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1. Introduction

The studies of boundary layer ¯uid ¯ows and heat

transfer over surfaces of di�erent geometrical shapes

are of great interest because of their applications in

several industrial and physical ®elds. Of these, the ¯ow

over a ¯at plate, though classic in nature, has been

investigated extensively in literature, and still continues

to attract attention as an active area of research. The

¯ow and heat transfer problems in this case often

become amenable to similarity transformations, some-

times leading to even exact analytical results. Another

advantage is that the momentum and energy equations

may get decoupled so that these can be solved suc-

cessively. It is also known that the boundary layer

models developed for ¯ow over a ¯at plate can also be

adapted to typical practical applications, besides being

helpful in understanding the basic dynamic features of

the ¯uid ¯ow. For instance, Chow [1] has discussed the

¯ow of a viscous, heat conducting ¯uid over a ¯at

plate, and has shown that the resulting thermal bound-

ary layer problem can be used to model a ¯at plate

thermometer which is mounted on a moving body

such as, a ¯ying aircraft.

In this paper, we have reconsidered the above ther-

mometer problem with a view to investigating the

e�ects of an externally applied magnetic ®eld on the

velocity and thermal boundary layers as well as on the

wall parameters. As mentioned before, the hydromag-

netic ¯ow over a ¯at or vertical plate has been widely

researched and reported in literature under several

idealized assumptions, see, e.g., [2±6]. In continuation

of these works, the present study concentrates on the

energy aspect of the boundary layer ¯ow, under an

externally applied magnetic ®eld. This necessitates con-

sideration of the viscous and Ohmic dissipation terms

in the energy equation which, in turn, adds to its

degree of non-linearity.

In the next section, we have given a mathematical

formulation of the thermometer problem in terms of

two-dimensional steady state boundary layer equations

with appropriate boundary conditions. Notably, prob-

lems of this type involve also derivative boundary con-

ditions on the temperature variable, besides the usual

conditions on the physical variables. The governing

partial di�erential equations have been reduced to a

system of ordinary di�erential equations using simi-

larity transformations. The resulting non-linear bound-

ary value problem has been solved numerically. Several

case studies have been done and the e�ects of magnetic

®eld on the ¯at plate thermometer problem have been

discussed. Of particular interest in the present work is

the in¯uence of magnetic ®eld on the shear stress and

the plate temperature. From energy considerations,

Chow [1] has shown that the plate temperature (also

known as the recovery factor ) is physically important

for problems of this type. Furthermore, it had been

shown in [1] that in the non-magnetic case, the recov-

ery factor is less than unity for ¯uids whose Prandtl

numbers, Pr, are below 1, and greater than unity for
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¯uids whose Prandtl numbers are more than 1. More-
over, the recovery factor had been shown to be ap-

proximately equal to Pr1=2 for Prandtl numbers close
to unity, in agreement with an earlier conclusion by
Pohlahausen [7]. The results of the present hydromag-

netic study have, however, shown that the above con-
clusions are valid for viscous dissipation only. When
Ohmic heating is present, it has been shown in Section
3 that the magnetic ®eld tends to push up the plate

temperature monotonically. The variations of the vel-
ocity and temperature pro®les in the boundary layers
have been shown for some typical ¯uids. The e�ects of

magnetic ®eld and heat conductivity on the thermal
boundary layer have also been discussed.

2. Problem formulation

Consider the ¯ow of an electrically conducting and
viscous incompressible ¯uid past a semi-in®nite ¯at
plate under the in¯uence of a transversely applied mag-

netic ®eld. The x-axis is taken along the plate while y-
axis is taken normal to it. Neglecting the induced mag-
netic ®eld, the steady ¯ow is governed by the

equations
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In Eqs. (1) and (2), u and v are the components of vel-
ocity in the x- and y-directions, respectively, r is the

density, n the kinematic viscosity, s the electrical con-
ductivity, U the free stream velocity and B the mag-

netic ®eld strength.
The ¯at plate thermometer problem [1] in the pres-

ence of a transverse magnetic ®eld can be studied by

solving the energy equation
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in conjunction with Eqs. (1)±(3). In Eqs. (4) and (5), T

is the temperature of the ¯uid near the boundary, T1 is
the temperature of the ¯uid in the free stream, k is the
thermal conductivity and cp is the speci®c heat at con-

stant pressure. The second and third terms on the
right-hand side of Eq. (4) arise due to viscous and
Ohmic dissipations, respectively.

