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Abstract. Stability of a geothermal system is considered in a case when the water layer lies over
the layer of superheated vapor in a stratum having relatively low permeability. This stratum locates
between two parallel high permeable layers. Under the assumption of smallness of advective energy
transfer as compared with the conductive one, the stationary distribution of the characteristics in
the stratum with an interface of phase transition is obtained. The interface separates the domains
occupied by water and vapor. Investigation of normal stability of the interface shows, that stable
configurations in the geothermal system under consideration exist within the range of permeability
values bounded by k ∼ 0.6 × 10−15 m2 from above. The most unstable configurations occur to
be the quiescent states when the permeability exceeds a certain threshold. A sufficiently high value
of permeability, satisfying the criterion of smallness of the advective energy transfer as compared
with the conductive one makes it possible to explain the existence of a wide class of stable natural
geothermal reservoirs, where the vapor layer underlies the water one.
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Nomenclature

a thermal diffusivity [m2 s−1].
C specific heat at constant pressure [J K−1 kg−1].
g acceleration of gravity [m s−2].
h location parameter of the interface [m].
k permeability [m2].
L thickness of the low permeable stratum [m].
m porosity [1].
P pressure [Pa].
q specific heat of phase transition [J kg−1].
t time [s].
T temperature [K].
V speed of the phase transition interface [m s−1].
x vertical coordinate [m].

Greek Symbols
η perturbation of the interface [m].
κ wave number [m−1].
λ thermal conductivity [W m−1 K].
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µ viscosity [Pa s].
ρ density [kg m−3].
σ spectral parameter [s−1].

Subscripts
1 water domain.
2 vapor domain.
n normal.
s skeleton of porous medium.
v vapor.
w water.
0 boundary value at x = 0.
+ right ahead of the interface in the water saturated domain.
− right behind the interface in the vapor domain.
∗ at the phase transition front.

Superscript
0 boundary value at x = L.

1. Introduction

Full-scale investigations of natural geothermal systems showed, that in great num-
ber of reservoirs the situation takes place, when a water layer of a considerable
thickness locates over a layer of superheated vapor (White et al., 1971; Grant,
1983). The existence of such a configuration is explained from the thermodynamic
point of view by a temperature gradient which presence in geothermal systems
is typical. In this case the thermodynamic conditions at large depths relate to the
domain occupied by vapor, and at smaller depths – to the domain occupied by
water. On the other hand, investigation of hydrodynamic stability shows, that the
state, when the layer of heavy liquid lies over the layer of lighter one occurs to
be unstable if the layers are immiscible (Chandrasekhar, 1961). In order to explain
the possibility of existence of stable geothermal systems containing the water layer
overlying the vapor layer, some qualitative hypotheses about physical mechanisms
of stability of such a configuration were proposed (Grant, 1983).

In Schubert and Straus (1980), the example of the geothermal system is given,
where the water layer overlies the vapor one, and also the stability analysis of the
phase transition interface, separating water and vapor domains, was fulfilled. It
was assumed, that the lowest boundary of the stratum is a contact surface of non-
permeable rock and the vapor saturated permeable domain. It was also assumed
that in the unperturbed state the phases are motionless and the phase transition is
absent. Numerical analysis of the dispersion equation implies that the configuration
in question may be both stable and unstable. The critical value of the permeability
coefficient separating the domain of stable and unstable states of the system was
found to be given by k ∼ 4 × 10−17 m2. For values of permeability higher than
the critical one the system loses its stability. It was noted that the found critical
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value of permeability is less by the order of magnitude than the value characteristic
for natural geothermal systems, and thus, the stability of most systems cannot be
explained.

In the present paper we propose a more complex example of a geothermal
system where motion of phases and the phase transition in the unperturbed state
are taken into account. A solution of the steady-state bounded problem with a
water–vapor phase transition interface is obtained under the assumption of small-
ness of the advective energy transfer as compared with the conductive one. There
are two different solutions: the first one corresponds to vaporization and describes
water motion towards the interface, the other one corresponds to vapor condensa-
tion and describes vapor flow in the direction of the interface. The quantities to
be determined are the location of the phase transition interface and also the va-
porization temperature and pressure on this surface. These quantities are found
from the solving of the transcendental equation on the interface. The calculations
show that at low values of permeability the transcendental equation has a unique
solution, which determines the location of the interface of phase transitions. At
comparatively high values of permeability of order k∼ 10−16 m2 and higher, the
transcendental equation in question has the additional two roots. It means that
for the same values of characteristics at the boundaries, there exist three different
locations of the interface.

