLa[1, 16117] = .9724029753*ga[1, 16117]+HRa[1, 16117], NRa[1, 16117] = 0.7006679273e-1*HRa[1, 16117]-.1803623678*ga[1, 16117]+1.002451672, NLa[1, 16117] = 0.7006679273e-1*HRa[1, 16117]+.2484955248*ga[1, 16117]+1.002451672, SL[2, 16118] = SR[1, 16118], fra[1, 16117] = HRa[1, 16117]-HLa[2, 16117], fra[1, 16117] = .25*NRa[1, 16117]+.25*NLa[2, 16117], ga[1, 16117] = 0.;

EQ[16117][2] := W[2, 16117]*(-0.3860115660e-1*HRa[2, 16117]-0.1876793978e-1*ga[2, 16117]+0.7836678184e-1) = -2.040147478*10^6*SL[2, 16118]+7.152482840, W[2, 16117]*(-0.3915554290e-1*HRa[2, 16117]-0.1903748329e-1*ga[2, 16117]+0.8260795999e-1) = 3.876387504, W[2, 16117]*(-0.1876794098e-1*HRa[2, 16117]-0.9892449327e-2*ga[2, 16117]+0.3810204607e-1) = -1.983845478*10^6*SL[2, 16118]+5.221405977, HLa[2, 16117] = .9724029753*ga[2, 16117]+HRa[2, 16117], NRa[2, 16117] = 0.7006679273e-1*HRa[2, 16117]-.1803623678*ga[2, 16117]+1.002451672, NLa[2, 16117] = 0.7006679273e-1*HRa[2, 16117]+.2484955248*ga[2, 16117]+1.002451672, SL[3, 16118] = 0.3505865589e-5, fra[2, 16117] = HRa[2, 16117]-HLa[3, 16117];

EQ[16117][3] := W[3, 16117]*(-0.3860115660e-1*HRa[3, 16117]-0.1876793978e-1*ga[3, 16117]+0.7836678184e-1) = -2.040147478*10^6*SL[3, 16118]+10.82168541, W[3, 16117]*(-0.3915554290e-1*HRa[3, 16117]-0.1903748329e-1*ga[3, 16117]+0.8260795999e-1) = 3.876387504, W[3, 16117]*(-0.1876794098e-1*HRa[3, 16117]-0.9892449327e-2*ga[3, 16117]+0.3810204607e-1) = -1.983845478*10^6*SL[3, 16118]+8.751240594, HLa[3, 16117] = .9724029753*ga[3, 16117]+HRa[3, 16117], NRa[3, 16117] = 0.7006679273e-1*HRa[3, 16117]-.1803623678*ga[3, 16117]+1.002451672, NLa[3, 16117] = 0.7006679273e-1*HRa[3, 16117]+.2484955248*ga[3, 16117]+1.002451672, SL[4, 16118] = 0.5304364281e-5, fra[3, 16117] = HRa[3, 16117];

And after these the solving command that I used was:

SOL[j]:=fsolve({seq(EQ[j][n],n=1..N)},indets({entries(EQ[j],nolist)},assignable(name)));

Which returns

SOL[j]:=

As I said, then I tried the solve command:

SOL[j]:=solve({seq(EQ[j][n],n=1..N)},indets({entries(EQ[j],nolist)},assignable(name)));

which returns:

SOL[16117] :=

{HLa[1, 16117] = 1.011251860, HLa[2, 16117] = .5007913055, HLa[3, 16117] = -0.4240068535e-1, HRa[1, 16117] = 1.011251860, HRa[2, 16117] = .8728245835, HRa[3, 16117] = .2686716410, NLa[1, 16117] = 1.073306847, NLa[2, 16117] = .9685353734, NLa[3, 16117] = .9417827567, NRa[1, 16117] = 1.073306847, NRa[2, 16117] = 1.132612831, NRa[3, 16117] = 1.078974668, SL[2, 16118] = 0.1737463747e-5, SL[3, 16118] = 0.3505865589e-5, SL[4, 16118] = 0.5304364281e-5, SR[1, 16118] = 0.1737463747e-5, W[1, 16117] = 90.12372195, W[2, 16117] = 69.57451714, W[3, 16117] = 49.58407210, fra[1, 16117] = .5104605550, fra[2, 16117] = .9152252689, fra[3, 16117] = .2686716410, ga[1, 16117] = 0., ga[2, 16117] = -.3825916698, ga[3, 16117] = -.3199006320, v[1, 16118] = 8.447574110*10^(-7)},

{HLa[1, 16117] = 3.043461992, HLa[2, 16117] = 2.386862361, HLa[3, 16117] = -0.4240068535e-1, HRa[1, 16117] = 3.043461992, HRa[2, 16117] = 1.087485894, HRa[3, 16117] = .2686716410, NLa[1, 16117] = 1.215697293, NLa[2, 16117] = 1.410701230, NLa[3, 16117] = .9417827567, NRa[1, 16117] = 1.215697293, NRa[2, 16117] = .8376385519, NRa[3, 16117] = 1.078974668, SL[2, 16118] = 0.2032780481e-5, SL[3, 16118] = 0.3505865589e-5, SL[4, 16118] = 0.5304364281e-5, SR[1, 16118] = 0.2032780481e-5, W[1, 16117] = -106.0268094, W[2, 16117] = 265.7250566, W[3, 16117] = 49.58407210, fra[1, 16117] = .6565996307, fra[2, 16117] = 1.129886580, fra[3, 16117] = .2686716410, ga[1, 16117] = 0., ga[2, 16117] = 1.336253076, ga[3, 16117] = -.3199006320, v[1, 16118] = 9.883410782*10^(-7)}

Thanks in advance for any recommendations and suggestions.
 

