
 

Chaos, Solitons and Fractals 98 (2017) 189–198 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

On Hopf bifurcation in fractional dynamical systems 

Amey S. Deshpande 

a , Varsha Daftardar-Gejji a , ∗, Yogita V. Sukale 

a , b 

a Department of Mathematics, Savitribai Phule Pune University, Pune, 411007, India 
b Department of Mathematics, College of Engineering Pune, Pune, 411005, India 

a r t i c l e i n f o 

Article history: 

Received 21 November 2016 

Revised 7 February 2017 

Accepted 15 March 2017 

Keywords: 

Fractional dynamics 

Caputo derivative 

Hopf bifurcation 

Chaos 

a b s t r a c t 

Fractional order dynamical systems admit chaotic solutions and the chaos disappears when the fractional 

order is reduced below a threshold value [1]. Thus the order of the dynamical system acts as a chaos 

controlling parameter. Hence it is important to study the fractional order dynamical systems and chaos. 

Study of fractional order dynamical systems is still in its infancy and many aspects are yet to be explored. 

In pursuance to this in the present paper we prove the existence of fractional Hopf bifurcation in case 

of fractional version of a chaotic system introduced by Bhalekar and Daftardar-Gejji [2]. We numerically 

explore the ( A, B, α) parameter space and identify the regions in which the system is chaotic. Further 

we find (global) threshold value of fractional order α below which the chaos in the system disappears 

regardless of values of system parameters A and B . 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Fractional order dynamical systems are gaining popularity due

o their widespread applications [3] . The study of chaotic dynam-

cal systems of fractional order was initiated by Grigorenko and

rigorenko [1] wherein fractional ordered Lorenz system was stud-

ed. It was shown that the order of the derivative acts as a chaos

ontrolling parameter and below a threshold value of α, chaos dis-

ppears. These simulations were done by keeping rest of the sys-

em parameters fixed. Since then there has been increasing interest

n this topic and a large number of contributions have appeared in

he literature which deal with fractional versions of various chaotic

ystems including Chen System [4] , Rössler system [5] , Liu system

6] , financial system [7] and so on [3] . 

In spite of the extensive numerical work, our understanding of

ractional systems is not complete and very few analytical results

ave been obtained. The first important result obtained regarding

tability analysis of fractional systems is due to Matignon [8] . Some

f the important results regarding stability of fractional systems

ave been summarized by Li and Zhang [9] . 

The system introduced by Bhalekar and Daftardar-Gejji (BG sys-

em) has been shown to be chaotic for certain values of parame-

ers [2] . Further the forming mechanism of this system is discussed

y Bhalekar [10] . The synchronization and anti-synchronization of

halekar – Gejji system and Liu system is done by Singh et al. [11] .
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he Hopf bifurcation in integer order Bhalekar – Gejji system has

een explored by Aqeel and Ahmad [12] . In the present paper we

rove existence of Hopf bifurcation in fractional version of BG sys-

em and explore the parameter space numerically. 

The paper is organized as follows. Section 2 comprises of pre-

iminaries and notations. Section 3 deals with fractional Hopf bifur-

ation and proves its existence for fractional BG system. Sections 4,

 and Section 6 contain numerical explorations for various system

arameters. Conclusions are summarized in Section 7 . 

. Preliminaries 

In this section, we introduce notations, definitions and prelim-

naries pertaining to fractional calculus and stability of fractional

ynamical systems [1,9,13,14] . N r ( a ) denotes the neighborhood of

oint a ∈ R 

n having radius r > 0. ‖ . ‖ denotes standard Euclidean

orm on R 

n . 

efinition 1 [15] . The fractional integral of order α > 0 of a real

alued function f is defined as 

 

α f (t) = 

1 

�(α) 

∫ t 

0 

f (τ ) 

(t − τ ) 1 −α
dτ. 

efinition 2 [15] . Caputo fractional derivative of order α > 0 of a

eal valued function f is defined as 

 

α f (t) = I m −αD 

m f (t) = 

1 

�(m − α) 

∫ t 

0 

(t − τ ) m −α−1 f (m ) (τ ) dτ, 

 − 1 < α < m, 

= f (m ) (t) , α = m, m ∈ N . 
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 We assume 0 < α ≤ 1 throughout the paper. 

