
(1)(1)

(1.3)(1.3)

(1.4)(1.4)

> >

> >

(1.2)(1.2)

(1.5)(1.5)

> >

> >

• •

> >

> >

> >

(1.1)(1.1)

The current version of the DE and Mathematical Functions packages under development at Maplesoft,
that is, dsolve, pdsolve, DEtools, PDEtools, DifferentialAlgebra and DifferentialGeometry, the
mathematical functions of the language, the conversion network for mathematical functions and the
MathematicalFunctions package, has this datestamp:

restart; DEsAndMathematicalFunctions:-Version 2 ;
2013, Dezember 10, 12:40 hours

If you installed DEsAndMathematicalFunctions.mla successfully (see installation instructions in the zip
containing DEsAndMathematicalFunctions.mla) you will see the date shown above. The following
computations are reproducible only with this current version.

December 10
Implement the ability to hande a differential equation system in Matrix notation, including initial
conditions and the testing of solutions using odetest. (See this post in Mapleprimes from October
29)

restart;
ode d Vector diff x t , t , diff y t , t = Vector 2 * x t C y t , 3 * y t Kx t ;

ode d
x
.

t

y
.

t
=

2 x t C y t

3 y t K x t

New: dsolve handles this system of equations represented as a "Vector" equation
dsolve ode

x t = e
5 t
2 sin

3 t
2

 _C1C cos
3 t
2

 _C2 , y t =

K
1
2

e
5 t
2 sin

3 t
2

 3 _C2K cos
3 t
2

 3 _C1K sin
3 t
2

 _C1

K cos
3 t
2

 _C2

New: if the DE system is in vector notation, so is it the output of odetest
odetest (1.2), (1.1)

0

0

New: the variables can also be specified in Vector notation, in which case dsolve's output will also be
in Vector notation

V d Vector x t , y t

V d
x t

y t

sol d dsolve ode, V

(1.8)(1.8)

> >

(1.9)(1.9)

(1.5)(1.5)

> >

> >

(1.7)(1.7)

> >

(1.6)(1.6)

sol d
x t

y t
=

1
2

e
5 t
2 sin

3 t
2

 3 _C2K cos
3 t
2

 3 _C1

C sin
3 t
2

 _C1C cos
3 t
2

 _C2 ,

e
5 t
2 sin

3 t
2

 _C1C cos
3 t
2

 _C2

New: odetest can test this kind of Vector solution and returns in the same notation
odetest sol, ode

0

0

The same is implemented for pdsolve and pdetest.

New: for ODEs, the initial conditions can also be given in Vector notation, using eval or D to
represent the value of the functions or their derivatives at a given point.
Example:

ICs d Vector Eval diff x t , t , t = 0 , Eval diff y t , t , t = 0 = Vector 1, 0 ;

ICs d

x
.

t
t = 0

y
.

t
t = 0

=
1

0

Here sys can be a set or a list with the ODEs and the initial conditions, say
sys d ode, ICs

sys d
x
.

t

y
.

t
=

2 x t C y t

3 y t K x t
,

x
.

t
t = 0

y
.

t
t = 0

=
1

0

As in the previous case, if you pass the system without specifying the unknowns as a Vector, for
instance without specifying them at all (in an example like this one there is no ambiguity and so they
are not necessary), you have the system's solution returned as usual, as a set

dsolve ode, ICs

x t = e
5 t
2 K

sin
3 t
2

 3

21
C

3 cos
3 t
2

7
, y t =

K

e
5 t
2

10 sin
3 t
2

 3

21
K

2 cos
3 t
2

7
2

(1.12)(1.12)

> >

(1.11)(1.11)

> >

(1.10)(1.10)

> >

> >

(1.5)(1.5)

The odetesting works as in the previous example: it returns in the same way as when there are no
initial conditions, so as a list of Vectors

odetest (1.9), ode, ICs
0

0
,

0

0

If however you specify the unknowns as a Vector, then the output is also a Vector equation
dsolve ode, ICs , V

x t

y t
=

e
5 t
2 K

2 sin
3 t
2

 3

21
C

6 cos
3 t
2

7
2

e
5 t
2 K

5 sin
3 t
2

 3

21
C

cos
3 t
2

7

odetest (1.11), ode, ICs
0

0
,

0

0

