Sample manuscript for solve same equations:

Shooting method
g+ (2/6)g" - (1/g"+(1/£)g - Ag —[9(1 - v*)/ £la(g'f) =0, (8)
S H/Ef =/ E)f+(1/26)(g)* =0, )
where the prime as the superscipt denotes differentiation, i.e., f'=df/d£ and where

A=’ and a =(Aa/h)’ are additional dimensionless parameters associated with the
radian frequency and amplitude, respectively.

Similarly the boundary conditions of equations (6) are transformed to the non-
dimensional form given in equations (1/a, b) to follow. In addition to the boundary
conditions, a normal relationship is imposed on the system: i.e.,

gle-r=1. (10)

The final non-dimensional normal and boundary conditions are summarized as follows:
(a) for an immovable hinge,

até=1,g=0, g'+(v/£)g'=0, [f-uf=0;
até=R,g=1, g'=0, [f-y=0, g "+ (1/£)g"—(£/2)yrg =0,
(b) for a movable hinge,
até=1,g=0, g'+(v/§)g'=0, f/£=0;
até=R,g=1, g'=0, [f—u=0, g"+(1/£)g"—(£/2)yAg =0.

Equations (8) and (9) are rewritten as six first-order ordinary differential equations as
follows:

(11a)

(11b)

dY/dé=H(¢ Y oA, y), R=<¢=1, (12a)
where
Y(6)=[g 8.8 ¢" LS T =31, 92 V3, Vo, ¥s. Vsl
and
H={y2,y3, 74, =2/ E)ya+ (1/ E)y: = (1 )2+ Ay,
+{(9(1 =)/ EYa(yayet yays), o, —(1/ E)ve+(1/ E)ys = (1/26)y3]".

The boundary and normalization conditions (10) and (11) are written in the matrix
forms, respectively, as

MY(R)=[1,0,0,0]", NY(1)=[0,0,0]" (12b, ¢)

where M and N are (4x6) and (3 x6) coefficient matrices respectively. In Table 1 two

sets of boundary matrices for M and N are listed.

To obtain a solution of the system of equations (12) with the boundary conditions
listed in Table 1, a related initial value problem may be expressed as

dZ/d¢=H(&Z M, y) (13a)



TABLE 1
Coefficient matrices M and N of boundary conditions

Type of M N

1 0 0 Q0 0 0 1000 0 0

. . 0 1 0 0 0 0
Hinged immoyvable 0 » 10 0 O
—(R/2)yA 0 1/R 1 0 0 00 0 0 )

0 0 0 0 -»/R 1 g

1 0 0 0 0 0 1 0000 0

. 0 1 0 0 0 0
Hinged movable 0O » 1000
—(R/2)yx 0 1/R 1 0 0 0000 10

0 0 0 0 -»/R 1

where
Z(£)|£—R = I:Z] » £25 235 24,4 Zs, :6]1-—1'2
=[1,0, m1, —(m/R)+(R/2)¥A, m3, (v/ R)m2]". (13b)

Equation (13b) represents the initial value vector constructed from the boundary and
normalization conditions at £ = R, and 7,, n,and A are unknown initial-value parameters.
A solution to the initial value problem (13) may be symbolically written as
&

2(§]=Z{R)+j H(EZ;, a,y) dE (14)

R

where 7 =[7, 7. A]" is the unknown vector related to the missing initial values and the
frequency. Given the parameters o and 7, the components of 7 are searched for such
that a solution to equations (14) also satisfies the boundary conditions (12¢): i.e.,

NZ(1; 9, e, y)=0. (15)

Also in the other manuscript the method shotting was used.

For example;



Noting 8Wand 80U can be arbitrary, one obtains the following
nonlinear ordinary differential equations

mzr;zg +9(dﬂ—;—20+W1RWﬁR+ %WER) =0 (33)
(14+x)A4AW—0? (w_ :—21;de) —glﬁ, [RW xL(W,U)]g=0 (34)

Similarly, the associated boundary conditions Eqs. (28) and (29)
are transformed to the following:

W(0) =4 W x(0)=0,0(0)=0, im@aW), =0 (35)



W(1)=0, {(1+ W gr(1)+(v—x)W 2(1)=0, U(1)=0 (36)

Herein, g represents the dimensionless transverse amplitude of
the center of the deflected plate.

