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EXTENSION OF A CLASS
OF PERIODIZING VARIABLE TRANSFORMATIONS

FOR NUMERICAL INTEGRATION

AVRAM SIDI

Abstract. Class Sm variable transformations with integer m, for numeri-
cal computation of finite-range integrals, were introduced and studied by the
author in the paper [A. Sidi, A new variable transformation for numerical
integration, Numerical Integration IV, 1993 (H. Brass and G. Hämmerlin,
eds.), pp. 359–373.] A representative of this class is the sinm-transformation
that has been used with lattice rules for multidimensional integration. These
transformations “periodize” the integrand functions in a way that enables the
trapezoidal rule to achieve very high accuracy, especially with even m. In
the present work, we extend these transformations to arbitrary values of m,
and give a detailed analysis of the resulting transformed trapezoidal rule ap-
proximations. We show that, with suitable m, they can be very useful in
different situations. We prove, for example, that if the integrand function

is smooth on the interval of integration and vanishes at the endpoints, then
results of especially high accuracy are obtained by taking 2m to be an odd
integer. Such a situation can be realized in general by subtracting from the
integrand the linear interpolant at the endpoints of the interval of integration.
We also illustrate some of the results with numerical examples via the extended
sinm-transformation.

1. Introduction

Consider the problem of evaluating finite-range integrals of the form

(1.1) I[f ] =
∫ 1

0

f(x) dx,

where f ∈ C∞(0, 1) but is not necessarily continuous or differentiable at x = 0 and
x = 1. f(x) may even behave singularly at the endpoints, with different types of
singularities. One very effective way of computing I[f ] is by first transforming it
with a suitable variable transformation and next applying the trapezoidal rule to
the resulting transformed integral. Thus, if we make the substitution x = ψ(t),
where ψ(t) is an increasing differentiable function on [0, 1], such that ψ(0) = 0 and
ψ(1) = 1, then the transformed integral is

(1.2) I[f ] =
∫ 1

0

f̂(t) dt; f̂(t) = f
(
ψ(t)

)
ψ′(t),
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328 AVRAM SIDI

and the trapezoidal rule approximation to I[f ] is

(1.3) Q̂n[f ] = h

[
1
2
f̂(0) +

n−1∑
i=1

f̂(ih) +
1
2
f̂(1)

]
, h =

1
n

.

[Normally, we also demand that ψ(1 − t) = 1 − ψ(t), which forces on ψ′(t) the
symmetry property ψ′(1 − t) = ψ′(t).] If, in addition, ψ(t) is chosen such that
ψ(i)(0) = ψ(i)(1) = 0, i = 1, 2, . . . , p, for some sufficiently large p, then Q̂n[f ], even
for moderate n, approximate I[f ] with surprisingly high accuracy. In such a case,
we may have f̂(0) = f̂(1) = 0, and Q̂n[f ] becomes

(1.4) Q̂n[f ] = h

n−1∑
i=1

f̂(ih).

Variable transformations in numerical integration have been of considerable in-
terest lately. In the context of one-dimensional integration, they are used as a
means to improve the performance of the trapezoidal rule. In the context of multi-
dimensional integration, they are used to “periodize” the integrand in all variables
so as to improve the accuracy of lattice rules. (Lattice rules are extensions of the
trapezoidal rule to many dimensions.)

There is a whole collection of variable transformations in the literature of nu-
merical integration. We mention here the polynomial transformation of Korobov
[9], the tanh-transformation of Sag and Szekeres [15], the IMT-transformation of
Iri, Moriguti, and Takasawa [7], the double exponential formula of Mori [12], the
class Sm transformations (m is a positive integer) of Sidi [17], and the polynomial
transformation of Laurie [10].

In this paper, we concentrate on the class Sm transformations of the author,
which have some very interesting and useful properties when coupled with the trape-
zoidal rule. A trigonometric representative of these, namely, the sinm-transforma-
tion that was also proposed and studied in [17], has been used successfully in con-
junction with lattice rules in multiple integration; see Sloan and Joe [23], Hill and
Robinson [6], and Robinson and Hill [14]. The sinm-transformation has also been
used in the computation of multidimensional integrals in conjunction with extrap-
olation methods by Verlinden, Potts, and Lyness [24].

Another trigonometric transformation similar to the sinm-transformation was
recently given by Elliott [4], and this transformation, too, is in the class Sm with
even m. The polynomial transformation of Laurie was designed to have some of
the useful properties of class Sm transformations, but is not in Sm.

In the next section, we extend the definition of the class Sm to noninteger
values of m. Following that, in Section 3, we extend the definition of the sinm-
transformation accordingly. We show how to compute this extended transforma-
tion economically. In Section 4, we analyze the properties of the extended class
Sm transformations in conjunction with the trapezoidal rule, and we show how to
select m optimally in any given situation. In Section 5, we illustrate the theoretical
results of Section 4 with numerical examples via the extended sinm-transformation.

Before proceeding further, we would like to introduce the concept of the quality
of the numerical quadrature rule Q̂n[f ] computed in conjunction with a variable
transformation ψ(t) that behaves like a power of t as t → 0+.
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Definition 1.1. Let f(x), I[f ], ψ(t), f̂(t), and Q̂n[f ] be as in the first paragraph
of this section. Let the variable transformation ψ(t) have the property that

ψ(1 − t) = 1 − ψ(t).

Also assume that, for some q ≥ 1, ψ(t) ∼ αtq as t → 0+ [hence ψ(t) ∼ 1−α(1− t)q

as t → 1− as well]. If Q̂n[f ] − I[f ] = O(hσ) as h → 0, then the quality of Q̂n[f ] is
the ratio σ/q.

