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To answer all of these questions, we must first deal with some procedural problems that come
about from having to take derivatives of infinite series. For a finite series, such problems do not
exist because from ordinary calculus, we know that the derivative of a sum equals the sum of
the derivatives. However, when the sum is an infinite sum, the preceding may or may not be
true. We now list some theorems, without proof, that will play a role in the verification
procedure for solutions of the preceding problems over the rectangular domain
D = {(x, t) |a<x<b, t>0}.
Theorem 3.7.1 (Convergence of Derivatives) Consider the following infinite series:

u(x) =
∞∑

n=0

un(x)

If all the series terms un(x) are differentiable on I = [a, b] and if the series of differentiated
terms

∞∑
n=0

(
d

dx
un(x)

)

converges uniformly on I, then the series converges uniformly to the function u(x) and the
derivative of the series equals the series of the derivatives; that is,

d

dx
u(x) =

∞∑
n=0

(
d

dx
un(x)

)

for all x in I.

Theorem 3.7.2 (The Weierstrass M-test for Uniform Convergence) If the terms of the
preceding series satisfy the condition

|un(x)| ≤ Mn

for all n and for all x in I = [a, b], where the Mn are constants (independent of x), and if the
series of constants

∞∑
n=0

Mn

converges, then the series

∞∑
n=0

un(x)

converges uniformly for all x in the interval I .
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We now apply the three-step verification procedure to verify the solution to the illustration
problem in Section 3.5.

The homogeneous diffusion equation reads

∂

∂t
u(x, t) = k

(
∂2

∂x2
u(x, t)

)

The boundary conditions are type 1 at x = 0 and type 1 at x = 1

u(0, t) = 0 and u(1, t) = 0

The initial condition is

ux,0 = x(1−x)

From Section 3.5, the solution to the equation for k = 1/10 reads

u(x, t) =
∞∑

n=1

⎛
⎝−4

(
(−1)n −1

)
e− n2π2t

10 sin(nπx)

n3π3

⎞
⎠

For the first step, we check to see if this solution satisfies the partial differential equation.
Differentiating formally, once with respect to t and twice with respect to x, we get

∂

∂t
u(x, t) =

∞∑
n=1

2
(
(−1)n −1

)
e− n2π2t

10 sin(nπx)

5nπ

and

∂2

∂x2
u(x, t) =

∞∑
n=1

4
(
(−1)n −1

)
e− n2π2t

10 sin(nπx)

nπ

It is obvious that for k = 1/10, both sides of the partial differential equation are satisfied; that is,

∂

∂t
u(x, t) = k

(
∂2

∂x2
u(x, t)

)

The preceding differentiations were done formally; that is, we wrote the derivative of the series
as being the series of the derivatives. To verify the validity of such a move, we must use
Theorems 3.7.1 and 3.7.2. The n-th term of both differentiated series given reads

2
(
(−1)n −1

)
e− n2π2t

10 sin(nπx)

5nπ
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For x in the interval I = [0,1], the absolute value of the preceding term is less than or equal to
the following term:

2e− n2π2t
10

∣∣((−1)n −1
)
sin(nπx)

∣∣
5nπ

≤ e− n2π2t
10

n

Using the Weierstrass M-test on this inequality, in addition to using the ratio test on the
following series

∞∑
n=1

e− n2π2t
10

n

indicates the series converges for t > 0. Thus, since the series converges absolutely for all x in
I, then, from Theorem 3.7.2, both of the differentiated series converge uniformly, and this
justifies the formal operation of differentiation.

The second step in the verification procedure is to confirm that the boundary conditions are
satisfied. Since the solution is a generalized Fourier series expansion in terms of the
eigenfunctons, which satisfy the same boundary conditions (this is always the case for
homogeneous boundary conditions), then the boundary conditions on the solution are, indeed,
satisfied. Obviously, substituting x = 0 and x = 1 into the solution yields

u(0, t) = 0 and u(1, t) = 0

The third and final step in the verification procedure is to check whether the initial condition is
satisfied. If we substitute t = 0 into the preceding solution, we get

u(x,0) =
∞∑

n=1

(
−4

(
(−1)n −1

)
sin(nπx)

n3π3

)

Since the initial condition function f(x) is required to be piecewise continuous over the
interval I, we see that the given series is the generalized Fourier series expansion of
f(x) = x(1−x) in terms of the “complete” set of orthonormalized eigenfunctions

Xn(x) = √
2 sin(nπx)

A plot of both the initial condition function f(x) and the series representation of the solution
u(x,0) is shown in Figure 3.7. The accuracy of the series representation is obvious.
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3.8 Diffusion Equation in the Cylindrical
Coordinate System

The partial differential equation for diffusion or heat phenomena in the rectangular-cartesian
coordinate system is presented in Section 3.2. The equivalent equation in the polar-cylindrical
coordinate system for a circularly symmetric system, with spatially invariant thermal
coefficients, is given as (see references for the conversion)

∂

∂t
u(r, t) =

k
(

∂
∂r u(r, t)+ r

(
∂2

∂r2 u(r, t)
))

r
+h(r, t)

In this equation, r is the coordinate radius of the system. There is no angle dependence here
because we have assumed circular symmetry. Further, there is no z dependence because we
will be considering problems that have no extension along the z-axis (thin plates).