The topological method was used for the investigation of normal stability of
the interface, based on the argument principle. This method makes it possible
to detect complex roots of the dispersion equation, having the positive real part.
The presence of these roots corresponds to the instability of the solution under
consideration. It is essential, that we give no assumptions about the real nature
of the roots of the dispersion equation. This assumption is contained implicitly in
Schubert and Straus (1980). Our topological approach also allows to determine the
number of the roots of the dispersion equation.

Investigation of stability of the interface shows that at values of permeability
k∼ 10−16 m2 and lower, that is, when there exists the unique solution of the sta-
tionary problem, the interface is always stable. In the case when there exist three
solutions of the stationary problem, the configuration, corresponding to the dy-
namic equilibrium without phase transition when water and vapor are motionless, is
always unstable. The second solution, relating to the water motion downwards and
its further vaporization, is unstable with respect to short wavelength perturbations.
Numerical investigation shows that the third solution, which describes the process
of vapor motion upwards and its condensation at the interface, can be stable also at
comparatively high values of permeability k ∼ 6 × 10−16 m2.

It seems to be important to note that the regimes obtained are realized within
the range of parameters which appear to be characteristic for the natural geothermal
systems. Stability mechanism of the class of geothermal systems under considera-
tion has the clear physical meaning, implying the predominance of the conductive
energy transfer over the advective one.
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The paper is organized as follows. In Section 2 the mathematical model of phase
transition problem for the bounded domain is formulated. Neglecting advective
heat transfer, we simplify the basic system in order to apply normal mode stability
analysis directly. In Section 3 we derive and investigate the steady-state solutions
for the phase transition problem. In Section 4 we present the linear stability analysis
and show that the water over steam configuration can exist for high permeability
geothermal reservoirs. In Section 5 we discuss the range of applicability of our
analysis and the conditions when a stable water over steam configuration may arise.

2. Formulation of the Problem

We consider a high-temperature geothermal reservoir, consisting of two high per-
meability layers, which are separated by a low permeability stratum. Let us assume
that the thermodynamic conditions imply that the upper high permeability layer is
filled in by water and the lower one – by vapor. Then in the low permeability layer
there exists the phase transition interface, separating domains occupied by water
and vapor, respectively (Figure 1).

In dependence on values of pressure in the high permeability layers, either the
regime of vaporization, when the water moves downwards, or the regime of con-
densation, corresponding to the vapor motion upwards, take place. In the rest state
phase transitions are absent, and the pressure distribution in the high permeability
layers coincides with the hydrostatic one.

Processes of heat and mass transfer in the framework of equilibrium thermody-
namics can be described by mass and energy conservation laws, the Darcy law for
water and vapor with allowance for gravity, the equations of state and thermody-
namic relations (O’Sullivan, 1985). Following Chandrasekhar (1961) and Schubert

Figure 1. Sketch of the problem (1) vapor domain, and (2) water domain in the low
permeability stratum.
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and Straus (1980), we assume that the water and vapor are incompressible. Then
the basic system of equations for two domains of the low permeability stratum
separated by the interface is written as

div vj = 0, vj = − k

µj
(gradP − ρjgex),

(ρC)1,2
∂T

∂t
+ ρjCjvj grad T = div(λ1,2 grad T ),

λ1,2 = mλj + (1 −m)λs,

(ρC)1,2 = mρjCj + (1 −m)ρsCs, j = v,w. (1)

The conservation of mass and energy across the interface are formulated as the
conditions of the thermodynamic equilibrium jump of the water saturation function
(Fitzgerald and Woods, 1994; Tsypkin, 1994, 1997). These relations have the form

m

(
1 − ρv

ρw

)
Vn = k

µv

ρv

ρw
(gradP)n+ − k

µw
(gradP)n− +

+ k

µw
ρwg

(
1 − µw

µv

ρ2
v

ρ2
w

)
,

mqρwVn = λ−(grad T )n− − λ+(grad T )n+ − kqρw

µw
((gradP)n− − ρwg),

T+ = T− = T∗, P+ = P− = P∗, ln
P∗
Pa

= A+ B

T∗
,

A = 12.512, B = −4611.73, Pa = 105 Pa. (2)