The above field equations together with the boundary condi-
tions can be summarized as seven coupled set of first order,
nonlinear ordinary differential equations as follows [43]

3—; = H(R,Y: f,x.n), RE(AR,1) (37)
T T

B,Y(4R) = {4,000} . B,¥(1)= {000} (38)

with the denotations of the forms

Y= {Y1-Y2~Y3-Y4-Y5-YG-Y? }T = {W-W.R»W.RR-W.RRR-H-ﬂ.R-ﬂJz}T

H= {Yz.Y3-Y4-¢1'YG‘W2-U}T

9 M, /1 1 1
qjl:I—H[EY2(EYS—FI/YG‘FE"Y%)+Y3(YE+%Y5+§Y%):|
+Ly Y_z(YY-FlY +LY
T 2|\ T2 T3 3T R "2
2 1 1
RTR TR
1 1 1-v 1
7= Yot g ¥sYaVam gp Yomgr¥sYs

Here, the parameter AR is a very small positive quantity intro-
duced to avoid a singularity when R shrinks to zero in numerical
computation. B; and B> are matrixes of order 4x7 and 3 x 7,
relating to the two individual boundaries, with all their compo-
nents vanish except for

Bi(1,1)=B41(2,2)=B1(3,4=8B1(4,5 =1, B1(3,3) = .:_R

B>(1,1)=B2(3,5)=1, B2(2,2) =v—x, B2(2,3) = (1 +k)

The Egs. (37) and (38) come down to a nonlinearly spatial two-
point boundary problem, which can be solved by the shooting method
[43], with the frequency parameter » being an unknown constant
function and the central maximum amplitude # being a control
parameter. Consequently, for prescribed parameters g, x and 5, the
characteristic relation of frequency versus amplitude is obtained as

a? = Y7(B.x.n) (39)

The natural frequency w=wmy can be achieved by setting
the amplitude parameter § to be a very small value, and the
p-dependent family of solutions for Egs. (37) and (38) can be
obtained by the analytical continuation method [36,37], if g is
repeatedly increased by a small step Using the shooting method,
the higher modes can be captured by changing the starting guess
values during the iterative procedure.



Also in the other manuscript INITIAL VALUE METHOD ;55 sed

For example;.

" q’ ¥ 1 ’T‘ ]
ef +c(l——g) -f' - (I——év)$2f+ g) =0, (5)
nJs n
. ( - vz) 9(6 c=vY) _,
Ag" +A9" +A9" +A4,9 -1 —59 aﬂ(gf) = 2% (8)
v
where
2 1 3(2¢ +
A =, A, = ?Crf3+ 6en'n®, A, = _f_z n® + (cTﬂq’ql + 3cn'n? + 6cnn'?,
1 3n'n? v a\? Aa

Az__:'!__+3u2+6 r2‘_, ={A4= , A= 2 A* = —p.

4 Cq é‘z ["q ’?(ﬂ)]é o ( ho w-, hnp

TaBLE 1
Boundary conditions
Type of edge Boundary condition at edge
sy, =Rorl

Clamped g=0 of = (v)f=0

Immovable g =0

Clamped g=0 (f/E=0)

Movable g =0

Hinged g=0 of —(v§f=0

Immovable cg” + (/&g =0

Hinged g=0 (fi&=

Movable cg’ +(v/lg' =0

Free cg” +(v/&g' =0

cg” + 1/ +3n'/nlg’ (f/51=0

—[1/¢2 = 3n'/mv/]g" = 0




3.2. INITIAL VALUE METHOD

The field equations (5) and (8) can be written as a system of six first order non-linear
differential equations,

dY/d¢ = H(E, Y, o, 4, Q%), R<¢<l, 9
where
rg ] ryl
g’ ¥
g” }’
Y@ =< t=4"
g Va
f Vs
kf ' Lyf,



and H is the appropriately defined (6 x 1) vector function

v, )
Y3
Vs
A, A, A, nA (c — v?)
2y, 0y e, 412
A1 y4 A1 Y:g. A1y2 A:. (1 _ vZ)yl
_ 9c — v?) (c —v?)
=<4+ —" + + —0*
H '5141 u(y_a,y,s y;ys) \/EAI Q o
Vs ) ‘
N (1 _Me\le_ M (2
(l—nvé)652 ( n‘*): 28 Y

The boundary conditions for the example problems considered are
(1) ¢ = R (clamped immovable edge):

=0, y,=0, cys—(/Ry;=0; (10)
(2) ¢ = 1 (free edge):
cy, +vy, =0, vy, =0, cy, +c[1 +3n'/n]y, — (1 —3n'vip)y, =0. (11)

Also, a unique relationship between « and A is assured by introducing a normalization
condition

yE=1=1 (12)

Thus, equations and boundary conditions (9), (10), (11) and (12) can be summarized as
follows:

d?/d‘: = E(':-' o, A, Q*)l R < é < l! {13)

1

MY(l)={ t+ &=1, (14)

o o ©

NYR) ={0! ¢&=R, (15)



where

1 0 0
M=<JO v ¢ 0 L
0 —(1——§iv) c(l +3—'?) ¢ 0O 0
n n
0 0 0 01 0
1 0 0 0 0 0
N=(0 1 0 0
00 0 0 —% ¢

The system of equations, equations (13), (14) and (15) forms a non-lincar eigenvalue
problem, and is studied most conveniently by introduction of a related initial value problem:

dZ/d: = HR < ¢ < 1,Z:0,4,0%), (16)
Z(1) = [Ln,, —Ome. (1 + v, /c,0.n,]7. (17)