As for the rectangular coordinate system, we can write the preceding equation in terms of the
linear operator for the diffusion equation in rectangular coordinates as

L(u) = h(r, t)

where the diffusion operator in cylindrical coordinates with cylindrical symmetry is

L(u) = ∂

∂t
u(r, t)−

k
(

∂
∂r u(r, t)+ r

(
∂2

∂r2 u(r, t)
))

r

The homogeneous version of the diffusion equation can be written as

L(u) = 0

and this is generally written in the more familiar form

∂

∂t
u(r, t) =

k
(

∂
∂r u(r, t)+ r

(
∂2

∂r2 u(r, t)
))

r
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We seek solutions to this partial differential equation over the finite interval I = {r |a < r < b}
subject to the nonregular homogeneous boundary conditions

|u(a, t)| < ∞
and

κ1u(b, t)+κ2ur(b, t) = 0

and the initial condition

u(r,0) = f(r)

We now attempt to solve this partial differential equation using the method of separation of
variables. We set

u(r, t) = R(r)T(t)

Substituting this into the preceding homogeneous partial differential equation, we get

R(r)

(
d

dt
T(t)

)
=

k
(

d
dr

R(r)+ r
(

d2

dr2 R(r)
))

T(t)

r

Dividing both sides by the product solution yields

d
dt

T(t)

kT(t)
=

d
dr

R(r)+ r
(

d2

dr2 R(r)
)

R(r)r

Since the left-hand side of the preceding is an exclusive function of t and the right-hand side an
exclusive function of r, and r and t are independent, then the only way we can ensure equality
for all r and t is to set each side equal to a constant.

Doing so, we arrive at the following two ordinary differential equations in terms of the
separation constant λ2:

d

dt
T(t)+kλ2T(t) = 0

and

d2

dr2
R(r)+

d
dr

R(r)

r
+λ2R(r) = 0

The preceding differential equation in t is an ordinary first-order linear equation for which we
already have the solution from Chapter 1.

The second differential equation in the variable r is recognized from Section 1.10 as being an
ordinary Bessel differential equation of order zero. The solution of this equation is the Bessel
function of the first kind of order zero.
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It was noted in Section 2.6 that, for the Bessel differential equation, the point r = 0 is a regular
singular point of the differential equation. With appropriate boundary conditions over an
interval that includes the origin, we obtain a “nonregular” (singular) type Sturm-Liouville
eigenvalue problem whose eigenfunctions form an orthogonal set.

Similar to regular Sturm-Liouville problems over finite intervals, there exists an infinite
number of eigenvalues that can be indexed by the positive integers n. The indexed eigenvalues
and corresponding eigenfunctions are given, respectively, as

λn,Rn(r)

for n = 0,1,2,3, . . . .

The eigenfunctions form a “complete” set with respect to any piecewise smooth function over
the finite interval I = {r |a < r < b}. In Section 2.6, we examined the nature of the
orthogonality of the Bessel functions, and we showed the eigenfunctions to be orthogonal with
respect to the weight function w(r) = r over a finite interval I. Further, the eigenfunctions can
be normalized and the corresponding statement of orthonormality reads

b∫
a

Rn(r)Rm(r)r dr = δ(n,m)

where the term on the right is the familiar Kronecker delta function.

Using arguments similar to those for the regular Sturm-Liouville problem, we can write our
general solution to the partial differential equation as a superposition of the products of the
solutions to each of the ordinary differential equations given earlier.

For the indexed values of λ, the solution to the preceding time-dependent equation is

Tn(t) = C(n)e−kλ2
nt

where the coefficients C(n) are unknown arbitrary constants.

By the method of separation of variables, we arrive at an infinite number of indexed solutions
un(r, t) (n = 0,1,2,3, . . .) for the homogeneous diffusion partial differential equation, over a
finite interval, given as

un(r, t) = Rn(r)C(n)e−kλ2
nt

Because the differential operator is linear, then any superposition of solutions to the
homogeneous equation is also a solution. Thus, the general solution can be written as the
infinite sum

u(r, t) =
∞∑

n=0

Rn(r)C(n)e−kλ2
nt
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We demonstrate the preceding concepts with an example diffusion problem in cylindrical
coordinates.

DEMONSTRATION: We seek the temperature distribution u(r, t) in a thin circularly
symmetric plate over the finite interval I = {r |0 < r < 1} whose lateral surface is insulated, so
there is no heat loss through the lateral surfaces. The periphery (edge) of the plate is at the fixed
temperature of zero. The initial temperature distribution f(r) is given below, and the diffusivity
is k = 1/20.

SOLUTION: The homogeneous diffusion equation is

∂

∂t
u(r, t) =

∂
∂r u(r, t)+ r

(
∂2

∂r2 u(r, t)
)

20r

The boundary conditions are type 1 at r = 1, and we require the solution to be finite at the origin

|u(0, t)| < ∞ and u(1, t) = 0

The initial condition is

u(r,0) = f(r)

From the method of separation of variables, we obtain the two ordinary differential equations:

d

dt
T(t)+ λ2T(t)

20
= 0

and

d2

dr2
R(r)+

d
dr

R(r)

r
+λ2R(r) = 0

We first consider the spatial differential equation in r. This is a Bessel-type differential
equation of the first kind of order zero with boundary conditions

|R(0)| < ∞ and R(1) = 0

This same problem was considered in Example 2.6.2 in Chapter 2. The allowed eigenvalues are
the roots of the eigenvalue equation

J(0, λn) = 0

for n = 1,2,3,. . . , and the corresponding orthonormal eigenfunctions are

Rn(r) =
√

2J(0, λnr)

J(1, λn)
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where J(0, λn) and J(1, λn) are the Bessel functions of the first kind of order zero and one,
respectively. The corresponding statement of orthonormality with respect to the weight
function w(r) = r over the interval I is

1∫
0

2J(0, λnr)J(0, λmr)r

J(1, λn)J(1, λm)
dr = δ(n,m)

We next consider the time-dependent differential equation. This is a first-order ordinary
differential equation that we solved in Section 1.2. The solution for the allowed values of λ

given earlier reads

Tn(t) = C(n)e− λ2
nt

20

Thus, the eigenfunction expansion for the solution to the problem reads

u(r, t) =
∞∑

n=1

C(n)e− λ2
nt

20
√

2J(0, λnr)

J(1, λn)

The unknown coefficients C(n), for n = 1,2,3,. . . , are to be determined from the initial
condition function imposed on the problem.