To motivate this concept, let us go back to the transformed quadrature rule
Q̂n[f ] in (1.4). The fact that ψ(t) ∼ αtq as t → 0 implies that, when q is large, the
abscissas of the rule Q̂n[f ], namely, xi ≡ ψ(ih) = ψ(i/n) in the original variable
of integration x, are clustered in two very small regions, one to the right of x = 0
and the other to the left of x = 1, many of them being very close to 0 and to 1.
The amount of this clustering is determined by the size of q; the larger q, the larger
the density of the xi near x = 0 and x = 1. As the clustering gets larger, the
numerical computation of the rule Q̂n[f ] in finite-precision arithmetic may become
problematic due to possible underflows and overflows in case f(x) has endpoint
singularities. From this, we conclude that too much clustering is not desirable.
Thus, for a given q (that is, for a given amount of clustering), we would like to get
as high an accuracy as possible out of Q̂n[f ]. A good measure of this would thus
be the ratio σ/q, the quality of Q̂n[f ]; the higher the quality, the better the rule.
Therefore, this ratio also enables us to compare different variable transformations
in a convenient way.

One of the results of Section 4 concerns the case when f ∈ C∞[a, b] and f(x)
vanishes at x = 0 and x = 1. In such a case, exceptionally high accuracy is obtained
from Q̂n[f ] via a transformation from Sm with 2m an odd integer. Indeed, we show
that the quality of Q̂n[f ] for such integrals is at least 3 when 2m is an odd integer,
whereas it is 2 for all other values of m, integer or otherwise. If also f ′′(x) vanishes
at the endpoints, the quality of this Q̂n[f ] becomes at least 4. The quality increases
as further derivatives of consecutive orders of f(x) vanish at the endpoints. This
fact is now used in approximating I[f ] as follows: Subtract from f(x) the linear
function p(x) that interpolates it at x = 0 and x = 1, and approximate I[f ] via
Q̂n[f − p] + I[p], with 2m an odd integer, I[p] =

∫ 1

0
p(x) dx being known exactly.

Clearly, the new integrand f(x) − p(x) vanishes at x = 0 and x = 1, and the
transformed rule Q̂n[f −p]+I[f ] has quality at least 3. [Of course, if other suitable
functions p(x), whose integrals can be computed exactly, are known, these can be
used in a similar fashion.] This shows that preprocessing f(x) appropriately can
increase the quality of transformed quadrature rules substantially.

1.1. Technical preliminaries. Euler–Maclaurin expansions concerning the trape-
zoidal rule approximations of finite-range integrals

∫ b

a
u(x) dx are the main analyt-

ical tool we use in our study. For the sake of easy reference, here we reproduce the
relevant Euler–Maclaurin expansion due to the author (see Sidi [20, Corollary 2.2])
as Theorem 1.2. This theorem is a special case of another very general theorem
from [20], is expressed in terms of the asymptotic expansions of u(x) as x → a+
and x → b−, and is easy to write down and use.
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Theorem 1.2. Let u ∈ C∞(a, b), and assume that u(x) has the asymptotic expan-
sions

u(x) ∼
∞∑

s=0

cs (x − a)γs as x → a+,

u(x) ∼
∞∑

s=0

ds (b − x)δs as x → b−,

where the γs and δs are distinct complex numbers that satisfy

−1 < �γ0 ≤ �γ1 ≤ �γ2 ≤ · · · , lims→∞ �γs = +∞,

−1 < �δ0 ≤ �δ1 ≤ �δ2 ≤ · · · , lims→∞ �δs = +∞.

Assume furthermore that, for each positive integer k, u(k)(x) has asymptotic ex-
pansions as x → a+ and x → b− that are obtained by differentiating those of u(x)
term by term k times. Also let h = (b − a)/n for n = 1, 2, . . . . Then

h

n−1∑
i=1

u(a + ih) ∼
∫ b

a

u(x) dx +
∞∑

s=0
γs �∈{2,4,6,...}

cs ζ(−γs) hγs+1

+
∞∑

s=0
γs �∈{2,4,6,...}

ds ζ(−δs) hδs+1 as h → 0,

where ζ(z) is the Riemann Zeta function.

It is clear from Theorem 1.2 that even powers of (x − a) and (b − x), if present
in the asymptotic expansions of u(x) as x → a+ and x → b−, do not contribute to
the asymptotic expansion of h

∑n−1
i=1 u(a + ih) as h → 0.

In addition, if γp is the first of the γs that is different from 2, 4, 6, . . . , and if δq

is the first of the δs that is different from 2, 4, 6, . . . , then

h

n−1∑
i=1

u(a + ih) −
∫ b

a

u(x) dx = O(hσ+1) as h → 0, σ = min{�γp,�δq}.

This is a useful observation that we will recall later.
Of course, when u ∈ C∞[a, b], the expansion given in Theorem 1.2 reduces to

the classical Euler–Maclaurin expansion for the trapezoidal rule, as it must. This
can be seen by observing that now the γs and δs are nonnegative integers, so that
cs = u(γs)(a)/γs! and ds = (−1)δsu(δs)(b)/δs!, and by invoking the known facts that
ζ(0) = −1/2 and ζ(−2j) = 0 and ζ(1− 2j) = −B2j/(2j) for j = 1, 2, . . . , where Bs

is the sth Bernoulli number. Thus,

h

n−1∑
i=1

u(a + ih) ∼
∫ b

a

u(x) dx − h

2
[u(a) + u(b)]

+
∞∑

k=1

B2k

(2k)!
[
u(2k−1)(b) − u(2k−1)(a)

]
h2k as h → 0.

For the treatment of the classical Euler–Maclaurin expansion, see, for example,
Davis and Rabinowitz [3], Ralston and Rabinowitz [13], and Atkinson [2]. See also
the brief review in Sidi [19, Appendix D].
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2. Extended class Sm transformations

Definition 2.1. A function ψ(t) is in the extended class Sm, m arbitrary, if it has
the following properties:

1. ψ ∈ C[0, 1] and ψ ∈ C∞(0, 1); ψ(0) = 0, ψ(1) = 1, and ψ′(t) > 0 on (0, 1).
2. ψ′(t) is symmetric with respect to t = 1/2; that is, ψ′(1 − t) = ψ′(t).