The second term in the left-hand side of the heat transfer Equation in (1) de-
scribes the heat advective transfer while the right-hand side describes the heat
conductive transfer. We consider the flows, where advective transfer can be ne-
glected in comparison with conductive transfer. For the water domain, combining
the Darcy’s law with the heat conservation equation, we obtain the dimensionless
parameter that specifies the ratio of advective and conductive terms:

ρwCw

µwλ1
k(δP − ρwgl), (3)

where permeability and pressure may vary strongly. At the same time the other
physical parameters vary slightly. Therefore, after substitution of the characteristic
values of parameters in (3) the condition of smallness of advective transfer in the
water domain can be written in the following form

ρwCw

µwλ1
k|δP − ρwgl| ∼ 1010 N−1 k|δP − ρwgl| � 1,

or

k|δP − ρwgl| � 10−10 N, (4)

where l is the characteristic length scale.
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Analogously, one has for the vapor domain

ρvCp

µvλ2
k|δP − ρvgl| ∼ 0.33 × 108 N−1 k|δP − ρvgl| � 1,

or

k|δP − ρvgl| � 3 × 10−9 N. (5)

It follows then, that the condition of smallness of the advective transfer in the
vapor domain occurs to be weaker than that one in the water domain. We take the
difference of values of pressure between high permeability layers as a characteristic
variation of pressure, and the distance between these layers as a characteristic
length scale. Assuming that (4) and (5) are valid, we ignore the advective heat
transfer in the energy equation and obtain usual linear equation of heat transfer for
the both domains

(ρC)1,2
∂T

∂t
= div(λ1,2 grad T ). (6)

This simplification makes it possible to apply normal-mode analysis of the inter-
face stability in a simple analytic form, while the presence of the advective heat
transfer term in (6) requires the use of numerical methods to obtain the linear
dispersion equation for perturbations.

If we take the pressure variation in single-phase domains as the characteristic
one, then the phase transition regimes can be realized also when the vapor pressure
gradient is significantly greater than the water pressure gradient, that is, advective
transfer in the vapor domain exceeds advective transfer in the water domain. Con-
sequently, the conditions of smallness of advective transfer have to be considered in
each domain separately. In this case a linear size of the corresponding single-phase
domain is taken as the characteristic length scale.

3. Stationary Solution

In this section we consider one dimensional problem about stationary phase
cross-flow between high permeability layers. As concerns the real situation, the
assumption of one-dimensionality is valid if characteristic horizontal length scales
of pressure variation in high permeability layers are much greater than the thickness
L of the low permeability stratum. Let the upper water-saturated layer x < 0 have
the pressure P0 and the temperature T0, and the lower vapor saturated layer x >L
have the pressure P 0 and the temperature T 0. Let us note, that the thickness of the
both high permeability layers is not essential for the problem under formulation. It
is natural to assume that pressure and temperature in the both high permeability
layers are constant (constancy of temperature is guaranteed by heat flow from
the surrounding rocks, and constancy of pressure – by the high permeability of
the upper and lower layers). Then the phase transition surface, located in the low
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permeability stratum 0<x <L, occupies a certain equilibrium position x=h and
the problem has a stationary solution. The domain 0<x <h is saturated by water,
and the domain h < x < L – by vapor (Figure 1). Location of the interface x = h,
and also the values of the temperature T∗ and the pressure P∗ on this interface
are unknown and they have to be found in the process of solving the stationary
problem.

Under the condition of smallness of the advective energy transfer the system
of equations for the unknown pressure and temperature in the water and vapor
domains are given by

P ′′(x) = 0, T ′′(x) = 0.

Conservation laws of mass and energy on the interface for the case under consid-
eration read

µw

µv

ρv

ρw
P ′

+ − P ′
− + ρwg

(
1 − µw

µv

ρ2
v

ρ2
w

)
= 0,

λ+ T
′
+ − λ−T

′
− + kqρw

µw
(P ′

− − ρwg) = 0,

where prime denotes differentiation with respect to x. These relations, along with
the conditions of thermodynamic equilibrium, constitute the full system of bound-
ary conditions across the interface.