3.9 Initial Conditions for the Diffusion Equation in
Cylindrical Coordinates

We now consider the initial conditions on the problem. If the initial condition temperature
distribution is given as

u(r,0) = f(r)

then substitution of this into the following general solution

u(r, t) =
∞∑

n=0

Rn(r)C(n)e−kλ2
nt

at time t = 0 yields

f(r) =
∞∑

n=0

Rn(r)C(n)

This equation is the Fourier-Bessel series expansion of the function f(r), and the coefficients
C(n) are the Fourier coefficients.
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As we did before for the generalized Fourier series expansion of a piecewise smooth function
over the finite interval I, we can evaluate the coefficients C(n) by taking the inner product of
both sides of the preceding equation with the orthonormalized eigenfunctions with respect to
the weight function w(r) = r. Assuming validity of the interchange between the summation
and integration operations, we get

b∫
a

f(r)Rm(r)r dr =
∞∑

n=0

C(n)

⎛
⎝ b∫

a

Rn(r)Rm(r)r dr

⎞
⎠

Taking advantage of the statement of orthonormality, this equation reduces to

b∫
a

f(r)Rm(r)r dr =
∞∑

n=0

C(n)δ(n,m)

Due to the mathematical character of the Kronecker delta function, only one term (n = m) in
the sum survives, and we get

C(m) =
b∫

a

f(r)Rm(r)r dr

Thus, we can write the final generalized solution to the diffusion equation in cylindrical
coordinates in one dimension, subject to the given homogeneous boundary conditions and
initial conditions, as

u(r, t) =
∞∑

n=0

Rn(r)e−kλ2
nt

⎛
⎝ b∫

a

f(s)Rn(s)s ds

⎞
⎠

Again, all of the preceding operations are based on the assumption that the infinite series is
uniformly convergent and the formal interchange between the operator and the summation is
legitimate. It can be shown that if the initial condition function f(r) is piecewise smooth and it
satisfies the same boundary conditions as the eigenfunctions, then the preceding series is,
indeed, uniformly convergent.

DEMONSTRATION: We now provide a demonstration of these concepts for the example
problem given in Section 3.8 for the case where the initial temperature distribution is

f(r) = 1− r2

SOLUTION: The unknown Fourier coefficients are to be evaluated from the integral

C(n) =
1∫

0

(1− r2)
√

2J(0, λnr)r

J(1, λn)
dr
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Evaluation of this integral yields

C(n) = 4
√

2

λ3
n

for n = 1,2,3, . . . . Thus, the final series solution to our problem reads

u(r, t) =
∞∑

n=1

8e− λ2
nt

20 J(0, λnr)

λ3
nJ(1, λn)

The detailed development of the solution of this problem along with the graphics are given in
one of the Maple worksheet examples given later.

3.10 Example Diffusion Problems in Cylindrical
Coordinates

We now consider several examples of partial differential equations for heat or diffusion
phenomena under various homogeneous boundary conditions over finite intervals in the
cylindrical coordinate system. We note that all the spatial ordinary differential equations in the
cylindrical coordinate system are of the Bessel type and the solutions are Bessel functions of
the first kind.

EXAMPLE 3.10.1: We seek the temperature distribution u(r, t) in a thin circularly symmetric
plate over the interval I = {r |0 < r < 1} whose lateral surface is insulated. The periphery
(edge) of the plate is at the fixed temperature of zero. The initial temperature distribution f(r)

is given following, and the diffusivity is k = 1/20.

SOLUTION: The homogeneous diffusion equation is

∂2

∂t2
u(r, t) =

k
(

∂
∂r u(r, t)+ r

(
∂2

∂r2 u(r, t)
))

r

The boundary conditions are type 1 at r = 1, and we require a finite solution at r = 0.

|u(0, t)| < ∞ and u(1, t) = 0

The initial condition is

u(r,0) = 1− r2

Ordinary differential equations obtained from the method of separation of variables are

d

dt
T(t)+kλ2T(t) = 0
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and

d2

dr2
R(r)+

d
dr

R(r)

r
+λ2R(r) = 0

Boundary conditions on the spatial equation are

|R(0)| < ∞ and R(1) = 0

Assignment of system parameters

> restart:with(plots):a:=0:b:=1:k:=1/20:

Allowed eigenvalues and orthonormal eigenfunctions are from Example 2.6.2. The eigenvalues
are the roots of the eigenvalue equation

> BesselJ(0,lambda[n]*b)=0;

BesselJ(0, λn) = 0 (3.65)

for n = 1,2,3, . . . .

Orthonormal eigenfunctions

> R[n](r):=simplify(BesselJ(0,lambda[n]*r)/sqrt(int(BesselJ(0,lambda[n]*r)ˆ2*r,r=a..b)));

Rn(r) := BesselJ(0, λnr)
√

2√
BesselJ(0, λn)2 +BesselJ(1, λn)2

(3.66)

Substitution of the eigenvalue equation simplifies the preceding equation

> R[n](r):=radsimp(subs(BesselJ(0,lambda[n])=0,R[n](r)));R[m](r):=subs(n=m,R[n](r)):

Rn(r) := BesselJ(0, λnr)
√

2

BesselJ(1, λn)
(3.67)

Statement of orthonormality with respect to the weight function w(r) = r

> w(r):=r:Int(R[n](r)*R[m](r)*w(r),r=a...b)=delta(n,m);

1∫
0

2BesselJ(0, λnr)BesselJ(0, λmr)r

BesselJ(1, λn)BesselJ(1, λm)
dr = δ(n,m) (3.68)

Time-dependent solution

> T[n](t):=C(n)*exp(−k*lambda[n]ˆ2*t);u[n](r,t):=T[n](t)*R[n](r):

Tn(t) := C(n)e− 1
20 λ2

nt (3.69)
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Generalized series terms

> u[n](r,t):=T[n](t)*R[n](r);

un(r, t) := C(n)e− 1
20 λ2

ntBesselJ(0, λnr)
√

2

BesselJ(1, λn)
(3.70)