Consequently, ψ(1 − t) = 1 − ψ(t).
3. ψ′(t) has the following asymptotic expansions as t → 0+ and t → 1−:

ψ′(t) ∼
∞∑

i=0

εit
m+2i as t → 0+,(2.1)

ψ′(t) ∼
∞∑

i=0

εi(1 − t)m+2i as t → 1−,

the εi being the same in both expansions, and ε0 > 0. Consequently,

ψ(t) ∼
∞∑

i=0

εi
tm+2i+1

m + 2i + 1
as t → 0+,(2.2)

ψ(t) ∼ 1 −
∞∑

i=0

εi
(1 − t)m+2i+1

m + 2i + 1
as t → 1 − .

4. Furthermore, for each positive integer k, ψ(k)(t) has asymptotic expansions
as t → 0+ and t → 1− that are obtained by differentiating those of ψ(t)
term by term k times.

The difference between Definition 2.1 and the definition of the class Sm in [17]
is that m is a positive integer in the latter, hence ψ ∈ C∞[0, 1]. In Definition 2.1,
ψ(t) is not infinitely differentiable at t = 0 and t = 1 when m is not a positive
integer. The fact that we are now allowing m to assume arbitrary values has a very
beneficial effect, as mentioned in Section 1 and as we will see in the next sections.

As was mentioned in [17], the fact that ψ′(t) has the asymptotic expansions given
in (2.1)—with consecutive powers of t and (1 − t) there increasing by 2 instead of
by 1—is the most important aspect of the extended class Sm.

The following result shows that the family of the extended classes Sm is closed
with respect to composition. It is an immediate extension of Lemma 2.1 in [17].

Lemma 2.2. Let ψi ∈ Smi
, i = 1, . . . , r, and define Ψ(t) = ψ1(ψ2(· · · (ψr(t)) · · · )).

Then Ψ ∈ SM with M =
∏r

i=1(mi + 1) − 1.

The following are special cases of Lemma 2.2:

(i) In case mi are all integers, M is an integer, too; M is an even integer if
and only if mi are all even integers.

(ii) In case r = 2 [so that Ψ(t) = ψ1(ψ2(t)) ∈ SM with M =
(m1 + 1)(m2 + 1) − 1], and m1, m2 ∈ {k/2 : k = 1, 2, . . .}, 2M is an
odd integer if and only if m1 is an even integer and 2m2 is an odd integer,
or vice versa.

This lemma shows that transformations different from the sinm-transformation
can be obtained, for example, by composing two or more of the latter with various
values of m.
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Before proceeding further, we recall that, if the integrand f(x) in the integral∫ 1

0
f(x) dx is sufficiently smooth in [0, 1], and if we let x = ψ(t) with ψ ∈ Sm,

then excellent approximations are obtained by applying the trapezoidal rule to the
transformed integral

∫ 1

0
f(ψ(t))ψ′(t) dt when m is an even integer, and the error in

this approximation is at worst O(n−2m−2) as n → ∞, where n− 1 is the number of
abscissas in the approximation, as shown in [17]. Now, by (2.2), ψ ∈ Sm behaves
asymptotically (in a polynomial fashion) as in

ψ(t) ∼ αtm+1 as t → 0, ψ(t) ∼ 1 − α(1 − t)m+1 as t → 1.

If, instead of class Sm transformations, we use the Korobov transformation that also
behaves asymptotically in the same way, the error in the resulting approximations
to

∫ 1

0
f(x) dx is at worst O(n−m−2) as n → ∞, when m is an even integer. This

shows that the transformed rules Q̂n[f ] obtained using class Sm transformations
have more useful approximation properties. In the sense of Definition 1.1, they
have higher quality.

3. The extended sinm
-transformation

The extended sinm-transformation, just as the original sinm-transformation, is
defined via

(3.1) ψm(t) =
Θm(t)
Θm(1)

; Θm(t) =
∫ t

0

(sin πu)m du.

From the equality

Θm(t) =
m − 1

m
Θm−2(t) −

1
πm

(sin πt)m−1 cos πt,

which can be obtained by integration by parts, we have the recursion relation

(3.2) ψm(t) = ψm−2(t) −
Γ(m

2 )
2
√

πΓ(m+1
2 )

(sin πt)m−1 cos πt.

This recursion relation is valid for all m. Also, ψm(t) is related to ψm−2(t) but
not to ψm−1(t). Thus, the sequences {ψ2k+ω(t)}∞k=0 and {ψ2k+1+ω(t)}∞k=0, with
0 ≤ ω < 1, can be computed independently of each other, with ψω(t) and ψ1+ω(t),
respectively, as the initial conditions. The recursion relation in (3.2) is, of course,
stable in the forward direction.

When m is a positive integer, thus ω = 0, ψm(t) can be expressed in terms of
elementary functions, and (3.2), with the initial conditions

(3.3) ψ0(t) = t and ψ1(t) =
1
2
(1 − cos πt),

can be used to compute ψm(t). When m is not an integer, however, ψm(t) does
not seem to have a representation in terms of elementary functions, and we need a
different approach to its computation.

3.1. Computation for m not an integer. We now turn to the actual compu-
tation of this transformation when m is not an integer. We do this by computing
Θm(t) in (3.1). By the fact that Θ′

m(t) = (sin πt)m is symmetric with respect
to t = 1/2, we have that Θm(t) = Θm(1) − Θm(1 − t) for t ∈ [1/2, 1] and thus
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Θm(1) = 2Θm(1/2) as well. Thus, it is enough to know Θm(t) for t ∈ [0, 1/2].
Consequently,

ψm(t) =
Θm(t)

2Θm(1/2)
for t ∈ [0, 1/2], ψm(t) = 1 − ψm(1 − t) for t ∈ [1/2, 1].

Therefore, in the remainder of this section, we consider the computation of Θm(t)
only for t ∈ [0, 1/2].

3.1.1. Via numerical integration. The first way is by computing the integral repre-
sentation of Θ(t) numerically. Now,

Θ(t) =
∫ t

0

umR(u) du, R(u) =
(

sin πu

u

)m

.

Because R(u) is infinitely smooth on [0, 1/2], this integral can be computed with
high accuracy using Gauss-Jacobi quadrature with weight function um when m is
real. Of course, this necessitates the availability of the abscissas and weights for
these quadrature formulas for each value of m. These abscissas and weights can be
computed with the aid of Gautschi’s ORTHPOL package [5].