The solutions in the water and vapor domains have the form

P = P0 + P∗ − P0

h
x, T = T0 + T∗ − T0

h
x

P = P 0 − P∗
L− h x + LP∗ − hP 0

L− h , T = T 0 − T∗
L− h x + LT∗ − hT 0

L− h , (7)

respectively. Substituting (7) into the stationary relations on the interface we get
the system of equations for the unknowns T∗, P∗ and h:

µw

µv

ρv

ρw

P 0 − P∗
L− h − P∗ − P0

h
+ ρwg

[
1 − µw

µv

ρ2
v

ρ2
w

]
= 0,

λ+
T 0 − T∗
L− h − λ−

T∗ − T0

h
+ kqρw

µw

[
P∗ − P0

h
− ρwg

]
= 0,

P∗ = f (T∗) = Pa exp

(
A+ B

T∗

)
. (8)

From the first equation the vaporization pressure on the interface can be expressed
as a function of dimensionless location parameter H = h/L:

P∗
P0

= (P 0/P0)(c1/(1 −H))+ 1/H + c2

c1/(1 −H)+ 1/H
≡ F1(H),

c1 = µw

µv

ρv

ρw
, c2 = ρwgL

P0

[
1 − µw

µv

ρ2
v

ρ2
w

]
.
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The temperature is expressed from the third equation as a function of the pressure:

T∗
T0

= B/T0

lnP∗/P0 − lnPa/P0 − A = B/T0

lnF1(H)− lnPa/P0 − A ≡ F2(H).

This makes it possible to reduce the system to the unique equation for the unknown
parameter H = h/L

G(H) ≡
[
T 0

T0
− F2(H)

]
1

1 −H − [F2(H)− 1]
1

H
+

+ kqρwP0

T0λ

[
F1(H)− 1

H
− ρwgL

P0

]
= 0. (9)

Let us consider the characteristic regimes of stationary flows, or basic states, which
are realized in geothermal systems at the following values of parameters: µw =
1.48 × 10−4 Pa s, µv = 1.59 × 10−5 Pa s, ρw = 888.66 kg m−3 , ρv = 4.82 kg m−3,
q = 2 × 106 J/kg, L = 10, 20, 40 m, Cs = 103 J K−1 kg−1, λs = 2 W m−1 K−1,
g = 9.8 m s−2.

Since for the moderate values of the porosity (for typical geothermal systems
the porosity is not large) the heat capacity and the thermal conductivity of the rocks
are determined by the corresponding parameters of the porous media skeleton, we
put λ1 = λ2 = λs and C1 = C2 = Cs for the sake of simplicity.

Different regimes of phase transitions depending on the values of the temper-
ature and pressure in the high permeability layers can be realized, corresponding
to different directions of phase motion. The flow downwards is accompanied by
water vaporization and upwards – by vapor condensation.

At T0 = 448 K, T 0 = 464 K, P0 = P 0 = 106 Pa, L = 20 m and k =
10−16 m2, for example, we get the following values of the interface parameters T∗ =
456.18 K, P∗ = 1.105 × 106 Pa and h = 13.27 m. The water moves downwards
under the action of gravity, then finds itself in a domain with greater temperature
and vaporizes on the phase transition interface. This leads to the pressure growth
on the interface. The pressure there becomes greater than the pressure on the
boundaries of the low permeability stratum, but smaller than the hydrostatic one.
The arising vapor moves downwards from the phase transition surface and escapes
from the vapor saturated domain of the low permeability stratum penetrating into
the high permeability layer.

If we increase the pressure in the high permeability layer saturated with vapor
up to value P 0 = 1.1 × 106 Pa, then the solving of the system of equations on the
interface gives: T∗ = 454.72, P∗ = 1.07 × 106 Pa and h = 7.9 m. The value
of the pressure on the interface now decreases as compared with the previous
case, though the pressure on the lower boundary becomes larger. This is due to
vapor condensation driven by the motion of vapor upward from the lower high
permeability layer and its penetration into the lower temperature zone. Water also
moves upward, escaping from low permeability rock into the water-saturated high
permeability layer.
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The third possibility is also possible, relating to the absence of motion and
phase transitions. The case of such an equilibrium is described by the degenerate
solution which takes place only if a certain correspondence between the pressure
and temperature distributions is observed. This possibility may be interesting from
the point of view of the stability properties of the system. It is evident that in the
last case the pressure distribution in the equilibrium state has to coincide with
a hydrostatic one. The corresponding solution can be constructed by fixing the
location of phase transition interface a priori.

