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Abstract. These notes present my take on a small part of the analysis of

the stability of a pendulum in Butikov [2]. I have also been influenced by
the more general analysis in Landau and Lifshitz [4], section 30 (page 93) and

the problems at the end of that section. The review in Section 1 is based on

Hale [3].

We wish to analyze the effect on a pendulum’s stability of applying high fre-
quency and small amplitude displacements to the pivot.

We limit the analysis to motion in a vertical plane (i.e., two-dimensional motion)
of an ordinary pendulum consisting of a mass m attached to a massless bar of length
l.

Introduce the Cartesian coordinates (x, y), where x is horizontal and y points
downward. The origin is the nominal location of the pivot. Let φ be the angle,
measured counterclockwise, that the pendulum makes relative to the y axis.

1. A review of stability

Given a function f : R→ R, consider the following differential equation for x(t):

ẍ = f(x),

Suppose f has a potential, U ; that is, f(x) = − d
dxU(x). Then the equilibria of

the differential equation are the critical points of U . If a critical point is a local
minimum, then the corresponding equilibrium is stable. If it is a local maximum,
then the corresponding equilibrium is unstable. This is formally proved in Hale,
page 172. The crux of the argument is the observation that the equation implies
that

ẋẍ = − d

dx
U(x)ẋ,

whence
d

dt

(
1

2
ẋ2 + U(x)

)
= 0,

and consequently,

1

2
ẋ2 + U(x) = constant along the orbits.

The level curves of 1
2 ẋ

2 + U(x) look like ellipses near the minima of U , and they
look like saddles near the maxima of U .

As a specific example consider the equation of a simple pendulum of length l:

mlφ̈+mg sinφ = 0.
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We note that this is equivalent to:

mlφ̈ = − d

dφ
U(φ),

where

U(φ) = mg(1− cosφ)).

U has a local minimum at φ = 0 and a local maximum at φ = π. It follows that
the hanging down equilibrium is stable and the upright equilibrium is unstable.

2. Vertical oscillation of the support

Suppose that the pivot oscillates vertically according to

(1) y = a sinωt.

Then it is not hard to show that the pendulum’s equation of motion is

(2) φ̈+
g

l
sinφ+

aω2

l
sinφ sinωt = 0.

The fast oscillations of the pivot result in a motion φ(t) which is a superposition
of a slow motion, ψ(t), and a fast, small amplitude oscillations δ(t) of frequency ω.
Thus, we seek a solution to (2) of the form

φ(t) = ψ(t) + δ(t).

The oscillations δ(t) can be characterized by following the idea expounded in [2]
and illustrated in Figure 1 which depicts the pendulum in when its arm oscillates
rapidly about the nominal angle ψ with the vertical. Applying the law of sines
within the triangle shown, we get

sin δ

a sinωt
=

sinψ

l
.

Assuming that a/l is small, then δ is small, so that sin δ ≈ δ, this leads to

(3) δ =
a

l
sinψ sinωt (assuming a/l� 1).

We are going to need δ’s second derivative soon, so let’s calculate it right now.
We have:

δ̇ =
a

l

[
ψ̇ cosψ sinωt+ ω sinψ cosωt

]
,

δ̈ =
a

l

[
ψ̈ cosψ sinωt− ψ̇2 sinψ sinωt+ 2ωψ̇ cosψ cosωt− ω2 sinψ sinωt

]
.

We are interested in high frequency oscillations of the pivot, that is, ω � 1. There-
fore, the term with ω2 in the expression above dominates the rest. We conclude
that

δ̈ ≈ −aω
2

l
sinψ sinωt (assuming ω � 1).

Now we go to the differential equation (2) and replace φ by ψ + δ, and replace
sinφ with its Taylor series approximation

sinφ = sin(ψ + δ) ≈ sinψ + δ cosψ.

We get:

ψ̈ + δ̈ +
g

l

[
sinψ + δ cosψ

]
+
aω2

l

[
sinψ + δ cosψ

]
sinωt.
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Figure 1. The pivot oscillates vertically according to a sinωt
about the pendulum’s nominal pivot. When the pendulum’s arm
makes a “nominal” angle ψ with the vertical, the angle actually
oscillates rapidly in the range ψ ± δ as shown. Beware that the
pivot’s displacement is exaggerated; we assume that a/l is very
small in our computations.