3.1.2. Via hypergeometric series. It turns out that Θm(t) can be expressed in terms
of the Gauss hypergeometric function F (a, b; c; z) = 2F1(a, b; c; z) in several ways.
For the definition and properties of F (a, b; c; z), see, for example, Abramowitz and
Stegun [1, Chapter 15].

By [1, p. 556, formula 15.1.1],

F (a, b; c; z) =
∞∑

k=0

(a)k (b)k

(c)k

zk

k!
,

where (x)0 = 1 and (x)k = x(x + 1) · · · (x + k − 1) for k = 1, 2, . . . . Now, the kth
term of this series tends to zero practically like zk when |z| < 1. This suggests
that some of the (hypergeometric) series representations of Θm(t) can also be used
to actually compute Θm(t) for noninteger m efficiently. One advantage of this
approach is that the terms wk = (a)k (b)k

(c)k

zk

k! can be computed at a small cost by the

recursion relation wk+1 = (a+k)(b+k)
(c+k)

z
k+1wk.

In the following, we give two such representations, which are of interest in them-
selves:

(i) Making the substitution ξ = sin(πu/2) in (3.1), which is legitimate because
sin(πu/2) is an increasing function for u ∈ [0, t] when t ∈ [0, 1], we obtain

Θm(t) =
2m+1

π

∫ S

0

ξm
(√

1 − ξ2
)m−1

dξ, S = sin
πt

2
.

Expanding the integrand about ξ = 0 and integrating the resulting (ab-
solutely and uniformly convergent) power series term by term, we obtain

(3.4) Θm(t) =
(2S)m+1

π

∞∑
k=0

( 1−m
2 )k

k!
S2k

m + 2k + 1
, S = sin

πt

2
,

which can be expressed in terms of the hypergeometric function as in

(3.5) Θm(t) =
(2S)m+1

π(m + 1)
F

(
1
2 − 1

2m, 1
2m + 1

2 ; 1
2m + 3

2 ; S2
)
, S = sin

πt

2
.
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For k ≥ 
(m + 1)/2�, the terms in this expansion are of the same sign, and
tend to zero as k → ∞ essentially like k−(m+3)/2S2k, and hence, by the
fact that 0 ≤ S ≤ sin(π/4) = 1/

√
2, at worst like k−(m+3)/22−k. Thus,

the expansion in (3.4) converges quickly and can be used for the actual
computation of Θm(t). Furthermore, we can also use a nonlinear sequence
transformation, such as that of Shanks [16] (or the equivalent ε-algorithm of
Wynn [25]) or of Levin [11], to accelerate the convergence of this expansion.
Both transformations are treated in detail in the recent book by Sidi [19].

(ii) Invoking in (3.5) one of the so-called linear transformation formulas (see [1,
p. 559, formulas 15.3.4 and 15.3.5]), and using the fact S2

S2−1 = − tan2 πt
2

and the relations

sin x =
tanx√

1 + tan2 x
and cosx =

1√
1 + tan2 x

, 0 ≤ x ≤ π

2
,

we obtain

(3.6) Θm(t) =
2T

π(m + 1)

(
2T

1 + T 2

)m

F
(
1, 1

2 − 1
2m; 1

2m + 3
2 ;−T 2

)
, T = tan

πt

2
,

which has the expansion

(3.7) Θm(t) =
2T

π(m + 1)

(
2T

1 + T 2

)m ∞∑
k=0

( 1
2 − 1

2m)k

( 1
2m + 3

2 )k

(−T 2)k, T = tan
πt

2
.

Since T 2 ≤ 1 for 0 ≤ t ≤ 1/2, the terms of this series tend to zero like
k−m−1T 2k as k → ∞. Consequently, this expansion converges very slowly
for t close to 1/2 because T 2 → 1 as t → 1/2. However, it is an essentially
alternating series because, for k ≥ 
(m + 1)/2�, its terms alternate in sign.
This being the case, the series in (3.7) turns out to be ideal for the actual
computation of Θm(t), because we can apply to it the Shanks or the Levin
transformation and obtain its sum to machine precision using a very small
number of its terms and in an absolutely stable fashion. Indeed, using the
Levin transformation, Θm(t) can be computed with an accuracy of almost
thirty-five digits by using only the first twenty-five terms of the expansion
in (3.7).

4. Analysis of the trapezoidal rule

with extended class Sm transformations

In this section and the next, we call the extended class Sm simply the class Sm,
and extended class Sm transformations simply class Sm transformations.

The following theorem is the main result of this section. Note that, for simplicity
of notation, we set [a, b] = [0, 1].

Theorem 4.1. Let f ∈ C∞(0, 1), and assume that f(x) has the asymptotic expan-
sions

f(x) ∼
∞∑

s=0

csx
γs as x → 0+; f(x) ∼

∞∑
s=0

ds(1 − x)δs as x → 1 − .

Here γs and δs are distinct complex numbers that satisfy

−1 < �γ0 ≤ �γ1 ≤ �γ2 ≤ · · · , lims→∞ �γs = +∞,

−1 < �δ0 ≤ �δ1 ≤ �δ2 ≤ · · · , lims→∞ �δs = +∞.
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Assume furthermore that, for each positive integer k, f (k)(x) has asymptotic expan-
sions as x → 0+ and x → 1− that are obtained by differentiating those of f(x) term
by term k times. Let I[f ] =

∫ 1

0
f(x) dx, and let us now make the transformation

of variable x = ψ(t), where ψ ∈ Sm, in I[f ]. Finally, let us approximate I[f ] via
the trapezoidal rule Q̂n[f ] =

∑n−1
i=1 f

(
ψ(ih)

)
ψ′(ih), where h = 1/n, n = 1, 2, . . . .

Then the following hold:
(i) In the worst case,

Q̂n[f ] − I[f ] = O
(
h(ω+1)(m+1)

)
as h → 0; ω = min{�γ0,�δ0}.

