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Abstract 

Based on the Timoshenko beam model the equations of motion are obtained for large deflection 
of off-center impact of a column by a rigid mass via Hamilton’s principle. These are a set of 
coupled nonlinear partial differential equations. The Newmark time integration scheme and 
differential quadrature method are employed to convert the equations into a set of nonlinear 
algebraic equations for displacement components. The equations are solved numerically and the 
effects of weight and velocity of the rigid mass and also off-center distance on deformation of 
the column are studied.     
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1. Introduction 

The axial impact of a column at the center of cross-section by a rigid mass is an old problem, 
Davidson (1953). Several investigators analyzed the impact of beams with initial geometric 
imperfection, see e.g., Hayashi and Sano (1972a, b), Ari-Gur, et al. (1982), Ji and Waas (2013). 
The results of their analyses were dependent upon the amplitude of the initial imperfection. In 
the study of the impact of perfect columns conducted by Wang and Tian (2007), and Ji and Waas 
(2008), at the outset, a non-linear term in a differential equation of motion was ignored which led 
to the differential equation for linear wave propagation in axial direction. The solution to this 
equation was, then, used to investigate the transverse motion of the column. The nonlinear 
vibration of the Euler-Bernoulli beam under transverse periodic load subjected to axial impact 
was the subject of study by Awrejcewicz et al. (2011). In practice, however, the off-center 
impact of a straight column by a striking mass may occur, which leads to both transverse and 
axial deformation of the column. Contrary to the central impact of column by a mass, off-center 
impact has rarely been addressed in the literature. Kuo (1961), experimentally investigated 
eccentric longitudinal impact of a horizontally suspended free beam by a striking bar which had 
a canonical end to exert the impact. A theoretical analysis of the response of the beam using 
Timoshenko beam theory was also carried out. The governing equations were a set of linear 
partial differential equations which was solved by the method of characteristics. The oblique 
impact at the free end of a cantilever column by a rigid mass was the subject of study by Ren 
(1985). The Timoshenko beam model was employed and the equations of motion were obtained 
employing Hamilton’s principle. These were three non-linear partial differential equations which 
were solved by finite difference method. The dependencies of impact duration on the incidence 
angle and also on the slenderness ratio of a column were investigated. In another article, Ren and 
Kou (1987) conducted an experiment to verify the results of their earlier analysis. 

The off-center impact of a column by a rigid mass is the subject of the present study. The 
Timoshenko beam model is utilized. Therefore, the analysis is valid for moderately thick 
columns as well as slender ones. The application of Hamilton’s principle results in a set of 
coupled non-linear differential equations for the displacement components of the column. These 
equations are solved numerically for an impacted column with simply-supported or clamped 
condition at the fixed end. The results are in excellent agreement with those obtained by finite 
element method. The effects of velocity, off-center distance and weight of impacting mass on the 
deformation of column are studied.   

 

2. Formulation 

We consider a column with length  thickness  and height  The dimensions are in the 
 and directions, respectively. The column is simply-supported at  thus, at this 
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end, transverse displacement vanishes. The equations representing displacement field in the 
Timoshenko beams are 

  

 

where, and  are, respectively, the axial and transverse deformations of the beam axis, and  
is the rotation of its cross-section. The stationary column is initially impacted by a rigid mass M 
with a velocity  at the distance  from the center of the cross-section. The kinetic energy 
of the system, in view of Eqs (1), becomes 

 

where,  is the mass density of the column. The potential energy, under the hypothesis of elastic 
impact, yields  

 

where  is the correction shear factor. For isotropic beams with infinitesimal strains the 
constitutive equations obey Hooke’s; thus,  where, E and  are Young’s 
and shear moduli  respectively. The von-Karman strain measure for a Timoshenko beam results 
in 

  

 

Therefore, potential energy (3) in view of Eqs (4), becomes 

 
 
Hamilton’s principle states that 
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where,  is a small but known time interval. Substituting Eqs (2) and (5) into Eq. (6) and 
carrying out the required manipulation leads to the following equations of motion 

 
 

 

 

 

where,  is the Poisson’s ratio and is the longitudinal wave velocity in the material. 
The above equations are subjected to the following natural and geometric boundary conditions 
at,  

 

 

 

And at,   

   and    

The last boundary condition at  for a column with simply-supported and clamped 

boundaries are , and respectively. Let the impacted column be stationary at  

the initial conditions for Eqs (7), yield 
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 (10)