We now introduce the similarity transformations
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In Eq. (6), M denotes the non-dimensional magnetic

parameter which can also be expressed as H 2=Re,
where H is the Hartmann number and Re is the Rey-
nolds number, and Pr is the Prandtl number of the

¯uid. Using Eq. (6), it can be seen that the continuity
equation (1) is automatically satis®ed, while Eqs. (2)
and (4) will be reduced, respectively, to

Nomenclature

B magnetic ®eld

cp speci®c heat at constant pressure
Cf skin friction coe�cient
H Hartmann number
k heat conductivity

M magnetic parameter
Pr Prandtl number
Re Reynolds number

T temperature
u horizontal velocity
U free stream velocity

v vertical velocity

Greek symbols

Z dimensionless space variable
y dimensionless temperature
m viscosity coe�cient
n kinematic viscosity

r density
s electrical conductivity
t shear stress

Subscripts
1 free stream

w plate
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The boundary conditions are transformed into

f � 0, f 0 � 0, y 0 � 0 at Z � 0,

f 041, y40 as Z41: �9�
In the above equations, prime denotes di�erentiation

with respect to Z:
Numerical solution of Eq. (7) with the appropriate

boundary conditions has been obtained using a shoot-

ing method employing the Runge±Kutta algorithm.
The values of M considered are 0.0, 0.02, 0.04 and
0.06. Eq. (8) with the relevant boundary conditions

constitutes a boundary value problem involving a sec-
ond-order ordinary di�erential equation with known
coe�cients. With the use of central ®nite di�erence
formulae for ®rst and second derivatives, Eq. (8)

reduces to a set of equations in tridiagonal form.
These equations have been solved by the Gaussian
elimination method. A detailed description of the sol-

ution procedure is given in [1].
It should be noted that in order to satisfy the con-

ditions on temperature as Z41, a reasonably large

Zmax should be chosen. Numerical calculations have
been carried out for mercury, air, sulphur dioxide and
water, whose Prandtl numbers have been taken as

0.044, 0.71, 2.0 and 7.0, respectively. It has been
observed through numerical experiments that for
M6�0, suitable values of Zmax are 65, 35, 23 and 14 cor-
responding to mercury, air, sulphur dioxide and water,

respectively. For M � 0, it has been found that Zmax �

10 is suitable for the three ¯uids except mercury. For
mercury, Zmax had to be taken as large as 30. The

results for these functions are presented in Section 3.
We have also evaluated the skin friction and the plate
temperature. The coe�cient of skin friction Cf is given

by

Cf � t
rU 2

� f 00�0�������
Re
p �10�

where t �� m�@u=@y�y�0� is the shear stress at the plate
and Re �� Ux=n� is the Reynolds number.

3. Results

The results of the numerical solution of Eqs. (7) and
(8) have been presented in this section. Fig. 1 shows

the variation of the dimensionless velocity u=U for
di�erent values of the magnetic parameter, while the
variation of the dimensionless temperatures of mer-

cury, air, sulphur dioxide and water have been shown
in Figs. 2 and 3. Finally, the values of skin friction
and plate temperature have been presented in Table 1.
As shown in Fig. 1, the variation of the horizontal

velocity in the boundary layer follows the familiar pat-
tern. It increases from zero on the plate to its free
stream value through positive but decreasing gradients.

As the magnetic ®eld strength is increased, the velocity
also increases in the boundary layer maintaining its
concave down pro®le. For the relatively small values

of the magnetic parameter considered here, it was seen
that the velocity and the boundary layer thickness
could be chosen in the neighbourhood of Z � 5:0:
Regarding the temperature pro®les, we observe from

Figs. 2 and 3 that the convergence of their values to
the corresponding free stream values are considerably
in¯uenced by the magnetic ®eld. For illustration pur-

poses, the temperature pro®les have been shown for
four di�erent ¯uids: mercury, air, sulphur dioxide and
water. These ¯uids exhibit decreasing heat conduc-

tivities in that order. As noted before, the numerical
experiments showed that in the non-magnetic case the

Fig. 1. Velocity pro®les.