(ii) Let us merge the sets C = {γ0, γ1, . . .} and D = {δ0, δ1, . . .} to obtain the
set B = {β0, β1, . . .}, such that (i) βs are distinct, (ii) �β0 ≤ �β1 ≤ · · · ,
and (iii) α ∈ B if and only if α ∈ C or α ∈ D. Then, if β0 is real, and if
m = (q − β0)/(1 + β0), where q is an arbitrary positive even integer, then
the preceding result is improved to read at worst

Q̂n[f ] − I[f ] = O
(
h(β1+1)(m+1)

)
as h → 0.

Thus, in case γ0 and δ0 are real and γ0 = δ0, hence β0 = γ0 = δ0, there
holds

Q̂n[f ] − I[f ] = O
(
h(ω+1)(m+1)

)
as h → 0; ω = min{�γ1,�δ1}.

Proof. It is clear from Theorem 1.2 that we need to find the asymptotic expansions
of the transformed integrand f̂(t) = f

(
ψ(t)

)
ψ′(t) as t → 0 and t → 1. Because

ψ(t) → 0 as t → 0 and ψ(t) → 1 as t → 1, and recalling that 1 − ψ(t) = ψ(1 − t),
we can obtain these by re-expanding the asymptotic series

f̂(t) ∼
∞∑

s=0

cs[ψ(t)]γsψ′(t) as t → 0, f̂(t) ∼
∞∑

s=0

ds[ψ(1−t)]δsψ′(1−t) as t → 1.

The sth term in the first of these series contributes the sum

(4.1) Ks(t) :=
∞∑

i=0

e
(0)
si tγs(m+1)+m+2i as t → 0, e

(0)
s0 = csε

γs+1
0 /(m + 1) �= 0,

whereas the sth term in the second series contributes the sum
(4.2)

Ls(t) :=
∞∑

i=0

e
(1)
si (1 − t)δs(m+1)+m+2i as t → 1, e

(1)
s0 = dsε

δs+1
0 /(m + 1) �= 0.

Thus, by Theorem 1.2, the most dominant terms in the expansion of Q̂n[f ] − I[f ]
as h → 0 are e

(0)
00 h(γ0+1)(m+1) and e

(1)
00 h(δ0+1)(m+1). This proves part (i) of the

theorem.
To prove part (ii), we recall from Theorem 1.2 and the remark following its proof

that if we choose m such that γs(m+1)+m is an even integer, then all the powers of
t in the asymptotic expansion Ks(t) of (4.1) are also even, hence do not contribute
to the asymptotic expansion of Q̂n[f ] − I[f ]. Similarly, if we choose m such that
δs(m + 1) + m is an even integer, then all the powers of (1 − t) in the asymptotic
expansion Ls(t) of (4.2) are also even, hence do not contribute to the asymptotic
expansion of Q̂n[f ]− I[f ]. Now, we have either β0 = γ0 or β0 = δ0. Thus, when β0

is real, if we choose m such that β0(m + 1) + m = q is an even integer, then either
K0(t) in (4.1) or L0(t) in (4.2) does not contribute to the asymptotic expansion
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of Q̂n[f ] − I[f ]. This proves the first of the results in part (ii). The second result
in part (ii) follows from this in a straightforward manner. This completes the
proof. �

Remark. Note that the results in part (ii) of Theorem 4.1 are made possible by
our definition of the class Sm transformations, where we have excluded the powers
tm+1, tm+3, . . . , and (1− t)m+1, (1− t)m+3, . . . , from the asymptotic expansions of
ψ′(t) as t → 0 and t → 1.

The situations described in the corollary below arise, for example, in case f(x)
is infinitely differentiable on [0, 1]. The quality of Q̂n[f ] in this corollary is best
possible.

Corollary 4.2. Assume f(x) is as in Theorem 4.1, and let the βi be as in part (ii)
there. Then:

(i) In case β0 = 0 and β1 = 1, if we choose m to be an even integer, we have
Q̂n[f ] − I[f ] = O(h2m+2) as h → 0.

(ii) In case β0 = 1 and β1 = 2, if we choose m such that 2m is an odd integer,
we have Q̂n[f ] − I[f ] = O(h3m+3) as h → 0.

(iii) In case β0 = 1 and β1 = 3, if we choose m such that 2m is an odd integer,
we have Q̂n[f ] − I[f ] = O(h4m+4) as h → 0.

Note that part (i) of the corollary applies when |f(0)|+ |f(1)| �= 0 and |f ′(0)|+
|f ′(1)| �= 0. Part (ii) applies when f(0) = f(1) = 0, |f ′(0)| + |f ′(1)| �= 0, and
|f ′′(0)|+ |f ′′(1)| �= 0. Part (iii) applies when f(0) = f(1) = 0, |f ′(0)|+ |f ′(1)| �= 0,
f ′′(0) = f ′′(1) = 0, and |f ′′′(0)| + |f ′′′(1)| �= 0.

Thus, the result of part (i) of Corollary 4.2, despite being quite good, is nev-
ertheless inferior to those of parts (ii) and (iii). That is, the best accuracy that
can be achieved by Q̂n[f ] when |f(0)| + |f(1)| �= 0 and |f ′(0)| + |f ′(1)| �= 0 is less
than those achieved when f(0) = f(1) = 0. In the next theorem, we show how this
situation can be improved in a simple way.

Theorem 4.3. Assume f ∈ C∞[0, 1] and that |f(0)| + |f(1)| �= 0; that is, at least
one of f(0) and f(1) is nonzero. Let p(x) be the linear function that interpolates
f(x) at x = 0 and x = 1, and let u(x) = f(x) − p(x). Next, transform the variable
x in the integral

∫ 1

0
u(x) dx via x = ψ(t), where ψ ∈ Sm, and approximate the

transformed integral by the trapezoidal rule. Denote the resulting approximations
by Q̂n[u]. Then{

Q̂n[u] + 1
2 [f(0) + f(1)]

}
− I[f ] =

{
O(h3m+3) as h → 0, if 2m odd integer,
O(h2m+2) as h → 0, otherwise.

Proof. First,∫ 1

0

f(x) dx =
∫ 1

0

u(x) dx +
∫ 1

0

p(x) dx =
∫ 1

0

u(x) dx +
1
2
[f(0) + f(1)].