Let the pressure in the upper water saturated layer be P0 = 106 Pa, and the phase
interface locate in the middle of the low permeability stratum, that is, h = L/2.
Then, one can uniquely find the pressure on the interface. The difference between
this pressure and the pressure at any boundary exactly equals to the hydrostatic
pressure. For L = 40 m, for example, P∗ = 1.17418 × 106 Pa. Adding to this
value the hydrostatic pressure of the vapor in the vapor saturated domain, we
obtain the pressure at the lower boundary at x = L: P 0 = 1.17512 × 106 Pa.
These values of pressure correspond to the dynamical rest state. In order to satisfy
the thermodynamic conditions it is necessary to choose the temperature distri-
bution with boundary values lying, respectively, in the water and vapor domains
in the Clapeyron plane. Consequently, the temperature at the upper boundary at
x = 0 must be smaller than the temperature of water boiling: T0 < Tf (P0) =
451.7134 K, and at the lower boundary at x = L temperature must be larger than
the vaporization temperature: T 0 > Tf (P

0) = 458.97 K.
The value of the vaporization temperature T∗ on the interface has to belong to

the Clapeyron curve at P∗ = 1.17418 × 106 Pa and therefore this temperature can
be uniquely determined and it equals T∗ = 458.93 K. Arbitrariness exists only in
a choice of the temperature gradient. For example, putting T0 = 450 K and using
the absence of phase transitions (continuity of derivatives of temperature across
the interface), and also the known value of the temperature at the interface, we
get the following value of the temperature at the lower boundary x = L: T 0 =
467.86 K. Let us note, that this solution is realized at all values of the permeability
coefficient.

The dynamic equilibrium or rest state solution takes place at the prescribed
boundary values of the pressure and when the temperature coincides with the phase
transition temperature on the interface. Variation of the pressure or temperature dis-
tribution leads to the onset of phase transition and phase motion for the stationary
solution. It means that the rest state solutions represent isolated solutions in the
sense that a small variation of the boundary values leads to a solution with phase
motion. Depending on whether the pressure decreases or increases, the vaporiza-
tion or condensation regimes are realized. Accordingly, the location of the interface
is displaced downward or upward.

The numerical experiments show that for sufficiently high values of the per-
meability the Equation (9) has three different roots for the fixed boundary con-
ditions. For example, the rest state solution considered above is unique for
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Figure 2. Transcendental function G versus h/L for L = 40 m, T0 = 450 K, T 0 = 467.86 K,
P0 = 106 Pa, P 0 = 1.175 × 106 Pa and three different values of permeability: 1 – k =
10−17 m2, 2 – k = 10−16 m2, 3 – k = 2 × 10−16 m2.

k < kcr ∼ 8.9 × 10−17 m2. At k = kcr the bifurcation of the rest state solution takes
place, for k > kcr leading to the originating of two more roots of the Equation
(9), corresponding to appearance of the couple of new stationary solutions. In
Figure 2 the graph of the transcendental function G(H) is given for three different
values of permeability. In the first case (line 1), at k = 10−17 m2 the function is
monotonous and it intersects the x-axis in a single point h = 20 m, relating to the
rest state. For increasing permeability the curve deforms in a way, that the property
of the monotonous behavior ceases to exist and the curve intersects the x-axis in
three different points (lines 2,3). It means that apart from the rest state there exist
two roots of the Equation (9) at the same boundary values. The smallest root
corresponds to a regime with vapor condensation, the central one – to the rest state,
and the largest one – to a regime with water vaporization.

The non-uniqueness of the solution makes it necessary the attachment of the
additional investigation in order to choose the physically reliable solution. This
investigation is usually related to the stability analysis of the solutions in question.
Such an analysis is performed in the next section.

The validity of the condition of smallness of advective energy transfer for the
prescribed solutions must be also checked. Calculations show that in the first ex-
ample the conductive heat flux is greater than the advective one by two orders of
magnitude in both domains. In the second example the excess is equal to three
orders in the water domain and two orders in the vapor domain. For the rest state
solution there is no advective energy flux.



GRAVITATIONAL STABILITY OF THE INTERFACE IN WATER 193

4. Stability Analysis

In this section we investigate normal stability of the stationary solution (7) with
respect to small perturbations. The system of basic equations, linearized about the
equilibrium state solution, under the condition of smallness of advective energy
transfer has the form in both domains of the low permeability stratum:

(P = 0,
∂T

∂t
= a1,2(T, a1,2 = λ1,2

(ρC)1,2
0 < x < h, h < x < L.

