%% Created by Maple 15.00, Windows 7 %% Source Worksheet: p57.mw %% Generated: Tue May 08 16:58:50 CST 2012 \documentclass{article} \usepackage{maplestd2e} \usepackage{CJK} \def\emptyline{\vspace{12pt}} \begin{document} \begin{CJK}{}{} \pagestyle{empty} \DefineParaStyle{Maple Heading 1} \DefineParaStyle{Maple Text Output} \DefineParaStyle{Maple Dash Item} \DefineParaStyle{Maple Bullet Item} \DefineParaStyle{Maple Normal} \DefineParaStyle{Maple Heading 4} \DefineParaStyle{Maple Heading 3} \DefineParaStyle{Maple Heading 2} \DefineParaStyle{Maple Warning} \DefineParaStyle{Maple Title} \DefineParaStyle{Maple Error} \DefineCharStyle{Maple Hyperlink} \DefineCharStyle{Maple 2D Math} \DefineCharStyle{Maple Maple Input} \DefineCharStyle{Maple 2D Output} \DefineCharStyle{Maple 2D Input} \mapleinline{inert}{2d}{f1 := z = f(x+y, z+y)}{\[\displaystyle {\it f1}\, := \,z=f \left( x+y,z+y \right) \]} \begin{maplegroup} \mapleresult \begin{maplelatex} \mapleinline{inert}{2d}{z = f(x+y, z+y)}{\[\displaystyle z=f \left( x+y,z+y \right) \]} \end{maplelatex} \end{maplegroup} \mapleinline{inert}{2d}{implicitdiff(f1, z, x, x)}{\[\displaystyle {\it implicitdiff} \left( {\it f1},z,x,x \right) \]} \begin{maplegroup} \mapleresult \begin{maplelatex} \mapleinline{inert}{2d}{-((D[1, 1](f))(x+y, z+y)*(D[2](f))(x+y, z+y)^2-2*(D[1, 1](f))(x+y, z+y)*(D[2](f))(x+y, z+y)+(D[1, 1](f))(x+y, z+y)-2*(D[1, 2](f))(x+y, z+y)*(D[1](f))(x+y, z+y)*(D[2](f))(x+y, z+y)+2*(D[1, 2](f))(x+y, z+y)*(D[1](f))(x+y, z+y)+(D[2, 2](f))(x+y, z+y)*(D[1](f))(x+y, z+y)^2)/(-1-3*(D[2](f))(x+y, z+y)^2+3*(D[2](f))(x+y, z+y)+(D[2](f))(x+y, z+y)^3)}{\[\displaystyle -{\frac { \left( D_{{1,1}} \right) \left( f \right) \left( x+y,z+y \right) \left( D_{{2}} \left( f \right) \left( x+y,z+y \right) \right) ^{2}-2\, \left( D_{{1,1}} \right) \left( f \right) \left( x+y,z+y \right) D_{{2}} \left( f \right) \left( x+y,z+y \right) \\ \mbox{}+ \left( D_{{1,1}} \right) \left( f \right) \left( x+y,z+y \right) -2\, \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y \right) D_{{1}} \left( f \right) \left( x+y,z+y \right) \\ \mbox{}D_{{2}} \left( f \right) \left( x+y,z+y \right) +2\, \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y \right) D_{{1}} \left( f \right) \left( x+y,z+y \right) \\ \mbox{}+ \left( D_{{2,2}} \right) \left( f \right) \left( x+y,z+y \right) \left( D_{{1}} \left( f \right) \left( x+y,z+y \right) \right) ^{2}}{-1-3\, \left( D_{{2}} \left( f \right) \left( x+y,z+y \right) \right) ^{2}\\ \mbox{}+3\,D_{{2}} \left( f \right) \left( x+y,z+y \right) + \left( D_{{2}} \left( f \right) \left( x+y,z+y \right) \right) ^{3}}}\]} \end{maplelatex} \end{maplegroup} \mapleinline{inert}{2d}{implicitdiff(f1, z, x, y)}{$\displaystyle {\it implicitdiff} \left( {\it f1},z,x,y \right) $} \mapleinline{inert}{2d}{}{$\displaystyle $} \begin{maplegroup} \mapleresult \begin{maplelatex} \mapleinline{inert}{2d}{-((D[1, 1](f))(x+y, z+y)*(D[2](f))(x+y, z+y)^2-2*(D[1, 1](f))(x+y, z+y)*(D[2](f))(x+y, z+y)+(D[1, 1](f))(x+y, z+y)-2*(D[1, 2](f))(x+y, z+y)*(D[1](f))(x+y, z+y)*(D[2](f))(x+y, z+y)+2*(D[1, 2](f))(x+y, z+y)*(D[1](f))(x+y, z+y)-(D[1, 2](f))(x+y, z+y)*(D[2](f))(x+y, z+y)+(D[1, 2](f))(x+y, z+y)+(D[2, 2](f))(x+y, z+y)*(D[1](f))(x+y, z+y)^2+(D[2, 2](f))(x+y, z+y)*(D[1](f))(x+y, z+y))/(-1-3*(D[2](f))(x+y, z+y)^2+3*(D[2](f))(x+y, z+y)+(D[2](f))(x+y, z+y)^3)}{\[\displaystyle -{\frac { \left( D_{{1,1}} \right) \left( f \right) \left( x+y,z+y \right) \left( D_{{2}} \left( f \right) \left( x+y,z+y \right) \right) ^{2}-2\, \left( D_{{1,1}} \right) \left( f \right) \left( x+y,z+y \right) D_{{2}} \left( f \right) \left( x+y,z+y \right) \\ \mbox{}+ \left( D_{{1,1}} \right) \left( f \right) \left( x+y,z+y \right) -2\, \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y \right) D_{{1}} \left( f \right) \left( x+y,z+y \right) \\ \mbox{}D_{{2}} \left( f \right) \left( x+y,z+y \right) +2\, \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y \right) D_{{1}} \left( f \right) \left( x+y,z+y \right) \\ \mbox{}- \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y \right) D_{{2}} \left( f \right) \left( x+y,z+y \right) + \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y \right) \\ \mbox{}+ \left( D_{{2,2}} \right) \left( f \right) \left( x+y,z+y \right) \left( D_{{1}} \left( f \right) \left( x+y,z+y \right) \right) ^{2}+ \left( D_{{2,2}} \right) \left( f \right) \left( x+y,z+y \right) D_{{1}} \left( f \right) \left( x+y,z+y \right) \\ \mbox{}}{-1-3\, \left( D_{{2}} \left( f \right) \left( x+y,z+y \right) \right) ^{2}+3\,D_{{2}} \left( f \right) \left( x+y,z+y \right) + \left( D_{{2}} \left( f \right) \left( x+y,z+y \right) \right) ^{3}}}\]} \end{maplelatex} \end{maplegroup} \mapleinline{inert}{2d}{implicitdiff(f1, z, y, y)}{\[\displaystyle {\it implicitdiff} \left( {\it f1},z,y,y \right) \]} \begin{maplegroup} \mapleresult \begin{maplelatex} \mapleinline{inert}{2d}{-((D[1, 1](f))(x+y, z+y)*(D[2](f))(x+y, z+y)^2-2*(D[1, 1](f))(x+y, z+y)*(D[2](f))(x+y, z+y)+(D[1, 1](f))(x+y, z+y)-2*(D[1, 2](f))(x+y, z+y)*(D[1](f))(x+y, z+y)*(D[2](f))(x+y, z+y)+2*(D[1, 2](f))(x+y, z+y)*(D[1](f))(x+y, z+y)-2*(D[1, 2](f))(x+y, z+y)*(D[2](f))(x+y, z+y)+2*(D[1, 2](f))(x+y, z+y)+(D[2, 2](f))(x+y, z+y)*(D[1](f))(x+y, z+y)^2+2*(D[2, 2](f))(x+y, z+y)*(D[1](f))(x+y, z+y)+(D[2, 2](f))(x+y, z+y))/(-1-3*(D[2](f))(x+y, z+y)^2+3*(D[2](f))(x+y, z+y)+(D[2](f))(x+y, z+y)^3)}{\[\displaystyle -{\frac { \left( D_{{1,1}} \right) \left( f \right) \left( x+y,z+y \right) \left( D_{{2}} \left( f \right) \left( x+y,z+y \right) \right) ^{2}-2\, \left( D_{{1,1}} \right) \left( f \right) \left( x+y,z+y \right) D_{{2}} \left( f \right) \left( x+y,z+y \right) \\ \mbox{}+ \left( D_{{1,1}} \right) \left( f \right) \left( x+y,z+y \right) -2\, \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y \right) D_{{1}} \left( f \right) \left( x+y,z+y \right) \\ \mbox{}D_{{2}} \left( f \right) \left( x+y,z+y \right) +2\, \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y \right) D_{{1}} \left( f \right) \left( x+y,z+y \right) \\ \mbox{}-2\, \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y \right) D_{{2}} \left( f \right) \left( x+y,z+y \right) +2\, \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y \right) \\ \mbox{}+ \left( D_{{2,2}} \right) \left( f \right) \left( x+y,z+y \right) \left( D_{{1}} \left( f \right) \left( x+y,z+y \right) \right) ^{2}+2\, \left( D_{{2,2}} \right) \left( f \right) \left( x+y,z+y \right) D_{{1}} \left( f \right) \left( x+y,z+y \right) \\ \mbox{}+ \left( D_{{2,2}} \right) \left( f \right) \left( x+y,z+y \right) }{-1-3\, \left( D_{{2}} \left( f \right) \left( x+y,z+y \right) \right) ^{2}+3\,D_{{2}} \left( f \right) \left( x+y,z+y \right) + \left( D_{{2}} \left( f \right) \left( x+y,z+y \right) \right) ^{3}\\ \mbox{}}}\]} \end{maplelatex} \end{maplegroup} \mapleinline{inert}{2d}{f2 := f(x+y, z+y, z+x) = 0}{\[\displaystyle {\it f2}\, := \,f \left( x+y,z+y,z+x \right) =0\]} \begin{maplegroup} \mapleresult \begin{maplelatex} \mapleinline{inert}{2d}{f(x+y, z+y, z+x) = 0}{\[\displaystyle f \left( x+y,z+y,z+x \right) =0\]} \end{maplelatex} \end{maplegroup} \mapleinline{inert}{2d}{dx2 := simplify(implicitdiff(f2, z, x, x))}{\[\displaystyle {\it dx2}\, := \,{\it simplify} \left( {\it implicitdiff} \left( {\it f2},z,x,x \right) \\ \mbox{} \right) \]} \begin{maplegroup} \mapleresult \begin{maplelatex} \mapleinline{inert}{2d}{-(2*(D[1, 1](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)-2*(D[1, 2](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)-2*(D[1, 2](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)-2*(D[1, 2](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)-2*(D[1, 3](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)-2*(D[1, 3](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)+2*(D[1, 3](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)+2*(D[2, 2](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)+2*(D[2, 3](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)-2*(D[2, 3](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)-2*(D[2, 3](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)-2*(D[3, 3](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)+(D[1, 1](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)^2+(D[1, 1](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)^2-2*(D[1, 2](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)^2+2*(D[1, 3](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)^2+(D[2, 2](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)^2+(D[2, 2](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)^2+2*(D[2, 3](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)^2+(D[3, 3](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)^2+(D[3, 3](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)^2)/(3*(D[2](f))(x+y, z+y, z+x)^2*(D[3](f))(x+y, z+y, z+x)+3*(D[2](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)^2+(D[2](f))(x+y, z+y, z+x)^3+(D[3](f))(x+y, z+y, z+x)^3)}{\[\displaystyle -{\frac {2\, \left( D_{{1,1}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) -2\, \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) -2\, \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) -2\, \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}-2\, \left( D_{{1,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) -2\, \left( D_{{1,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) +2\, \left( D_{{1,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) +2\, \left( D_{{2,2}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}+2\, \left( D_{{2,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) -2\, \left( D_{{2,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) -2\, \left( D_{{2,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) -2\, \left( D_{{3,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}+ \left( D_{{1,1}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}+ \left( D_{{1,1}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}\\ \mbox{}-2\, \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}\\ \mbox{}+2\, \left( D_{{1,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}\\ \mbox{}+ \left( D_{{2,2}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}+ \left( D_{{2,2}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}\\ \mbox{}+2\, \left( D_{{2,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}\\ \mbox{}+ \left( D_{{3,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}+ \left( D_{{3,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}\\ \mbox{}}{3\, \left( D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) +3\,D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}\\ \mbox{}+ \left( D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{3}+ \left( D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{3}}}\]} \end{maplelatex} \end{maplegroup} \mapleinline{inert}{2d}{}{\[\displaystyle \]} \begin{Maple Normal}{ \begin{Maple Normal}{ \mapleinline{inert}{2d}{}{\[\displaystyle \]} }\end{Maple Normal} }\end{Maple Normal} \mapleinline{inert}{2d}{simplify(implicitdiff(f2, z, x, y))}{\[\displaystyle {\it simplify} \left( {\it implicitdiff} \left( {\it f2},z,x,y\\ \mbox{} \right) \right) \]} \begin{maplegroup} \mapleresult \begin{maplelatex} \mapleinline{inert}{2d}{-((D[1, 1](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)^2+(D[1, 1](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)^2+(D[2, 2](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)^2-(D[2, 2](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)^2+2*(D[2, 3](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)^2+(D[3, 3](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)^2-(D[3, 3](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)^2+2*(D[1, 1](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)-2*(D[1, 2](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)-2*(D[1, 2](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)-2*(D[1, 3](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)-2*(D[1, 3](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)+2*(D[2, 3](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x))/(3*(D[2](f))(x+y, z+y, z+x)^2*(D[3](f))(x+y, z+y, z+x)+3*(D[2](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)^2+(D[2](f))(x+y, z+y, z+x)^3+(D[3](f))(x+y, z+y, z+x)^3)}{\[\displaystyle -{\frac { \left( D_{{1,1}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}\\ \mbox{}+ \left( D_{{1,1}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}\\ \mbox{}+ \left( D_{{2,2}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}- \left( D_{{2,2}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}\\ \mbox{}+2\, \left( D_{{2,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}\\ \mbox{}+ \left( D_{{3,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}- \left( D_{{3,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}\\ \mbox{}+2\, \left( D_{{1,1}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) -2\, \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) -2\, \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) -2\, \left( D_{{1,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}-2\, \left( D_{{1,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) +2\, \left( D_{{2,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) }{3\, \left( D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}+3\,D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}+ \left( D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{3}\\ \mbox{}+ \left( D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{3}}}\]} \end{maplelatex} \end{maplegroup} \begin{Maple Normal}{ \begin{Maple Normal}{ \mapleinline{inert}{2d}{}{\[\displaystyle \]} }\end{Maple Normal} }\end{Maple Normal} \mapleinline{inert}{2d}{simplify(implicitdiff(f2, z, y, y))}{\[\displaystyle {\it simplify} \left( {\it implicitdiff} \left( {\it f2},z,y,y \right) \\ \mbox{} \right) \]} \begin{maplegroup} \mapleresult \begin{maplelatex} \mapleinline{inert}{2d}{-(2*(D[1, 1](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)-2*(D[1, 2](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)-2*(D[1, 2](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)+2*(D[1, 2](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)-2*(D[1, 3](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)-2*(D[1, 3](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)-2*(D[1, 3](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)-2*(D[2, 2](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)-2*(D[2, 3](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)+2*(D[2, 3](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)-2*(D[2, 3](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)+2*(D[3, 3](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)+(D[1, 1](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)^2+(D[1, 1](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)^2+2*(D[1, 2](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)^2-2*(D[1, 3](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)^2+(D[2, 2](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)^2+(D[2, 2](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)^2+2*(D[2, 3](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)^2+(D[3, 3](f))(x+y, z+y, z+x)*(D[1](f))(x+y, z+y, z+x)^2+(D[3, 3](f))(x+y, z+y, z+x)*(D[2](f))(x+y, z+y, z+x)^2)/(3*(D[2](f))(x+y, z+y, z+x)^2*(D[3](f))(x+y, z+y, z+x)+3*(D[2](f))(x+y, z+y, z+x)*(D[3](f))(x+y, z+y, z+x)^2+(D[2](f))(x+y, z+y, z+x)^3+(D[3](f))(x+y, z+y, z+x)^3)}{\[\displaystyle -{\frac {2\, \left( D_{{1,1}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) -2\, \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) -2\, \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) +2\, \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}-2\, \left( D_{{1,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) -2\, \left( D_{{1,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) -2\, \left( D_{{1,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) -2\, \left( D_{{2,2}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}-2\, \left( D_{{2,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) +2\, \left( D_{{2,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) -2\, \left( D_{{2,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) +2\, \left( D_{{3,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \\ \mbox{}+ \left( D_{{1,1}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}+ \left( D_{{1,1}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}\\ \mbox{}+2\, \left( D_{{1,2}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}\\ \mbox{}-2\, \left( D_{{1,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}\\ \mbox{}+ \left( D_{{2,2}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}+ \left( D_{{2,2}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}\\ \mbox{}+2\, \left( D_{{2,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}\\ \mbox{}+ \left( D_{{3,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{1}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}+ \left( D_{{3,3}} \right) \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}\\ \mbox{}}{3\, \left( D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) +3\,D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \left( D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{2}\\ \mbox{}+ \left( D_{{2}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{3}+ \left( D_{{3}} \left( f \right) \left( x+y,z+y,z+x \right) \right) ^{3}}}\]} \end{maplelatex} \end{maplegroup} \begin{Maple Normal}{ \begin{Maple Normal}{ \mapleinline{inert}{2d}{}{\[\displaystyle \]} }\end{Maple Normal} }\end{Maple Normal} \end{CJK} \end{document}