Next, we note that u ∈ C∞[0, 1] and vanishes at x = 0 and x = 1. The result now
follows by applying part (i) of Theorem 4.1 and part (ii) of Corollary 4.2 to the
integral

∫ 1

0
u(x) dx. �

In case only one of f(0) and f(1) vanishes, and a few other special conditions
hold, we can use another approach, quite different from that described in Theorem
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4.3. We give this approach next. Note the rather unusual application of the class
Sm transformations.

Theorem 4.4. Assume f ∈ C∞[0, 1] and that only one of f(0) and f(1) vanishes.
Let f(0) = 0, without loss of generality, and assume that f (i)(0) = 0 for 2 ≤
i ≤ j − 1, and f (j)(0) �= 0 for some j ≥ 2. Assume also that f (2k+1)(1) = 0,
k = 0, 1, . . . . Let ψ(t) be in Sm for some m, and transform the variable x via
x = ψ(t) = 2ψ(t/2). Thus,

I[f ] =
∫ 1

0

f(x) dx =
∫ 1

0

f(t) dt; f(t) = f
(
ψ(t)

)
ψ
′
(t) = f

(
2ψ(t/2)

)
ψ′(t/2).

Let

Qn[f ] = h

[ n−1∑
i=1

f(ih) +
1
2
f(1)

]
, h =

1
n

.

Then, whether f ′(0) �= 0 or not,

Qn[f ] − I[f ] =
{

O
(
h(j+1)(m+1)

)
as h → 0, if 2m odd integer,

O(h2m+2) as h → 0, otherwise.

Thus, when 2m is an odd integer, Qn[f ]− I[f ] = O(h3m+3) as h → 0, at worst. In
case f ′(0) = 0, the result above can be refined as follows:

Qn[f ] − I[f ] =
{

O
(
h(j+2)(m+1)

)
as h → 0, if (j + 1)(m + 1) odd integer,

O
(
h(j+1)(m+1)

)
as h → 0, otherwise.

Thus, in case f ′(0) = 0, when (j + 1)(m + 1) is an odd integer, Qn[f ] − I[f ] =
O(h4m+4) as h → 0, at worst.

Proof. We first analyze the behavior of ψ(t) as t → 0 and as t → 1. Clearly,
ψ(0) = 0, ψ(1) = 1, and ψ(t) is increasing on [0, 1]. From Definition 2.1,

ψ
′
(t) ∼

∞∑
i=0

ε
(0)
i tm+2i as t → 0,

hence

ψi(t) ∼
∞∑

i=0

ε
(0)
i

m + 2i + 1
tm+2i+1 as t → 0.

From the fact that ψ′(1 − t) = ψ′(t), we have ψ(2k)(1/2) = 0, k = 1, 2, . . . .
Consequently,

ψ
′
(t) ∼

∞∑
i=0

ε
(1)
i (1 − t)2i as t → 1,

hence

ψ(t) ∼ 1 −
∞∑

i=0

ε
(1)
i

2i + 1
(1 − t)2i+1 as t → 1.

By the conditions imposed on the function f(x), we have

f(x) ∼ c1x +
∞∑

s=j

csx
s as x → 0, c1 �= 0 in general,
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and

f(x) ∼
∞∑

s=0

ds(1 − x)2s as x → 1.

Let us now substitute the asymptotic expansions of ψ(t) and ψ
′
(t) in the expansions

f(t) ∼ c1ψ(t)ψ
′
(t) +

∞∑
s=j

cs[ψ(t)]sψ
′
(t) as t → 0

and

f(t) ∼
∞∑

s=0

ds[1 − ψ(t)]2sψ
′
(t) as t → 1.

We obtain

f(t) ∼
∞∑

i=0

e
(0)
1i t2m+1+2i +

∞∑
s=j

∞∑
i=0

e
(0)
si ts(m+1)+m+2i as t → 0

and

f(t) ∼
∞∑

i=0

e
(1)
i (1 − t)2i as t → 1.

Proceeding as in the proof of Theorem 4.1, we complete the proof. We leave the
details to the reader. �

Note that, under the transformation ψ(t), the transformed abscissas xi = ψ(i/n)
are clustered in a small right neighborhood of x = 0; no clustering takes place near
x = 1.

In connection with the use of ψ(t) = 2ψ(t/2) as the variable transformation in
Theorem 4.4, it is interesting to note that, under the condition that f (2k+1)(1) = 0
for all k ≥ 0, there is no contribution to the expansion of Qn[f ] − I[f ] as h → 0
from the endpoint x = 1. This is so for all values of m.

In case f(0) �= 0 and f(1) = 0 in Theorem 4.4, we write I[f ] =
∫ 1

0
g(x) dx, with

g(x) = f(1−x), and apply the method described there with f(x) replaced by g(x).
Finally, we note that the use of ψ(t) = 2ψ(t/2), with any variable transformation

ψ(t) ∈ C∞[0, 1] for which ψ(0) = 0, ψ(1) = 1, ψ′(t) > 0 on (0, 1), and ψ′(t) is
symmetric with respect to t = 1/2, that is, ψ′(1−t) = ψ′(t) hence ψ(1−t) = 1−ψ(t),
was introduced by Johnston [8] in conjunction with Gauss–Legendre quadrature in
the context of computing

∫ 1

0
f(x) dx with a singularity at x = 0 only. Of course,

our motivation and usage of ψ(t) (only with ψ ∈ Sm and with special values of m)
in the present work are completely different from those of [8].