(10)

Hereafter, we assume for the sake of simplicity, that the heat capacities and heat
conductivities in the both domains are determined by the corresponding parameters
of the porous medium skeleton a = a1 = a2.

The boundary relations for perturbations take the form

P = 0, T = 0 at x = 0, L,

P− = P+ + P0

L
)1η, )1 = 1

H
+ P1H − Pf
H(1 −H) at x = h,

T− = T+ + T0

L
)2η, )2 = 1

H
+ T1H − Tf
H(1 −H) at x = h,

P− =
(
∂f (T )

∂T

)
T=T∗

T− +
[(
∂f (T )

∂T

)
T=T∗

(
∂T

∂x

)
−

−
(
∂P

∂x

)
−

]
η

= −P0B

T 2
0

)T− − P0

L
)0η, ) = Pf

T 2
f

,

)0 = B

T0
)
Tf − 1

H
+ Pf − 1

H
at x = h,

m(1 − R)∂η
∂t

= k

µv
R

(
∂P

∂x

)
+

− k

µw

(
∂P

∂x

)
−
, R = ρv

ρw
at x = h,

mqρw
∂η

∂t
= λ−

(
∂T

∂x

)
−

− λ+
(
∂T

∂x

)
+

− kqρw

µw

(
∂P

∂x

)
−

at x = h, (11)

where x = h + η(t, y) is the equation of the interface, Tf = T∗/T0, T1 = T 0/T0,
Pf = P∗/P0, P1 = P 0/P0.

We look for the expressions of unknown pressure and temperature in the form

{P(x, y, t), T (x, y, t), η(y, t)} = {P̂ (x), T̂ (x), η̂} exp(σ̂ t + iκ̂y), (12)

where P̂ (x), T̂ (x) are functions on the vertical coordinate x only and η̂ is a con-
stant. Substituting (12) into (10) we get two pairs of eigenfunctions P̂1,2(x) and
T̂1,2(x) in the both domains explicitly, each function depending on two arbitrary
constants. These constants along with the constant η̂ are to be defined via the nine
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constraints (11). From the condition of existence of a non-trivial solution of (11),
we obtain the dispersion relation:

F(σ, κ) ≡ α coth[α(1 −H)]
[ωw

a
)3κ coth(κH)− (1 − R)σ +

+ ωv

a
)4Rκ coth[κ(1 −H)]

]
+ α coth(αH)

[ωv

a
)5Rκ ×

× coth[κ(1 −H)] + ωw

a
)0κ coth(κH)− (1 − R)σ

]
+

+ ωv
B

T0

mqρwR

λT0
)κ

[
σ coth[κ(1 −H)] + σ µv

µw
coth(κH)+

+ )1κ
ωw

a
coth(κh) coth[κ(L− h)]

]
= 0

Here

)3 = B

T0
)
T1 − Tf
1 −H + Pf − 1

H
, )4 = B

T0
)
T1 − Tf
1 −H + P1 − Pf

1 −H ,

)5 = B

T0
)
Tf − 1

H
+ P1 − Pf

1 −H , α =
√
κ2 + σ , κ = κ̂/L,

σ = aσ̂/L2, ωw = P0k

mµw
, ωv = P0k

mµv

F(σ, κ) is an even function of κ: F(σ, κ)= F(σ,−κ), hence the dispersion curve
σ = σ (κ) has to be symmetric about σ -axis (reversibility).

The form of the dispersion relation suggests the asymptotics σ → σ0|κ| at both
infinities, where σ0 is a constant given by the expression

σ0 =
[
ωv

a
R()4 + )5)+ ωw

a
()0 + )3)+ ωwωv

a

B

T0

mqρwR

λT0
))1

]
×

×
[

2(1 − R)− ωv

a

B

T0

mqρwR

λT0

(
1 + µv

µw

)
)

]−1

.

If for any fixed real κ there exist complex roots σ of the dispersion relation
F(σ, κ) = 0 with positive real part, then the corresponding perturbation will expo-
nentially grow with time, and the basic equilibrium solution (7) will be unstable.

The transcendental function F(σ ) = F(σ, κ) for fixed real κ (reversibility
implies that one may consider the positive κ only) is analytic everywhere in the
complex σ -plane except for the negative real semi-axis, where it has the countable
set of poles, bounded away from zero. Zeroes of F(σ ) correspond to roots of
dispersion relation for fixed κ .