Furthermore, as the axial force at  vanishes, the impacting mass losses contact with the 
column. From first Eq. (4) and Hooke’s law, we arrive at the equation of the contact duration, , 
as  

 

The Newmark and differential quadrature methods are used to solve the system of non-linear 
equations (7). The application of these methods results in 
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Analogously, boundary conditions (8) may be written as  

�

 

�

 

 

 

The value of  for a beam simply-supported (clamped) at  is  (  Moreover, 
the initial conditions, , are 

= 0   

  

  

 

whereas, for,  the acceleration and velocity at a point are  
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In Eqs (12),  is the number of sampling points on the column, and cosine 
distribution is employed to define the location of sampling points 

 

The weighting coefficients  for the determination of  order derivative are, see for instance 

Chang (2000) 

 

 

 

 

 

 

where, the polynomial is 

 

 

The systems of non-linear algebraic equations (12) and (13) are solved in each time-step  by 
means of the Newton-Raphson method to evaluate displacement components.  

 

3. Numerical results 

We consider a column made up of steel (ASTM-A693 Grade 630) with the yield stress, 
. Unless otherwise stated, the following numerical values are used in the study 
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It is worth mentioning that the numerical values are such that the column may not collapse under 
plastic deformation. The convergence of numerical results, for the worst case which is impact 
with the highest velocity, is achieved by choosing the time-increment x  and 
number of sampling points  The duration of contact between the rigid mass and the 
column simply-supported at  is whereas for the clamped column 

We should also note that the analysis is valid for  The normalized 
transverse deflection  is depicted in Figs 1 and 2. Moreover, the normalized axial 
displacement, verses normalized time  is displayed in Figs 3 and 4. At time  the 
axial displacement at  does not vanish; thus columns are still under compression.  Another 
analysis of the problem is carried out using ABAQUS/Explicit finite element software. The finite 
element mesh comprised of two-hundred, C3D8R elements. Close correlation between the 
results of two procedures justifies the accuracy of the present analysis. By comparing Figs 1and 
3 with 2, and 4, respectively, we may observe that the effect of boundary conditions at  is 
quite local. Therefore, in the following, only simply-supported columns at the fixed end are 
considered   

As another example, we study the effect of weight of impacting mass on the transverse 
deformation of the column, Fig. 5. The time  and the maxima of transverse deflection, the latter 
as time progresses, increase noticeably for heavier impacting masses.  

The axial strain of the column at and  versus normalized time for different values of 
off-center distance  is shown in Fig. 6. For  only axial displacement of a perfect column 
occurs. It can be observed that the time  does not change with off-center distance. Besides, the 
increase of off-center distance results in higher bending moment in the column. Therefore, from 
Eq. (4), we deduce that the magnitude of  decreases with increasing off-center 
distance.  

The last example, deals with the column which is impacted by the rigid mass with different 
velocities, , Fig. 7. The variation of time  with the impact velocity is negligible. This is in 
accord with a finding in, Ji and Waas (2008). However, the transverse deflection of the column 
magnifies significantly by the increase of impact velocity.  

 

4. Conclusion 

We have analyzed the off-center impact of an elastic perfect column by a rigid mass in the 
course of the first impact. The von-Karman strain measure is employed; thus analysis is valid for  
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columns undergoing large deflection. The effect of boundary conditions at the fixed support is 
local. Therefore, the overall behavior of columns clamped or simply-supported, at the fixed end, 
is similar. The effect of impact velocity on the duration of impact is negligible but it is drastic on 
the transverse deformation of the column. However, as the weight of impacting mass increases, 
the duration of impact and also deflection of the column increase significantly. Moreover, 
numerical results reveal that duration of contact is the same for different values of off-center 
distance  and columns remain under compression in the course of impact.  

  

 

 

Fig. 1. Transverse deflection of the column simply-supported at x=0 
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Fig. 2. Transverse deflection of the column clamped at x=0 

 

 

Fig. 3. Axial displacement at the end of the column simply-supported at x=0 
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Fig. 4. Axial displacement at the end of the column clamped at x=0 

 

 

Fig. 5. Maximum transverse deflection of the column with different rigid mass 
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Fig. 6. Axial strain at the contact surface of column for different off-center distances 

 

 

Fig. 7.  Effect of mass velocity on transverse deformation of the column   
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Highlights 

• The governing equations for the off-center impact of an elastic column by a rigid mass 
are derived. 

• The duration of contact between the column and impacting mass is obtained. 

• The effects of velocity, weight of impacting mass and off-center distance are studied. 

 

 