Eigenfunction expansion

> u(r,t):=Sum(u[n](r,t),n=1..infinity);

u(r, t) :=
∞∑

n=1

C(n)e− 1
20 λ2

ntBesselJ(0, λnr)
√

2

BesselJ(1, λn)
(3.71)

Evaluation of Fourier coefficients for the specific initial condition

> f(r):=1−rˆ2;

f(r) := 1− r2 (3.72)

> C(n):=Int(f(r)*R[n](r)*w(r),r=a..b);

C(n) :=
1∫

0

(1− r2)BesselJ(0, λnr)
√

2r

BesselJ(1, λn)
dr (3.73)

Substitution of the eigenvalue equation simplifies the preceding equation

> C(n):=simplify(subs(BesselJ(0,lambda[n])=0,value(%)));u[n](r,t):=eval(T[n](t)*R[n](r)):

C(n) := 4
√

2

λ3
n

(3.74)

Generalized series terms

> u[n](r,t):=eval(T[n](t)*R[n](r));

un(r, t) := 8e− 1
20 λ2

ntBesselJ(0, λnr)

λ3
nBesselJ(1, λn)

(3.75)

Series solution

> u(r,t):=Sum(u[n](r,t),n=1..infinity);

u(r, t) :=
∞∑

n=1

8e− 1
20 λ2

ntBesselJ(0, λnr)

λ3
nBesselJ(1, λn)

(3.76)
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Evaluation of the eigenvalues from the roots of the eigenvalue equation yields

> BesselJ(0,lambda[n]*b)=0;

BesselJ(0, λn) = 0 (3.77)

> plot(BesselJ(0,v),v=0..20,thickness=10);
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Figure 3.8

If we set v = λb, then the eigenvalues are found from the intersection points of the curve with
the v-axis shown in Figure 3.8. We evaluate a few of these eigenvalues using the Maple fsolve
command:

> lambda[1]:=(1/b)*fsolve(BesselJ(0,v)=0,v=0..3);

λ1 := 2.404825558 (3.78)

> lambda[2]:=(1/b)*fsolve(BesselJ(0,v)=0,v=3..6);

λ2 := 5.520078110 (3.79)

> lambda[3]:=(1/b)*fsolve(BesselJ(0,v)=0,v=6..9);

λ3 := 8.653727913 (3.80)

First few terms in sum

> u(r,t):=eval(sum(u[n](r,t),n=1..3)):

ANIMATION

> animate(u(r,t),r=a..b,t=0..5,thickness=3);

The preceding animation command illustrates the spatial-time-dependent solution for u(r, t).
The animation sequence shown in Figure 3.9 shows snapshots at times t = 0,1,2,3,4, and 5.
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ANIMATION SEQUENCE

> u(r,0):=subs(t=0,u(r,t)):u(r,1):=subs(t=1,u(r,t)):
> u(r,2):=subs(t=2,u(r,t)):u(r,3):=subs(t=3,u(r,t)):
> u(r,4):=subs(t=4,u(r,t)):u(r,5):=subs(t=5,u(r,t)):
> plot({u(r,0),u(r,1),u(r,2),u(r,3),u(r,4),u(r,5)},r=a..b,thickness=10);
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Figure 3.9

THREE-DIMENSIONAL ANIMATION

> u(x,y,t):=eval(subs(r=sqrt(xˆ2+yˆ2),u(r,t))):
> u(x,y,t):=(u(x,y,t))*Heaviside(1−sqrt(xˆ2+yˆ2)):
> animate3d(u(x,y,t),x=−b..b,y=−b..b,t=0..5,axes=framed,thickness=1);

EXAMPLE 3.10.2: We again seek the temperature distribution u(r, t) in a thin circularly
symmetric plate over the interval I = {r |0 < r < 1}. The lateral surface and the periphery
(edge) of the plate are insulated. The initial temperature distribution f(r) is given below, and
the diffusivity is k = 1/50.

SOLUTION: The homogeneous diffusion equation is

∂

∂t
u(r, t) =

k
(

∂
∂r u(r, t)+ r

(
∂2

∂r2 u(r, t)
))

r

The boundary conditions are type 2 at r = 1, and we require a finite solution at r = 0.

|u(0, t)| < ∞ and ur(1, t) = 0

The initial condition is

u(r,0) = 1− r2
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Ordinary differential equations obtained from the method of separation of variables are

d

dt
T(t)+kλ2T(t) = 0

and

d2

dr2
R(r)+

d
dr

R(r)

r
+λ2R(r) = 0

Boundary conditions on the spatial equation

|R(0)| < ∞ and Rr(1) = 0

Assignment of system parameters

> restart:with(plots):a:=0:b:=1:k:=1/50:

Allowed eigenvalues and orthonormal eigenfunctions are obtained from Example 2.6.3.

> lambda[0]:=0;

λ0 := 0 (3.81)

for n = 0.

Orthonormal eigenfunction

> R[0](r):=sqrt(2)/b;

R0(r) := √
2 (3.82)

For n = 1,2,3, . . . , the eigenvalues are the roots of the eigenvalue equation

> subs(r=b,diff(BesselJ(0,lambda[n]*r),r))=0;

−BesselJ(1, λn)λn = 0 (3.83)

Orthonormal eigenfunctions

> R[n](r):=simplify(BesselJ(0,lambda[n]*r)/sqrt(int(BesselJ(0,lambda[n]*r)ˆ2*r,r=a..b)));

Rn(r) := BesselJ(0, λnr)
√

2√
BesselJ(0, λn)2 +BesselJ(1, λn)2

(3.84)

Substitution of the eigenvalue equation simplifies the preceding equation

> R[n](r):=radsimp(subs(BesselJ(1,lambda[n])=0,R[n](r)));R[m](r):=subs(n=m,R[n](r)):