Among the components of the initial value vector of equation (17), 7, and , are missing
conditions. Thus a solution of the initial value problem, equations (16) and (17), is sym-
bolically indicated by

£
1
Now, for known parameters, o and Q3, one seeks values of the missing parameters
Ny, 1, and 4, such that the corresponding solution of equations (16) satisfies the three final
conditions at ¢ = R, equation (15):

NZ(S = Riny,ny, 400, Q3) = 0. (19)

Itis now apparent that solving the eigenvalue problem, equations (5)and (8), is equivalent
to finding a root of the vector equation, equation (19). The solution of equation (19) for the
unknown vector, § = (n,,#,, 4}, can be accomplished by a direct application of a Newton
method [9]. Starting from an estimated initial vector 5'”, and the given parameters o and
QF, the convergent sequence

AL = 30+ A0 Kk =0,1,2,..., (20)

is generated, provided the following linear corrector exists:
45% = —[(NT®] " [(N)Z(R; 5%; 2%, Q)] (21)

The Fréchet derivative, T®, is defined as T® = (6Z, [35)) .

The analysis of the non-linear free oscillation problem is completed when the functional
§ = §(o; @* = 0) is established. The non-linear forced oscillation problem is also com-
pleted when the functional § = §(«, Q*) is found. These functionals can be obtained by
utilization of the method of continuation. The conditions sufficient to guarantee the exist-
ence, continuity and uniqueness of the solution, §(&, Q*), of equation (19) have been given
by Ficken [14].



When time, 1, is equal to n/2w, @ maximum excursion occurs and the expressions for the
stresses are as follows:

6M hy\? (&) v
_ — T M I LA I +— ’
o h* (a ) 2a,,(c — vz)[c‘q & g :I\/a,

=~ (ﬁ) S (LR [E g+ vg"]\/ ,
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" h T aynd) ¢ %= azzf?(-:)f' )
. . Perturbation
Also in the other manuscript was used For

example;.



L.(®) - i dx (i’ ) o'®

GB)=—(d®/dx)*/2

do diw 1 d*m mot
i =0, dx’+x I 2 x0=0, at x=c
v-—i _d?....-.:O’ atx=c¢c
u dx
dw x dp

B=0, W‘—-—U, p— 'F—W_O at x=1

In which the different pperators L, and ¢ are defined as

d d (1 d-
x dx * dx \x dx dx —p)

L,—

(2.12)
(2,13)

" (2.14a,b)

(2,14c)

(2.15a,b,c)

(2,16)

2.17)



III. Perturbation Solution of the Problem

Because there are nonlinear and coupled terms in the governing equations, it is not easy to
obtain the exact solution of the problem. Usually, a *“shooting” method" or a perturbation
methodl! can be used to get an approximate solution. By the former method a boudary value
problem can be transiated into an initial problem and by the latter nonlinear equations can be
linearized into a series of linear ones. Now, we use the latter method to get the solution of equations
(2.12) — (2.15). First, we take a perturbation parameter as

e=w(c)=n/12C1—p*) W(a)/h 3.1
Inwhich W (aq) is theinitial deflection (or amplitude) of the inner edge of the plate. Then the related
unknown quantities can be expressed in the form of power series in parameter ¢ . (For convenience,
we will omit the bar above the letters.)

w=ew, +&°w;+e’ws+ew, + - (3.2)
v=g’v,+&'v, +e’v,+ebuy + - (3.3)
=02 +kye? ket Fhge® + - (3.4)

Inserting (3.2) (3.3) (3.4) into (2.12) — (2.15), using (3.1) and comparing the coefficients of the same
power, it is easy toobtain the following linear boundary value problems

e Ly(w)—ojw,=0; w!{(c)=0, w,(c)=1 } ¢
3.5)
W (@) 1wl ()~ Smolwi(e)=0; w,(1)=0, w](1)=0
d Al il ‘
e, G(u,)u——(T‘;‘—) b 02(e) = 0I(e)=0, v,(1)—=-v}(1)=0 (3.6)
e', Li(wy)—awjwy— % "i— -di Uzdtil) —k,w, =9
w3(0)=0, w;(c)=0 3.7)
W (6) +rwi(e)— emi@iwy(e) +hwi(e)) =0
d ' I jifiiy
et, G(U&)=_% d“;?, UA(C)_%UJ.(C)=0; 94(1)—'701(1)=0 (3.8)
85g L;(wﬁ)_w;ws—% J,’L _‘;d_(vz d 3 + ‘dwl) kzwa k‘w1=0 ﬁ
ws(e)=0, wi(c)=0
) (3.9)

w (0) + - wh(e)— ~m(@}we(e) +hawy(e) +Hhai(€))=0

ws(1)=0, w:(1)=0

/

where the prime denotes the differential with respect to x. Through solving the above linear
boundary value problems, the perturbation solution of (2.12) —(2.15) with the form of (3.2) — (3.4)
can be obtained.