We multiply out everything and replace δ̈ with the expression obtained above, and
arrive at

ψ̈ − aω2

l
sinψ sinωt+

g

l
sinψ +

g

l
δ cosψ +

aω2

l
sinψ sinωt+

aω2

l
δ cosψ sinωt = 0.

The second and fifth terms cancel, leaving us with

ψ̈ +
g

l
sinψ +

g

l
δ cosψ +

aω2

l
δ cosψ sinωt = 0.

In the last term we substitute for δ from (3):

ψ̈ +
g

l
sinψ +

g

l
δ cosψ +

a2ω2

l2
sinψ cosψ sin2 ωt = 0.

Now, we average the equation over one fast period, that is 2π/ω, during which
time the slow function ψ effectively remains unchanged. Thus, averaging does not
affect the first and second terms. The third term goes away since, in view of (3), δ
is proportional to sinωt, whose average over one period is zero. Averaging the last
term requires calculating the integral

1

2π/ω

∫ 2π/ω

0

sin2 ωt dt =
2π

ω

∫ 2π/ω

0

1

2
(1− cos 2ωt) dt =

1

2
.

We conclude that

ψ̈ +
g

l
sinψ +

a2ω2

2l2
sinψ cosψ = 0,

or equivalently

ψ̈ +
g

l

[
1 +

a2ω2

2lg
cosψ

]
sinψ = 0.
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To make sense of the combination of the coefficients that appear here. let us
introduce the notation

(4) ω0 =

√
g

l
.

This is the angular frequency of the pendulum’s small oscillations about the handing
down positions. Putting the previous equation in terms of ω0 we get

(5) ψ̈ + ω2
0

[
1 +

1

2

(a
l
· ω
ω0

)2
cosψ

]
sinψ = 0.

3. Conclusions

When the pendulum’s bob is lower that its pivot, that is, φ < π/2, the expression
in the square bracket in (5) is greater than 1, which tells us that the effect of fast
oscillations of the base is tantamount to increasing the force of gravity. On the
other hand, when the bob is above the pivot, that is φ > π/2, the expression in
the square bracket is less than one, which is tantamount to decreasing the force of
gravity. In fact, if

1

2

(a
l
· ω
ω0

)2
> 1,

then the expression in the square bracket may even become negative, which amount
to reversing the direction of the gravitational pull! When that happens, the pen-
dulum will find a stable equilibrium in the upright position. Perhaps a better way
of writing the stability condition above is

(6)
a

l
· ω
ω0

>
√

2.

Note that the two terms in the multiplication on the left are (a) the dimensionless
amplitude of the pivots motion, and (b) the dimensionless angular frequency of the
pivot.

4. A double pendulum

This section is incomplete
Acheson [1] establishes a stability criterion for the inverted stability of N pen-

dulums. I will translate his notation to ours.
Consider a chain of N pendulums. Let ωmin and ωmax be the smallest and largest

natural frequencies of small oscillations of that compound pendulum about it stable
(that is, hanging down) position. Now, invert the pendulum and subject the pivot
to vertical displacements as in (1). It is shown that the inverted position will be
stable if

(7)

√
2g

ωωmin
< a <

0.450g

ω2
max

(assuming ω � ωmax).

4.1. The case N = 1. In the case of a simple pendulum, i.e., N = 1, we have
ωmin = ωmax =

√
g/l = ω0. Therefore (7) takes the form

√
2g

ω
√
g/l

< a <
0.450g

g/l
,

which simplifies to √
2 <

a

l
· ω
ω0

< 0.450
ω

ω0
,
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where ω0 is defined in (4). This is a tightened version of the stability criterion (6).

4.2. The case N = 2. Consider a double pendulum consisting of masses m1 and
m2 and equal link lengths of l each. Assume m1 is hung from the pivot and m2

hangs from m1. According to [1], the natural frequencies are (I haven’t checked
these,)

ωmin =

√
g/l

1 +
√
m
, ωmax =

√
g/l

1−
√
m
,

where m = m2/(m1 +m2). Then the general stability criterion reduces to

√
2

√
1 +
√
m <

a

l
· ω
ω0

< 0.450

√
1−
√
m
ω

ω0
,

where ω0 =
√
g/l, as before.
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