Consider the fractional order autonomous system with bifurca-

tion parameter μ ∈ R 

m 

D 

αx (t) = f μ(x ) , x (0) = x 0 ∈ R 

n . (1)

Definition 3 [9] . A point e μ ∈ R 

n is called as an equilibrium point

of (1) if f μ(e μ) = 0 . 

Definition 4 [9] . The system (1) is called as locally stable if for

every ε > 0, ∃ δ > 0 such that x 0 ∈ N δ (e μ) ⇒ ‖ x μ(t) − x μ(e μ) ‖ <
ε for t > 0. 

Definition 5 [9] . The system (1) is called as (locally) asymptoti-

cally stable if for x μ( t ) as above, ‖ x μ(t) − x μ(e μ) ‖ → 0 as t → ∞ . 

A system is unstable if it is not stable. 

The linearization of (1) around the equilibrium point e μ is given

as 

D 

αx ( t ) = Jx ( t ) , x ( 0 ) = x 0 , (2)

where [ J] i, j = 

∂ f i μ
∂x j 

(e μ) , 1 ≤ i, j ≤ n . Clearly eigenvalues λ of J de-

pend on the bifurcation parameter. To simplify the notation we

generally drop the suffix μ for λ unless it needs to be emphasized.

Definition 6 [9] . The linearized system (2) is called as (locally) lin-

early stable if for each eigenvalue λ of J , | arg(λ) | > 

πα
2 . 

The system (2) is said to be linearly unstable if | arg(λ) | < 

πα
2 ,

for at least one eigenvalue λ of J . The equilibrium point e μ is

defined as non-hyperbolic equilibrium point if | arg(λ) | = 

πα
2 , for

some eigenvalue λ of J . 

This stability criteria is due to Matignon [8] , which coincides

with the concept of local stability for fractional systems (1) [16] . 

Definition 7. Given that μ = μ0 fixed, threshold value α∗
μ0 

for the

system (1) is defined as 

α∗
μ0 

= inf 
αc 

{ for α > αc , system (1) is chaotic } . (3)

Clearly for α < α∗
μ0 

chaos in the system D 

αx (t) = f μ0 
(x ) disap-

pears. 

In the next section we highlight system parameter dependence

of this definition. Further we propose a definition of global thresh-

old value for parameter μ. 

3. Analysis of fractional BG system 

The system is said to undergo a Hopf bifurcation when an equi-

librium point switches the stability along-with creation or destruc-

tion of certain periodic orbits [13] . For the integer order system,

this is known to occur when equilibrium has pair of eigenvalues

that cross the imaginary axis at non-zero speed. 

Due to the changed stability criteria for fractional systems [8] ,

it is quite natural to frame the existence criteria for the fractional

Hopf bifurcation as follows. 

Existence criteria for Fractional Hopf Bifurcation. Consider the

system of fractional differential equations given by Eq. (1) together

with bifurcation parameter μ ∈ R and α ∈ (0, 1]. Let e μ be the

equilibrium point of (1) and (2) be its linearization around e μ. 

Suppose n × n matrix A has λ1 ( μ), λ2 ( μ),…, λn ( μ) as its eigen-

values such that at least one pair of eigenvalues say λ1 ( μ), λ2 ( μ)

is complex conjugate. 

We say that (1) undergoes fractional Hopf bifurcation, if ∃
a critical value μ = μh such that the following conditions are

satisfied. 
1. λ1 (μh ) and λ2 (μh ) satis f y | arg (λ j (μh )) | = 

πα
2 ( j = 1 , 2) , 

2. | arg (λi (μh )) | 
 = 

πα
2 , (i = 3 , 4 , · · · , n ) , 

3. d 
dμ

| arg (λ j (μ)) | | μ= μh 

 = 0 , ( j = 1 , 2) . 

First and second conditions are sometimes called as singularity

onditions while the third is transversality condition. 

Daftardar-Gejji and Bhalekar introduced a new dynamical sys-

em referred to as Bhalekar–Gejji (BG) system. This system exhibits

haos for certain parameter values [12] . In the present paper we

nvestigate the fractional version of the system i.e. 

 

αx (t) = ωx (t) − y 2 (t) , (4)

 

αy (t) = μ(z(t) − y (t)) , (5)

 

αz(t) = Ay (t) − Bz(t) + x (t ) y (t ) , (6)

here 0 < α ≤ 1 and ω, μ, A , B are parameters. Standard values

or which the system exhibits chaos are ω = −2 . 667 , μ = 10 , A =
7 . 3 , B = 1 . μ is generally taken as positive while ω is a negative

eal number. 