Rn(r) := BesselJ(0, λnr)
√

2

BesselJ(0, λn)
(3.85)
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Statement of orthonormality with respect to the weight function w(r) = r

> w(r):=r:Int(R[n](r)*R[m](r)*w(r),r=a...b)=delta(n,m);

1∫
0

2 BesselJ(0, λnr)BesselJ(0, λmr)r

BesselJ(0, λn)BesselJ(0, λm)
dr = δ(n,m) (3.86)

Time-dependent solution for n = 1,2,3, . . . reads

> T[n](t):=C(n)*exp(−k*lambda[n]ˆ2*t);u[n](r,t):=T[n](t)*R[n](r);

Tn(t) := C(n)e− 1
50 λ2

nt (3.87)

Generalized series terms

> u[n](r,t):=T[n](t)*R[n](r);

un(r, t) := C(n)e− 1
50 λ2

ntBesselJ(0, λnr)
√

2

BesselJ(0, λn)
(3.88)

and for n = 0,

> T[0](t):=C(0);u[0](r,t):=T[0](t)*R[0](r):

T0(t) := C(0) (3.89)

Eigenfunction expansion

> u(r,t):=u[0](r,t)+Sum(u[n](r,t),n=1..infinity);

u(r, t) := C(0)
√

2+
∞∑

n=1

C(n)e− 1
50 λ2

ntBesselJ(0, λnr)
√

2

BesselJ(0, λn)
(3.90)

Evaluation of Fourier coefficients from the given specific initial condition

> f(r):=1−rˆ2;

f(r) := 1− r2 (3.91)

yields, for n = 0,

> C(0):=eval(Int(f(r)*R[0](r)*r,r=a..b));

C(0) :=
1∫

0

(
1− r2

)√
2r dr (3.92)



The Diffusion or Heat Partial Differential Equation 203

> C(0):=value(%);u[0](r,t):=eval(T[0](t)*R[0](r)):

C(0) := 1

4

√
2 (3.93)

and for n = 1,2,3, . . . ,

> C(n):=Int(f(r)*R[n](r)*r,r=a..b);

C(n) :=
1∫

0

(
1− r2

)
BesselJ(0, λnr)

√
2r

BesselJ(0, λn)
dr (3.94)

Substitution of the eigenvalue equation simplifies the preceding equation

> C(n):=radsimp(subs(BesselJ(1,lambda[n]*b)=0,value(%)));

C(n) := −2
√

2

λ2
n

(3.95)

Generalized series terms

> u[n](r,t):=eval(T[n](t)*R[n](r));

un(r, t) := −4 e− 1
50 λ2

ntBesselJ(0, λnr)

λ2
nBesselJ(0, λn)

(3.96)

Series solution

> u(r,t):=u[0](r,t)+Sum(u[n](r,t),n=1..infinity);

u(r, t) := 1

2
+

∞∑
n=1

(
−4 e− 1

50 λ2
ntBesselJ(0, λnr)

λ2
nBesselJ(0, λn)

)
(3.97)

Evaluation of the eigenvalues from the roots of the eigenvalue equation yields

> BesselJ(1,lambda[n]*b)=0;

BesselJ(1, λn) = 0 (3.98)

> plot(BesselJ(1,v),v=0..20,thickness=10);

If we set v = λb, then the eigenvalues are found from the intersection points of the curve with
the v-axis shown in Figure 3.10. We evaluate a few of these eigenvalues using the Maple fsolve
command:

> lambda[1]:=(1/b)*fsolve(BesselJ(1,v)=0,v=1..4);

λ1 := 3.831705970 (3.99)
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> lambda[2]:=(1/b)*fsolve(BesselJ(1,v)=0,v=4..8);

λ2 := 7.015586670 (3.100)

> lambda[3]:=(1/b)*fsolve(BesselJ(1,v)=0,v=8..12);

λ3 := 10.17346814 (3.101)

First few terms in the sum

> u(r,t):=u[0](r,t)+eval(sum(u[n](r,t),n=1..1)):

ANIMATION

> animate(u(r,t),r=a..b,t=0..5,thickness=3);

The preceding animation command illustrates the spatial-time-dependent solution for u(r, t).
The animation sequence shown in Figure 3.11 shows snapshots at times t = 0,1,2,3,4, and 5.

ANIMATION SEQUENCE

> u(r,0):=subs(t=0,u(r,t)):u(r,1):=subs(t=1,u(r,t)):
> u(r,2):=subs(t=2,u(r,t)):u(r,3):=subs(t=3,u(r,t)):
> u(r,4):=subs(t=4,u(r,t)):u(r,5):=subs(t=5,u(r,t)):
> plot({u(r,0),u(r,1),u(r,2),u(r,3),u(r,4),u(r,5)},r=a..b,thickness=10);

THREE-DIMENSIONAL ANIMATION

> u(x,y,t):=eval(subs(r=sqrt(xˆ2+yˆ2),u(r,t))):
> u(x,y,t):=(u(x,y,t))*Heaviside(1−sqrt(xˆ2+yˆ2)):
> animate3d(u(x,y,t),x=−b..b,y=−b..b,t=0..5,axes=framed,thickness=1);
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Chapter Summary

Nonhomogeneous one-dimensional diffusion equation in rectangular coordinates

∂

∂t
u(x, t) = k

(
∂2

∂x2
u(x, t)

)
+h(x, t)

Linear diffusion operator of one dimension in rectangular coordinates

L(u) = ∂

∂t
u(x, t)−k

(
∂2

∂x2
u(x, t)

)

Method of separation of variables solution

u(x, t) = X(x)T(t)

Eigenfunction expansion solution for rectangular coordinates

u(x, t) =
∞∑

n=0

Xn(x)C(n)e−kλnt

Initial condition Fourier coefficients for rectangular coordinates

C(n) =
∫ b

a
f(x)Xn(x)dx

Nonhomogeneous one-dimensional diffusion equation in cylindrical coordinates

∂

∂t
u(r, t) =

k
(

∂
∂r u(r, t)+ r

(
∂2

∂r2 u(r, t)
))

r
+h(r, t)
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Linear diffusion operator of one dimension in cylindrical coordinates