The absence of zeroes with positive real part, which give exponential growth
to small perturbations, implies stability of the stationary solution in question. For
investigation of stability we use the well-known argument principle of complex
analysis. According to this principle the difference between the number of zeroes
and poles of the function F(σ ) inside some contour C in the complex σ -plane
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is equal to the number of rotations of radius-vector in the F(σ )-complex plane
in circuit of a contour C1, being the image of the contour C for the mapping
F(σ ). We choose a contour C in the σ -plane as the union of the segment c0 =
{σ = iz, −R� z�R} of the imaginary axis and the semi-circle c = {σ =
R expφ, −π/2 < φ < π/2}, having the radius R and centered at the origin.
The function F(σ ) has no singularities in the right hand half-plane. If F(σ ) has
zeroes at this half-plane, then by a suitable choice of the large enough radius, it is
possible to put all zeroes inside the domain bounded by the contour C.

The contour C transforms into the contour C1 = F(c0) ∪ F(c) under the map-
ping σ → F(σ ). The components of the contour C1 are given by the following
equations in the complex F(σ )-plane:

F(c0) = r1(z) exp[φ1(z)], F (c) = r2(φ) exp[φ2(φ)]
with certain functions ri , φi , i = 1, 2.

The form of contours F(σ ) presented in Figure 3 is typical for absolutely all
the regimes under consideration in the present analysis. These contours consist of
two parts: the arc BAC, being the image F(c0) of the straight line component of the
contour C in the complex σ -plane and the arc CDB, being the image F(c) of the
semi-circle component of the contour C. In this setting, the principal factor, causing
the absence of zeroes of F(σ ) appears to be the negative value of the non-zero
coordinate of the point A. The calculations show that the location of the point A
depends on the decay (growth) rate. The smaller the distance from A to origin,
the smaller the decay (or growth) rate of perturbations. The first equilibrium state
is a stable one (inner contour). When we increase the value of permeability, the
configuration becomes unstable. It can be seen that in the first case the roots with
positive real part are absent, that implies the stability of the solution. In the second
case the image of radius-vector of the points of the contour C makes one round
about the origin in the F(σ )-plane, that means the existence of the root σ with the

Figure 3. Comparative location of the contours C1 in the complex F(σ)-plane for κ = 3;
k = 10−17 m2 corresponds to the inner contour and k = 10−16 m2 – to the outer contour.
The rest of the data are as in Figure 2. The form of the contours varies slightly under variation
of κ .
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Figure 4. Growth (curve 1) and decay (curve 2) rates σ versus wavenumber κ for the solutions
without phase motion. Curves 1 and 2 corresponds to the outer and inner contour in Figure 3.

positive real part and corresponds to the instability regime of the basic solution.
The dependence of the decay and growth rates (the corresponding roots are real)
on the wavenumber κ is illustrated in Figure 4.

There exists the critical value of permeability kcr ∼ 8.9 × 10−17 m2 for this solu-
tion separating stable and unstable equilibrium states. For the values of permeabil-
ity lower that the critical one, the solution is stable and it becomes unstable, when
the permeability exceeds the threshold kcr.

As it was noted in the preceding section there exist three different roots at
k = 10−16 m2 relating to the rest state solution, which was already considered, the
solution with water vaporization interface and also the solution with condensation
interface, correspondingly. In Figure 5 the dependence of decay (growth) rates re-
lating to the second and the third regimes on κ is shown. As follows from Figure 5,
these solutions are stable at small and unstable at large enough wave numbers. We
examined the stability of the steady basic state (7) for a lot of the boundary values
of the pressure and permeability meeting the criterion of smallness of the advective
energy transfer as compared with the conductive one. It was found that for a stable
equilibrium state the solution (7) is unique in all cases.

Numerical experiments show, that besides the permeability, other physical
parameters can influence the stability. For example, the unstable regimes, demon-
strated in Figures 4 and 5, are subjected to qualitative changes when the pressure in
the lowest high permeability layers increases from the value P 0 = 1.17512 × 106 Pa
to P 0 = 1.2 × 106 Pa. Initially, there existed three different basic solutions of the
unperturbed equations. The solutions, relating to the vapor condensation and water
vaporization were stable at small κ and unstable at large enough κ (Figure 5). The
solution, relating to the rest state, was unstable for all wave numbers of perturbation.
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Figure 5. Growth rates σ versus wavenumber κ for the solutions with phase motion.
Curve 1 corresponds to the regime of vaporization and curve 2 corresponds to the regime
of condensation; k = 10−16 m2. The rest of the data are as in Figures 3 and 4.