Hello Dear!

I want to solve the system of linear equation but facing some problem please see the attachmen. I am waiting your positive response 

1_(1).mw

Hi,

 

I am trying to solve a simple system of the form AX=0, where A is a N*N matrix, X is an N*1 vector (and the right-hand side of the equation is an N*1 vector of zeros, I apologize for the inexact notation). The difficulty comes from the fact that the values of A are parameterized by 2*N parameters (that I will write as the 2*N vector P), and I would like to get a solution in the form X=f(P).

 

One solution is to try to use LinearAlgebra[LinearSolve], but it only returns the trivial solution X=0, which I am not interested in.

Another solution is to compute analytically the Moore-Penrose pseudoinverse Ag of A, as the general solution is of the form

(I - Ag A)f ;

where f is a vector of free parameters. However, even for a small matrix size (N=4), Maple is still computing after 3 hours on my (fairly powerful) machine, and it is taking more and more memory over time. As the results are polynomial/rational equations in the parameters P, I was actually expecting Maple to be more powerful than other softwares, but for this particular problem, Matlab's symbolic toolbox (muPAD) gives quick solutions until N=6. I need, in the end, to solve additional polynomial/rational equations that are derived from the solutions X=f(P), where Matlab fails. This is why I would really like to be able to solve the above-mentioned problem AX=0 with Maple in order to try to solve the subsequent step of the problem (polynomial system) with Maple.

 

Any suggestions on how to do this would be highly appreciated! Thank you very much for your time and help.

 

Laureline

I'm working in a tridimensional euclidean space, with vectorial functions of the type:

Fi(t)=<fix(t),fiy(t),fiz(t)>

Fi'(t)=<fix'(t),fiy'(t),fiz'(t)>

The two odes are of the type:

ode1:=K1*F1''(t)=K2*F2(t)&xF3(t)+...

While there are other non-differential vectorial equations like:

eq1:=K4*F4''(t)=(K5*F5(t)&x<0,1,0>)/Norm(F6(t))+..., etc

 

Is there a way i can input this system in dsolve with vectors instead of scalars? And without splitting everything into its 3 vectorial components? I can't make maple realize some of the Fi(t) functions are vectors, it counts them as scalars and says the number of functions and equations are not the same.

 

Thank you!

how to convert system of differential equations to differential form for evalDG?

 

[a(t)*(diff(c(t), t))+b(t), a(t)*(diff(b(t), t))+c(t)*(diff(b(t), t)), a(t)*(diff(c(t), t))+a(t)*(diff(b(t), t))+b(t)];

when i try eliminate dt which is the denominator

eliminate([a(t)*dc(t) + b(t)*dt,a(t)*db(t)+dt*c(t)*db(t),a(t)*dc(t)+a(t)*db(t)+b(t)*dt],dt);

[{dt = -a(t)/c(t)}, {a(t)*(c(t)*dc(t)-b(t)), a(t)*(db(t)*c(t)+c(t)*dc(t)-b(t))}]

 

i got two solutions, which one is correct?

a(t)*(c(t)*dc(t)-b(t)), a(t)*(db(t)*c(t)+c(t)*dc(t)-b(t))

does it mean that two have to use together to form a differential form?

 

update1

with(DifferentialGeometry):
DGsetup([a,b,c], M);
X := evalDG({a*(c*D_c-b), a*(D_b*c+c*D_c-b(t))});
Flow(X,t);
Flow(X, t, ode = true);

got error when run with above result

 

Hey all,

 

The title is probably very poorly explained and doesn't make much sense at all, but here goes nothing:

I define at the start of my .mw file that M:=1, but I need to be able to change it in order to run multiple different iterations.

So what I've come up with so far is a way to get a variable ammount of equations named "eqc(1,3,5,...)" The number of equations I get is equal to the M defined in the beggining. How would I go about solving this?
To give you an idea of something to work with:

So basically I'd need to solve as many of these eqc equations as I get. If I change M to, lets say 30, I'd need to solve 30 equations. This solve option above doesn't work and I've messed around with Vectors and Matrixes but I honesly have no idea what I'm doing there, so I thought best to seek out help.

 

Thanks in advance, Rafael.

I am currently working on FDM ,i have 2 coupled nonlinear pde ,i need help in solving these equation using maple code.

> restart:

> alias(f=f(tau,eta), theta=theta(tau,eta));

 

>

 

> PDE1:=S*diff(f,tau,eta)=eta^2*diff(f,eta)^2+(6*eta^2-2*f*eta)*diff(f,eta)+(6*eta^3-f*eta)*diff(f,eta,eta)-eta^4*diff(f,eta,eta,eta);

 

> PDE2:=eta^4*diff(theta,eta,eta)+2*eta^3*diff(theta,eta)-Pr*(f*eta^2*diff(theta,eta)+S*diff(theta,tau))=0;

 

1 2 3 4 5 6 7 Last Page 1 of 18