Remark. The situations described in part (iii) of Corollary 4.2 and in Theorems
4.3 and 4.4 arise naturally in integration of functions over an arbitrary smooth
surface S in R

3, after this surface has been mapped to the surface of the unit
sphere, and after the transformed integral has been expressed in terms of surface
spherical coordinates θ and φ (x = sin θ cos φ, y = sin θ sin φ, z = cos θ, as usual),
the “effective” integral being of the form

∫ π

0
v(θ) dθ:

1. Part (iii) of Corollary 4.2 applies to the case in which the integrand func-
tions are smooth over the surface S. In this case, it turns out that v(θ) ∼∑∞

i=0 aiθ
2i+1 as θ → 0 and v(θ) ∼

∑∞
i=0 bi(π − θ)2i+1 as θ → π. Thus,
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the error in the approximation to
∫ π

0
v(θ) dθ is at worst O(h4m+4) when

ψ ∈ Sm with 2m an odd integer.
2. Theorems 4.3 and 4.4 apply to the case in which the integrand functions

are smooth over the surface S, except for a point singularity of the single-
or double-layer type. In particular, for integration over the surface of the
unit sphere, and with the point singularity at the south pole θ = π, there
holds v(θ) ∼

∑∞
i=0 aiθ

2i+1 as θ → 0 and v(θ) ∼
∑∞

i=0 bi(π − θ)2i as θ → π.
Thus, the conditions of Theorem 4.4 are satisfied by v(θ) with j ≥ 3, and
the error in the approximation to

∫ π

0
v(θ) dθ is at worst O(h4m+4) when

ψ ∈ Sm with 2m an odd integer.

For these problems and their treatment via the extended class Sm variable trans-
formations, we refer the reader to the report [18] and the recent papers [21] and
[22] by Sidi. Actually, it was these problems that motivated the extension of the
class Sm.

5. Numerical examples

In this section, we provide two examples to illustrate the validity of the re-
sults of Section 4 numerically. The computations for these examples were done in
quadruple-precision arithmetic (approximately 35 decimal digits).

Example 5.1. Let us consider the integral∫ 1

0

x(1 − x)
1 + x

dx = 3
2 − 2 log 2.

We use the trapezoidal rule after transforming the integral with the sinm-transfor-
mation for various values of m. Note that the integrand is as in part (ii) of Corollary
4.2. The numerical results in Tables 1 and 2 illustrate the results of Theorem 4.1
and Corollary 4.2.

Table 1 gives the relative errors in the Q̂n[f ], n = 2k, k = 1, 2, . . . , 10, for
m = j/2, j = 3, 4, . . . , 12. Table 2 presents the numbers

µm,k =
1

log 2
· log

(
|Q̂2k [f ] − I[f ]|
|Q̂2k+1 [f ] − I[f ]|

)
,

for the same values of m and for k = 1, 2, . . . , 9. It is seen that, with increasing k,
the µm,k are tending to 2m + 2 when m is an integer, in accordance with part (i)
of Theorem 4.1, and to 3m + 3 when 2m is an odd integer, in accordance with part
(ii) of Theorem 4.1 and part (ii) of Corollary 4.2.

Example 5.2. Consider the integral∫ 1

0

sin( 1
2πx)

1 + (1 − x)2
dx = 0.549122163208195 · · · .

It is not difficult to see that the integrand satisfies the conditions of Theorem 4.4
with j = 2 there. Therefore, we transform the variable x via x = ψ(t), where
ψ(t) = 2ψ(t/2), ψ(t) being in Sm for some m, and apply the trapezoidal rule Qn[f ]
described in Theorem 4.4. Thus, Theorem 4.4 applies with j = 2.

The numerical results in Tables 3 and 4 illustrate the results of Theorem 4.4.
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Table 1. Relative errors in the rules Q̂n[f ] for the integral of Example 5.1 in Section 5, obtained with n = 2k,
k = 1(1)10, and with the sinm-transformation using m = 1.5(0.5)6.

n m = 1.5 m = 2.0 m = 2.5 m = 3.0 m = 3.5 m = 4.0 m = 4.5 m = 5.0 m = 5.5 m = 6.0

2 3.17D − 01 4.66D − 01 6.01D − 01 7.27D − 01 8.44D − 01 9.54D − 01 1.06D + 00 1.16D + 00 1.25D + 00 1.35D + 00
4 6.30D − 04 5.53D − 03 2.39D − 03 9.66D − 03 2.96D − 02 5.57D − 02 8.65D − 02 1.20D − 01 1.57D − 01 1.94D − 01
8 1.79D − 06 2.83D − 05 5.20D − 08 6.61D − 06 5.69D − 06 3.08D − 06 1.55D − 05 6.71D − 05 1.56D − 04 2.69D − 04

16 8.47D − 09 4.14D − 07 1.52D − 10 1.81D − 08 7.48D − 12 1.39D − 09 4.08D − 12 1.99D − 10 2.97D − 11 2.18D − 10
32 4.53D − 11 6.37D − 09 9.71D − 14 6.77D − 11 5.37D − 16 1.24D − 12 6.19D − 18 3.46D − 14 1.31D − 19 1.38D − 15
64 2.48D − 13 9.91D − 11 6.57D − 17 2.62D − 13 4.41D − 20 1.18D − 15 6.04D − 23 8.09D − 18 1.48D − 25 7.86D − 20

128 1.37D − 15 1.55D − 12 4.51D − 20 1.02D − 15 3.76D − 24 1.14D − 18 6.36D − 28 1.95D − 21 1.91D − 31 4.72D − 24
256 7.56D − 18 2.42D − 14 3.11D − 23 3.98D − 18 3.23D − 28 1.12D − 21 7.22D − 33 4.76D − 25 3.85D − 34 2.87D − 28
512 4.18D − 20 3.77D − 16 2.15D − 26 1.55D − 20 2.73D − 32 1.09D − 24 7.70D − 34 1.16D − 28 1.93D − 34 1.70D − 32

1024 2.31D − 22 5.90D − 18 1.48D − 29 6.07D − 23 6.74D − 34 1.06D − 27 7.70D − 34 2.93D − 32 7.70D − 34 3.85D − 34

Table 2. The numbers µm,k = 1
log 2 · log

(
|Q̂2k [f ]−I[f ]|

|Q̂2k+1 [f ]−I[f ]|

)
, for k = 1(1)9 and m = 1.5(0.5)6, for the integral of

Example 5.1 in Section 5, where Q̂n[f ] are those of Table 1.

k m = 1.5 m = 2.0 m = 2.5 m = 3.0 m = 3.5 m = 4.0 m = 4.5 m = 5.0 m = 5.5 m = 6.0