L(u) = ∂

∂t
u(r, t)−

k
(

∂
∂r u(r, t)+ r

(
∂2

∂r2 u(r, t)
))

r

Method of separation of variables solution

u(r, t) = R(r)T(t)

Eigenfunction expansion solution in cylindrical coordinates

u(r, t) =
∞∑

n=0

Rn(r)C(n)e−kλ2
nt

Initial condition Fourier coefficients for cylindrical coordinates

C(n) =
∫ b

a
f(r)Rn(r)r dr

We have examined partial differential equations describing diffusion or heat diffusion
phenomena in a single spatial dimension for both the rectangular and the cylindrical coordinate
systems. We examine these same partial differential equations in steady-state and higher-
dimensional systems later.

Exercises

We now consider exercise problems dealing with diffusion or heat equations with homogeneous
boundary conditions in both the rectangular and the cylindrical coordinate systems. Use the
method of separation of variables and eigenfunction expansions to evaluate the solutions.

3.1. Consider the temperature distribution in a thin rod over the interval I = {x |0 < x < 1}
whose lateral surface is insulated. The homogeneous partial differential equation reads

∂

∂t
u(x, t) = k

(
∂2

∂x2
u(x, t)

)

with k = 1/10, initial condition u(x,0) = f(x) given following, and boundary
conditions

u(0, t) = 0, u(1, t) = 0

that is, the left end of the rod is at the fixed temperature zero and the right end is at the
fixed temperature zero. Evaluate the eigenvalues and corresponding orthonormalized
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eigenfunctions, and write the general solution for each of these three initial condition
functions:

f1(x) = 1

f2(x) = x

f3(x) = x(1−x) (3.102)

Generate the animated solution for each case, and plot the animated sequence for
0 < t < 5. In the animated sequence, take note of the adherence of the solution to the
boundary conditions.

3.2. Use the three-step verification procedure in Exercise 3.1 for the case u(x,0) = f3(x).

3.3. Consider the temperature distribution in a thin rod over the interval I = {x |0 < x < 1}
whose lateral surface is insulated. The homogeneous partial differential equation reads

∂

∂t
u(x, t) = k

(
∂2

∂x2
u(x, t)

)

with k = 1/10, initial condition u(x,0) = f(x) given later, and boundary conditions

u(0, t) = 0, ux(1, t) = 0

that is, the left end of the rod is at the fixed temperature zero and the right end is
insulated. Evaluate the eigenvalues and corresponding orthonormalized eigenfunctions,
and write the general solution for each of these three initial condition functions:

f1(x) = x2

f2(x) = x

f3(x) = x
(

1− x

2

)
Generate the animated solution for each case, and plot the animated sequence for
0 < t < 5. In the animated sequence, take note of the adherence of the solution to the
boundary conditions.

3.4. Use the three-step verification procedure in Exercise 3.3 for the case u(x,0) = f3(x).

3.5. Consider the temperature distribution in a thin rod over the interval I = {x |0 < x < 1}
whose lateral surface is insulated. The homogeneous partial differential equation reads

∂

∂t
u(x, t) = k

(
∂2

∂x2
u(x, t)

)
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with k = 1/10, initial condition u(x,0) = f(x) given later, and boundary conditions

ux(0, t) = 0, u(1, t) = 0

that is, the left end of the rod is insulated and the right end is at the fixed temperature
zero. Evaluate the eigenvalues and the corresponding orthonormalized eigenfunctions,
and write the general solution for each of these three initial condition functions:

f1(x) = x

f2(x) = 1

f3(x) = 1−x2

Generate the animated solution for each case, and plot the animated sequence for
0 < t < 5. In the animated sequence, take note of the adherence of the solution to the
boundary conditions.

3.6. Use the three-step verification procedure in Exercise 3.5 for the case u(x,0) = f3(x).

3.7. Consider the temperature distribution in a thin rod over the interval I = {x |0 < x < 1}
whose lateral surface is insulated. The homogeneous partial differential equation reads

∂

∂t
u(x, t) = k

(
∂2

∂x2
u(x, t)

)

with k = 1/10, initial condition u(x,0) = f(x) given later, and boundary conditions

ux(0, t) = 0, ux(1, t) = 0

that is, the left end of the rod is insulated and the right end is insulated. Evaluate the
eigenvalues and corresponding orthonormalized eigenfunctions, and write the general
solution for each of these three initial condition functions:

f1(x) = x

f2(x) = 1−x2

f3(x) = x2
(

1− 2x

3

)

Generate the animated solution for each case, and plot the animated sequence for
0 < t < 5. In the animated sequence, take note of the adherence of the solution to the
boundary conditions.

3.8. Use the three-step verification procedure in Exercise 3.7 for the case u(x,0) = f3(x).
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3.9. Consider the temperature distribution in a thin rod over the interval I = {x |0 < x < 1}
whose lateral surface is insulated. The homogeneous partial differential equation reads

∂

∂t
u(x, t) = k

(
∂2

∂x2
u(x, t)

)

with k = 1/10, initial condition u(x,0) = f(x) given later, and boundary conditions

u(0, t) = 0, u(1, t)+ux(1, t) = 0

that is, the left end of the rod is at a fixed temperature zero, and the right end is losing
heat by convection into a zero temperature surrounding. Evaluate the eigenvalues and
corresponding orthonormalized eigenfunctions, and write the general solution for each
of these three initial condition functions:

f1(x) = 1

f2(x) = x

f3(x) = x

(
1− 2x

3

)

Generate the animated solution for each case, and plot the animated sequence for
0 < t < 5. In the animated sequence, take note of the adherence of the solution to the
boundary conditions.