Table 1

Skin friction f 00�0� and plate temperature y�0�

M f 00�0� y�0�

Pr � 0:044 Pr � 0:71 Pr � 2:0 Pr � 7:0

0.00 0.33206 0.20125 0.84188 1.40742 2.52877

0.02 0.35884 0.42268 1.14112 1.72572 2.89756

0.04 0.38397 0.64153 1.44022 2.04313 3.26336

0.06 0.40771 0.88617 1.73206 2.35975 3.62653
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dimensionless temperatures of these ¯uids converge to
their free stream values for reasonably small values of

Z, �Zmax130 for mercury and Zmax110 for other
¯uids). This is in agreement with Chow's results [1].
However, even for small values of the magnetic par-

ameter M, it was seen that one should increase Zmax

considerably, particularly for ¯uids of smaller Prandtl
numbers. In the present case, Zmax for mercury, air, sul-

phur dioxide and water had to be taken as large as 65,
35, 23 and 14, respectively, so as to yield satisfactory
results. For all ¯uids considered, the magnetic ®eld

increases the temperature in the boundary layer. The
rate of decrease of temperature to its free steam value
is in¯uenced both, by the heat conductivity of the ¯uid

and the externally applied magnetic ®eld. This decrease
is much slower for mercury and air (cf. Fig. 2) than

for sulphur dioxide and water (cf. Fig. 3). In fact, the
curves for these latter ¯uids exhibit very large slopes,
and it looks as if points of in¯ection would appear for

¯uids of higher Prandtl numbers. We thus see that the
thermal boundary layer thickness increases with
decreasing Prandtl number due to the increased con-

ductivity of the ¯uid, which has also been observed in
the non-magnetic case [1]. Furthermore, the magnetic
®eld also aids in increasing the thermal boundary layer

thickness. This e�ect of magnetic ®eld in enhancing the
boundary layer thickness is proportional to the heat
conductivity of the ¯uid. For example, in our case

Fig. 2. Temperature pro®les: (a) mercury �Pr � 0:044�; (b) air �Pr � 0:71�:
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studies, mercury produced the largest thermal bound-
ary layer thickness, while water had the smallest.

Finally, the skin friction f 00�0� and the plate tem-
perature y�0� are tabulated in Table 1. The skin fric-
tion increases with increase in the magnetic ®eld. The

e�ects of the magnetic ®eld on the plate temperature
are more revealing. As mentioned before, Chow [1]
had shown that y�0� is smaller or greater than unity

with respect to Pr less or greater than 1, and y�0� is
approximately equal to Pr1=2 in the non-magnetic case
[7]. However, we see from Table 1 that y�0� increases
proportionally to both, the magnetic parameter and
the Prandtl number. Its value can exceed unity for
even ¯uids of Prandtl number less than 1, as can be
seen from the results of air �Pr � 0:71�: The plate tem-

peratures of all ¯uids increase with increase in the
magnetic ®eld. This, in turn, would result in a corre-
sponding increase in the thermal energy on the plate.

4. Conclusions

The combined e�ects of frictional forces and mag-
netic ®eld on the thermal boundary layer near a ¯at

plate have been considered in this note. The problem
can be used to model a ¯at plate thermometer
mounted on a moving body such as a ¯ying aircraft. If
the variation of temperature in the boundary layer is

known, the ambient temperature T1 can be calculated
from the steady-state temperature Tw measured on the
plate. The present work is an extension of a study in

[1], and investigates the e�ect of an externally applied
magnetic ®eld on the temperature pro®les. It has been
shown that the magnetic ®eld increases the velocity

and temperature in the boundary layers. Moreover, the

coupling between the heat conductivity of the ¯uid and
the magnetic ®eld acts additively to enhance the values

of these ®eld variables. The same is true with respect
to the skin friction and plate temperature. It has also
been shown that the dimensionless plate temperature

can exceed unity for ¯uids of Prandtl number less than
1, which is at variance with available results for non-
magnetic case.
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