1 8.976 6.397 7.977 6.234 4.835 4.099 3.614 3.265 3.001 2.794
2 8.459 7.609 15.486 10.513 12.342 14.142 12.444 10.810 9.968 9.492
3 7.724 6.095 8.416 8.514 19.538 11.112 21.859 18.367 22.329 20.239
4 7.547 6.024 10.613 8.061 13.765 10.137 19.331 12.488 27.758 17.266
5 7.511 6.006 10.530 8.016 13.572 10.033 16.644 12.061 19.752 14.100
6 7.503 6.001 10.507 8.004 13.518 10.008 16.535 12.015 19.563 14.025
7 7.501 6.000 10.502 8.001 13.505 10.002 16.426 12.004 8.954 14.006
8 7.500 6.000 10.500 8.000 13.529 10.001 ∗ 12.001 ∗ 14.038
9 7.500 6.000 10.500 8.000 ∗ 10.000 ∗ 11.954 ∗ ∗
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Table 3. Relative errors in the rules Qn[f ] for the integral of Example 5.2 in Section 5, obtained with n = 2k,
k = 1(1)9, and with the sinm-transformation using m = 1.5(0.5)6.

n m = 1.5 m = 2.0 m = 2.5 m = 3.0 m = 3.5 m = 4.0 m = 4.5 m = 5.0 m = 5.5 m = 6.0

2 3.37D − 02 6.41D − 02 1.04D − 01 1.50D − 01 2.00D − 01 2.53D − 01 3.06D − 01 3.60D − 01 4.14D − 01 4.67D − 01
4 7.93D − 05 2.86D − 04 7.94D − 04 1.69D − 03 3.09D − 03 5.08D − 03 7.73D − 03 1.11D − 02 1.51D − 02 1.98D − 02
8 5.27D − 09 1.73D − 07 4.39D − 08 2.07D − 07 6.66D − 07 1.80D − 06 4.18D − 06 8.58D − 06 1.60D − 05 2.78D − 05

16 2.61D − 11 2.76D − 09 5.61D − 14 2.94D − 11 3.06D − 14 3.09D − 13 1.22D − 12 5.14D − 12 1.79D − 11 5.39D − 11
32 1.44D − 13 4.30D − 11 3.80D − 17 1.13D − 13 2.55D − 20 5.11D − 16 3.50D − 23 3.51D − 18 2.24D − 23 3.39D − 20
64 7.92D − 16 6.71D − 13 2.61D − 20 4.42D − 16 2.17D − 24 4.96D − 19 3.68D − 28 8.48D − 22 1.11D − 31 2.05D − 24

128 4.37D − 18 1.05D − 14 1.80D − 23 1.72D − 18 1.87D − 28 4.84D − 22 2.89D − 33 2.06D − 25 1.93D − 34 1.24D − 28
256 2.41D − 20 1.64D − 16 1.24D − 26 6.74D − 21 1.73D − 32 4.73D − 25 8.67D − 34 5.04D − 29 3.85D − 34 7.70D − 33
512 1.33D − 22 2.56D − 18 8.58D − 30 2.63D − 23 1.06D − 33 4.61D − 28 1.25D − 33 1.25D − 32 1.93D − 34 0.00D + 00

Table 4. The numbers µm,k = 1
log 2 · log

(
|Q2k [f ]−I[f ]|

|Q2k+1 [f ]−I[f ]|

)
, for k = 1(1)7 and m = 1.5(0.5)6, for the integral of

Example 5.2 in Section 5, where Qn[f ] are those of Table 3.

k m = 1.5 m = 2.0 m = 2.5 m = 3.0 m = 3.5 m = 4.0 m = 4.5 m = 5.0 m = 5.5 m = 6.0

1 8.730 7.806 7.030 6.469 6.017 5.636 5.309 5.025 4.776 4.556
2 13.878 10.690 14.144 12.999 12.180 11.460 10.853 10.333 9.879 9.479
3 7.655 5.973 19.578 12.782 24.375 22.479 21.712 20.670 19.772 18.978
4 7.508 6.006 10.527 8.016 20.197 9.238 35.015 20.483 39.538 30.566
5 7.502 6.001 10.508 8.004 13.518 10.008 16.540 12.015 27.595 14.016
6 7.501 6.000 10.502 8.001 13.504 10.002 16.957 12.004 9.167 14.006

7 7.500 6.000 10.500 8.000 13.397 10.001 1.737 12.001 −1.000 13.978
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Table 3 gives the relative errors in Qn[f ], n = 2k, k = 1, 2, . . . , 9, for m = j/2,
j = 3, 4, . . . , 12. Table 4 presents the numbers

µm,k =
1

log 2
· log

(
|Q2k [f ] − I[f ]|
|Q2k+1 [f ] − I[f ]|

)
,

for the same values of m and for k = 1, 2, . . . , 8. It is seen that, with increasing k,
the µm,k are tending to 2m + 2 when m is an integer, and to 3m + 3 when 2m is
an odd integer, in accordance with Theorem 4.4.

Let us denote by Q̌n,m[f ] either of the transformed trapezoidal rules Q̂n[f ] or
Qn[f ] resulting from a variable transformation ψ ∈ Sm. From Tables 2 and 4, we see
that the accuracy of Q̌n,m[f ], for fixed n, first increases with increasing m, reaches
a peak, and then starts to decrease. In other words, for a given n, there seems to be
a “best” value of m. We also see that this value of m increases as n increases. An
interesting question now is whether we can quantify this phenomenon. Formally,
for a class U of functions f(x), I[f ] �= 0, we would like to know m̃ = m̃(n), for
which

En,m̃ = max
f∈U

min
m

En,m, En,m =
∣∣∣∣Q̌n,m[f ] − I[f ]

I[f ]

∣∣∣∣.
Of course, this is a difficult question to answer theoretically. By looking at Tables
2 and 4, however, we could perhaps say the following about how m̃ increases as a
function of n for the classes of functions in Examples 5.1 and 5.2: If for a particular
n, En,m′ is the smallest of the En,m, then E2n,m′+1 seems to be the smallest of the
E2n,m. A general rule of thumb concerning the best value of m for all classes of
functions seems to be difficult to reach at this stage, however.
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