Consider for further analysis ω < 0 and μ > 0. Objective of this

aper is to show that Bhalekar–Gejji system satisfies the above cri-

eria and hence the route taken by system to chaos is of fractional

opf bifurcation. Further we extensively analyze the effect of varia-

ion of parameter in A − B plane on the system. For fractional sys-

ems, fractional order α also acts as a bifurcation parameter. We

tudy effect of variation of α over the system as well. As a result

e identify the exact region in A − B plane for which the system is

table and chaotic. 

For B − A > 0 , system has only one equilibrium point i.e. P 1 (0,

, 0). At B = A system undergoes supercritical pitchfork bifur-

ation , with origin turning into index 1 saddle point with for-

ation of two new symmetrically opposite equilibrium points

 2 , P 3 . For B − A ≤ 0 , P 2 (B − A , 
√ 

ω (B − A ) , 
√ 

ω (B − A ) ) and P 3 (B −
 , −

√ 

ω (B − A ) , −
√ 

ω (B − A ) ) . 

The Jacobian matrix of (4) is given as 

 = 

( 

ω −2 y 0 

0 −μ μ
y A + x −B 

) 

. (7)

round origin J| P 1 the eigenvalues are given as 1 
2 [ −B − μ ±

 

(B − μ) 2 + 4 Aμ] and ω. Since ω < 0, stability analysis as given

bove is easy to verify. 

For P 2 and P 3 , eigenvalues are roots of the same characteristic

olynomial. Let f ( λ) denote the characteristic polynomial of P 2 and

 3 . Then 

f (λ) = λ3 + (B + μ − ω) λ2 − ω(B + μ) λ + 2 μω(B − A ) (8)

nd f (λ) = 0 is the corresponding characteristic equation. Frac-

ional Hopf bifurcation will occur when complex roots of f ( λ) will

ross into the cone | arg(λ) | < 

πα
2 . Set A = A h , the Hopf critical

alue, in this case λ = re iθ where θ = ±πα
2 will satisfy f (λ) = 0 .

hus we get 

 

3 e i 3 θ + (B + μ − ω) r 2 e 2 iθ − ω(B + μ) re iθ + 2 μω(B − A h ) = 0 

 

3 ( cos (3 θ ) + i sin (3 θ )) + (B + μ − ω) r 2 ( cos (2 θ ) + i sin (2 θ )) 

−ω(B + μ) r( cos (θ ) + i sin (θ )) + 2 μω(B − A h ) = 0 . (9)

quating real and imaginary parts in (9) we get 

os (3 θ ) r 3 + (B + μ − ω) cos (2 θ ) r 2 

−ω(B + μ) cos (θ ) r + 2 μω(B − A h ) = 0 , (10)

in (3 θ ) r 3 + (B + μ − ω) sin (2 θ ) r 2 − ω(B + μ) sin (θ ) r = 0 . (11)
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Fig. 1. Curves showing Hopf critical values for α = 1 , 0 . 92 , 0 . 89 , 0 . 86 Fig. (1 a) and for α = 0 . 10 , 0 . 30 , 0 . 40 , 0 . 50 Fig. (1 b) while the line B − A = 0 shows the points where 

pitchfork bifurcation occurs. Point P is the point (27.3, 1) and line B = −10 forms the boundary of the chaotic region. 
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s we are interested in non-zero solutions, dividing (11) by r we

et 

in (3 θ ) r 2 + (B + μ − ω) sin (2 θ ) r − ω(B + μ) sin (θ ) = 0 . (12)

olving (12) for r we get 

 1 , 2 = 

−(B + μ − ω) sin (2 θ ) ±
√ 

�

2 sin (3 θ ) 
, (13) 

here � = (B + μ − ω) 2 sin 

2 (2 θ ) + 4 sin (θ ) sin (3 θ ) ω(B + μ) . 

In order to analyze the (13) further, we make the following two

ases. 