3.10. Use the three-step verification procedure in Exercise 3.9 for the case u(x,0) = f3(x).

3.11. Consider the temperature distribution in a thin rod over the interval I = {x |0 < x < 1}
whose lateral surface is insulated. The homogeneous partial differential equation reads

∂

∂t
u(x, t) = k

(
∂2

∂x2
u(x, t)

)

with k = 1/10, initial condition u(x,0) = f(x) given later, and boundary conditions

u(0, t)−ux(0, t) = 0, u(1, t) = 0

that is, the left end of the rod is losing heat by convection into a zero temperature
surrounding and the right end is at a fixed temperature zero. Evaluate the eigenvalues
and corresponding orthonormalized eigenfunctions, and write the general solution for
each of these three initial condition functions:

f1(x) = 1

f2(x) = 1−x

f3(x) = −2x2

3
+ x

3
+ 1

3
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Generate the animated solution for each case, and plot the animated sequence for
0 < t < 5. In the animated sequence, take note of the adherence of the solution to the
boundary conditions.

3.12. Use the three-step verification procedure in Exercise 3.11 for the case u(x,0) = f3(x).

3.13. Consider the temperature distribution in a thin rod over the interval I = {x |0 < x < 1}
whose lateral surface is insulated. The homogeneous partial differential equation reads

∂

∂t
u(x, t) = k

(
∂2

∂x2
u(x, t)

)

with k = 1/10, initial condition u(x,0) = f(x) given later, and boundary conditions

ux(0, t) = 0, u(1, t)+ux(1, t) = 0

that is, the left end of the rod is insulated and the right end is losing heat by convection
into a zero temperature surrounding. Evaluate the eigenvalues and corresponding
orthonormalized eigenfunctions, and write the general solution for each of these three
initial condition functions:

f1(x) = x

f2(x) = 1

f3(x) = 1− x2

3

Generate the animated solution for each case, and plot the animated sequence for
0 < t < 5. In the animated sequence, take note of the adherence of the solution to the
boundary conditions.

3.14. Use the three-step verification procedure in Exercise 3.13 for the case u(x,0) = f3(x).

3.15. Consider the temperature distribution in a thin rod over the interval I = {x |0 < x < 1}
whose lateral surface is insulated. The homogeneous partial differential equation reads

∂

∂t
u(x, t) = k

(
∂2

∂x2
u(x, t)

)

with k = 1/10, initial condition u(x,0) = f(x) given later, and boundary conditions

u(0, t)−ux(0, t) = 0, ux(1, t) = 0

that is, the left end of the rod is losing heat by convection into a zero temperature
surrounding and the right end is insulated. Evaluate the eigenvalues and corresponding
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orthonormalized eigenfunctions, and write the general solution for each of these three
initial condition functions:

f1(x) = x

f2(x) = 1

f3(x) = 1− (x−1)2

3

Generate the animated solution for each case, and plot the animated sequence for
0 < t < 5. In the animated sequence, take note of the adherence of the solution to the
boundary conditions.

3.16. Use the three-step verification procedure in Exercise 3.15 for the case u(x,0) = f3(x).

3.17. Consider the temperature distribution in a thin rod over the interval I = {x |0 < x < 1}
whose lateral surface is not insulated. The rod is experiencing a heat loss proportional
to the difference between the rod temperature and the surrounding temperature at zero
degrees. The homogeneous partial differential equation reads

∂

∂t
u(x, t) = k

(
∂2

∂x2
u(x, t)

)
−βu(x, t)

with k = 1/10, β = 1/4, initial condition u(x,0) = f(x) given later, and boundary
conditions

u(0, t) = 0, u(1, t) = 0

that is, the left end of the rod is at the fixed temperature zero and the right end is at the
fixed temperature zero. Evaluate the eigenvalues and corresponding orthonormalized
eigenfunctions, and write the general solution for each of these three initial condition
functions:

f1(x) = 1

f2(x) = x

f3(x) = x(1−x)

Generate the animated solution for each case, and plot the animated sequence for
0 < t < 5. In the animated sequence, take note of the adherence of the solution to the
boundary conditions.

3.18. Consider the temperature distribution in a thin rod over the interval I = {x |0 < x < 1}
whose lateral surface is not insulated. The rod is experiencing a heat loss proportional
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to the difference between the rod temperature and the surrounding temperature at zero
degrees. The homogeneous partial differential equation reads

∂

∂t
u(x, t) = k

(
∂2

∂x2
u(x, t)

)
−βu(x, t)

with k = 1/10, β = 1/4, initial condition u(x,0) = f(x) given later, and boundary
conditions

ux(0, t) = 0, u(1, t) = 0

that is, the left end of the rod is insulated and the right end is at a fixed temperature zero.
Evaluate the eigenvalues and corresponding orthonormalized eigenfunctions, and write
the general solution for each of these three initial condition functions:

f1(x) = x

f2(x) = 1

f3(x) = 1−x2

Generate the animated solution for each case, and plot the animated sequence for
0 < t < 5. In the animated sequence, take note of the adherence of the solution to the
boundary conditions.

3.19. Consider the temperature distribution in a thin rod over the interval I = {x |0 < x < 1}
whose lateral surface is not insulated. The rod is experiencing a heat loss proportional
to the difference between the rod temperature and the surrounding temperature at zero
degrees. The homogeneous partial differential equation reads

∂

∂t
u(x, t) = k

(
∂2

∂x2
u(x, t)

)
−βu(x, t)

with k = 1/10, β = 1/4, initial condition u(x,0) = f(x) given later, and boundary
conditions

ux(0, t) = 0, u(1, t)+ux(1, t) = 0

that is, the left end of the rod is insulated and the right end is losing heat by convection
into a zero temperature surrounding. Evaluate the eigenvalues and corresponding
orthonormalized eigenfunctions, and write the general solution for each of these three
initial condition functions:

f1(x) = x

f2(x) = 1

f3(x) = 1− x2

3
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Generate the animated solution for each case, and plot the animated sequence for
0 < t < 5. In the animated sequence, take note of the adherence of the solution to the
boundary conditions.