Increase of the pressure at the low boundary leads to the uniqueness of the unper-
turbed basic solution. This solution corresponds to the condensation regime and
relates to the unique root of the transcendental equation (9). The solution is stable.

It is interesting to note, that if the pressure in the low layer decreases (for
example, P 0 = 0.99 × 106 Pa), then also only one root remains, but now it corres-
ponds to the stable regime of vaporization. Consequently, it is reasonable to make
a conclusion, that phase motion in the basic stationary solution can stabilize the
system. May be the absence of such a flow in the basic solution explains the fact
that in the paper (Schubert and Straus, 1980) lower values of critical permeability
were found, when the stable configuration is realized, because the rest state occurs
to be the most unstable one. This conclusion is also in agreement with data of
Eastwood and Spanos (1994), where the comparison of the decay at different wave
numbers was performed for an unbounded and bounded geothermal systems and it
was found that the presence of the boundary makes the system more stable.

The numerical experiments were also performed in order to find the solutions
stable for all wave numbers at higher values of permeability. For the parameters of
the system, given in example 1 (see Section 3), growth of the permeability leads to
the appearance of three solutions of the unperturbed system, though the condensa-
tion regime is stable for an arbitrary wave number. In Figure 6 the dependence of
the decay rate on the wave number is shown for k = 4 × 10−16 m2.

Verification of the smallness of the advective energy transfer in comparison with
the conductive one shows that the conductive energy transfer more than by an order
of magnitude exceeds the advective heat transfer. The analogous dependence of the
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Figure 6. Decay rate σ versus wavenumber κ for the condensation regime at L = 20 m,
T0 = 448 K, T 0 = 464 K, P0 = 106 Pa, P 0 = 1.1 × 106 Pa and k = 4 × 10−16 m2.

decay rate on the wave number, testifying the stability of the solution, takes place
also for k = 6 × 10−16 m2, though in this case the conductive energy transfer only
three times greater than the advective one. Therefore, increasing the permeability,
we get either the transfer to instability, or find ourselves without the frame of our
approximation.

Let us note, that in Schubert and Straus (1980) and Eastwood and Spanos (1994)
it is assumed that the roots are purely real, not complex. This assumption, generally
speaking, requires the substantiation. In our analysis we are able to detect also the
complex roots σ of the dispersion relation with positive real part. The existence of
such roots also implies the instability of the physical system under investigation.

5. Conclusion and Discussion

In the present paper we find the stationary solution of the problem of phase motion
in a geothermal system where the water layer overlies the vapor layer under the
assumption of the smallness of the advective energy transfer as compared with
the conductive one. It is found that for low values of the permeability the basic
solution is unique. If the value of permeability exceeds some critical value, there
exist three different locations of the phase transition surface. It means that for the
same boundary values three different regimes of phase motion can be realized.

The analysis of normal stability of basic solutions shows, that in the cases
when the solution is unique, it is always stable. If the basic solution is not unique,
there exist three different solutions and the question about the stability of each
solution has to be treated separately. In this case the regime with the intermediate
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location of the interface occurs to be the most unstable one, and the other two
regimes can be either stable or unstable. In some cases the condition of smallness
of the advective energy transfer is violated before the bifurcation of basic state
takes place and therefore, the criterion of stability coincides with the condition of
smallness of the advective heat transfer. This fact makes it possible to treat the
physical mechanism of the stability in the sense that perturbations of the interface,
formation and penetration of water fingers in the vapor domain are suppressed by
the dominating conductive heat flux, which leads to the vaporization of the liquid
phase. The calculations show that there exist stable basic states for the values of
permeability k ∼ 0.6 × 10−15 m2 and higher. These values exceed more than by
an order of magnitude the critical value, given in Schubert and Straus (1980). At
higher values of the permeability the role of the advective heat transfer becomes
considerable and the use of the solution of the unperturbed system is not rightful.
In cases when the violation of our criterium precedes the transfer to instability, it
seems to be reasonable to conjecture the growth of permeability will not lead to
the transition of the system to instability immediately, i.e. in reality the water layer
can exist over the vapor layer even for higher values of the rock permeability.
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