3.20. Consider the temperature distribution in a thin circularly symmetric plate over the
interval I = {r |0 < r < 1}. The lateral surface of the plate is insulated. The
homogeneous partial differential equation reads

∂

∂t
u(r, t) =

k
(

∂
∂r u(r, t)+ r

(
∂2

∂r2 u(r, t)
))

r

with k = 1/10, initial condition u(r,0) = f(r) given later, and boundary conditions

|u(0, t)| < ∞, u(1, t) = 0

that is, the center of the plate has a finite temperature and the periphery is at a fixed
temperature zero. Evaluate the eigenvalues and corresponding orthonormalized
eigenfunctions, and write the general solution for each of these three initial condition
functions:

f1(r) = r2

f2(r) = 1

f3(r) = 1− r2

Generate the animated solution for each case, and plot the animated sequence for
0 < t < 5. In the animated sequence, take note of the adherence of the solution to the
boundary conditions.

3.21. Consider the temperature distribution in a thin circularly symmetric plate over the
interval I = {r |0 < r < 1}. The lateral surface of the plate is insulated. The
homogeneous partial differential equation reads

∂

∂t
u(r, t) =

k
(

∂
∂r u(r, t)+ r

(
∂2

∂r2 u(r, t)
))

r

with k = 1/10, initial condition u(r,0) = f(r) given later, and boundary conditions

|u(0, t)| < ∞, ur(1, t) = 0
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that is, the center of the plate has a finite temperature and the periphery is insulated.
Evaluate the eigenvalues and corresponding orthonormalized eigenfunctions, and write
the general solution for each of these three initial condition functions:

f1(r) = r2

f2(r) = 1

f3(r) = r2 − r4

2

Generate the animated solution for each case, and plot the animated sequence for
0 < t < 5. In the animated sequence, take note of the adherence of the solution to the
boundary conditions.

3.22. Consider the temperature distribution in a thin circularly symmetric plate over the
interval I = {r |0 < r < 1}. The lateral surface of the plate is insulated. The
homogeneous partial differential equation reads

∂

∂t
u(r, t) =

k
(

∂
∂r u(r, t)+ r

(
∂2

∂r2 u(r, t)
))

r

with k = 1/10, initial condition u(r,0) = f(r) given later, and boundary conditions

|u(0, t)| < ∞, ur(1, t)+u(1, t) = 0

that is, the center of the plate has a finite temperature and the periphery is losing heat by
convection into a zero temperature surrounding. Evaluate the eigenvalues and
corresponding orthonormalized eigenfunctions, and write the general solution for each
of these three initial condition functions:

f1(r) = r2

f2(r) = 1

f3(r) = 1− r2

3

Generate the animated solution for each case, and plot the animated sequence for
0 < t < 5. In the animated sequence, take note of the adherence of the solution to the
boundary conditions.
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Significance of Thermal Diffusivity

The coefficient k in the heat equation is called the “thermal diffusivity” of the medium under
consideration. This constant is equal to

k = K

cρ

where c is the specific heat of the medium, ρ is the mass density, and K is the thermal
conductivity of the medium. In a uniform, isotropic medium, these terms are all constants. By
convention, we say that heat is a diffusion process whereby heat flows from high-temperature
regions to low-temperature regions similar to how salt in a water solution diffuses from
high-concentration regions to low-concentration regions. The magnitude of the thermal
diffusivity k is an indication of the ability of the medium to conduct heat from one region to
another. Thus, large values of k provide for rapid transfers and small values of k provide for
slow transfers of heat within the medium.

In the following, we investigate the significance of the change in magnitude of the diffusivity k

by noting its effect on the solution of a problem. In Exercises 3.23 through 3.28, multiply the
diffusivity by the given factor, and develop the solution for the given initial condition function
f3(x). Develop the animated solution and take particular note of the change in the time
dependence of the solution due to the increased magnitude of the diffusivity.

3.23. In Exercise 3.1, multiply the diffusivity k by a factor of 5 and solve.

3.24. In Exercise 3.5, multiply the diffusivity k by a factor of 10 and solve.

3.25. In Exercise 3.9, multiply the diffusivity k by a factor of 5 and solve.

3.26. In Exercise 3.17, multiply the diffusivity k by a factor of 10 and solve.

3.27. In Exercise 3.20, multiply the diffusivity k by a factor of 5 and solve.

3.28. In Exercise 3.22, multiply the diffusivity k by a factor of 10 and solve.
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CHAPTER 4

The Wave Partial Differential
Equation

4.1 Introduction

We begin by examining types of partial differential equations that exhibit wave phenomena.
We see wave-type partial differential equations in many areas of engineering and physics,
including acoustics, electromagnetic theory, quantum mechanics, and the study of the
transmission of longitudinal and transverse disturbances in solids and liquids.

Similar to the partial differential equations that are descriptive of heat and diffusion
phenomena, the wave partial differential equations that we examine here are also linear in that
the partial differential operator L obeys the definition characteristics of a linear operator
defined in Section 3.1.

4.2 One-Dimensional Wave Operator in Rectangular
Coordinates

Wave phenomena in one dimension can be described by the following partial differential
equation in the rectangular coordinate system:

∂2

∂t2
u(x, t) = c2

(
∂2

∂x2
u(x, t)

)
−γ

(
∂

∂t
u(x, t)

)
+h(x, t)

In the preceding, u(x, t) denotes the spatial-time-dependent wave amplitude, c denotes the
wave speed, γ denotes the damping coefficient of the medium, and h(x, t) denotes the presence
of any external applied forces acting on the system. If the medium is uniform, then all the
preceding coefficients are spatially invariant, and we can write them as constants. The wave
speed c is generally proportional to the square root of the quotient of the tension in the system
and the inertia of the system (see Exercises 4.19 through 4.25).
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