Case(a): Let α > 2/3 and B + μ > 0 . Then | 3 θ | = | ± 3 απ
2 | > π .

hus sin (3 θ ) and sin ( θ ) will have opposite signs. Similarly sin (3 θ )

nd sin (2 θ ) will have opposite signs. Hence sin (3 θ )sin ( θ ) < 0 and

(B + μ) < 0 ( ω < 0). Hence 4 sin (θ ) sin (3 θ ) ω(B + μ) > 0 which

nsures that � > 0. 

Case(b): Let α < 2/3 and B + μ < 0 . Then | 3 θ | = | ± 3 απ
2 | <

. Thus sin (3 θ ), sin ( θ ) and sin (2 θ ) will have same signs. So

in (3 θ )sin ( θ ) > 0 and ω(B + μ) > 0 ( ω < 0). Hence 4 sin (θ )

in (3 θ ) ω(B + μ) > 0 which will ensure � > 0. 

In view of (12) , in both cases (a) and (b), we get 

 1 . r 2 = 

−ω(B + μ) sin (θ ) 

sin (3 θ ) 
< 0 . (14) 

q. (14) implies that one of r 1 , r 2 must be positive. Thus under

hese conditions we are assured of one real positive root for (12) .

orresponding roots of (8) are given as 

1 = r 1 , 2 e 
i πα

2 , λ2 = r 1 , 2 e 
−i πα

2 . (15) 

After substituting (13) in (12) and solving for A h we get 

 μωA h = 

1 

[16 Bμω − 4(B + μ) ω csc (3 θ ) cos (θ ) 

8 
(−(B + μ − ω) sin (2 θ ) ±
√ 

�) + 2(B + μ − ω) 

cos (2 θ ) csc 2 (3 θ )(−(B + μ − ω) sin (2 θ ) ±
√ 

�) 2 

+ cot (3 θ ) csc 2 (3 θ )(−(B + μ − ω) sin (2 θ ) ±
√ 

�) 3 ] . (16) 

q. (16) represents Hopf Critical Curve(HCC) in A − B parameter

pace. For given value of α, points on these curves are exact points

t which the system undergoes Hopf bifurcation. In case of integer

rder derivative, i.e. α = 1 , θ = ±π
2 Eq. (16) simplifies to 

 h = 

(B + μ − ω)(B + μ) + 2 μB 

2 μ
. (17) 

heorem 1 (Existence of fractional Hopf bifurcation) . Let μ > 0,

 < 0, and either B + μ > 0 , α > 

2 
3 or B + μ < 0 , α < 

2 
3 , then

he fractional BG system around equilibrium points P 2 and P 3 has

ne real eigenvalue say λ3 ( A ) and two complex conjugate eigenval-

es λ1 ( A ), λ2 ( A ) . Further there exists a Hopf critical value A = A h such

hat 

(i) λ1 ( A h ) and λ2 ( A h ) satisfy | arg(λ(A )) | = 

πα
2 

(ii) λ3 ( A h ) 
 = 0 

(iii) d 
dA 

| arg (λ(A )) | | A = A h 
 = 0 where λ( A ) refers to the complex

eigenvalues. 

roof. Existence of A h such that | arg (λ1 (A h )) | = 

πα
2 and

 arg (λ2 (A h )) | = 

πα
2 follows from (15) and (16) . 

For proving (ii), we assume λ3 (A h ) = 0 . Then in view of (8) ,

 μω(B − A h ) = 0 . As μ, ω 
 = 0, B = A h . This is only single point in

 − B plane where Hopf critical curves meet B = A line. This point

ies on line B = −μ and by our assumption B + μ 
 = 0 which is a

ontradiction. Hence λ ( A ) 
 = 0. 
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(a) Bifurcation diagram for the parameter A

(b) Maximum Lyapunov Characteristic Exponent (LCE) versus A plot.

Fig. 2. Bifurcation diagram and maximum LCE plot for parameter A with initial conditions as (0.1, 0.1, 0.1) and (−0 . 1 , −0 . 1 , −0 . 1) for α = 1 . 
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For proving (iii), we differentiate (8) with respect to A and ob-

tain [
3 λ2 + 2 λ(B + μ − ω) − ω(B + μ) 

]dλ

dA 

= 2 μω. (18)

Thus, 

dλ

dA 

= 

2 μω 

3 λ2 + 2(B + μ − ω) λ − ω(B + μ) 
. (19)

Then (15) implies 

dλ

dA 

∣∣∣
A = A h 

= 

2 μω 

−ω(B + μ) + 2(B + μ − ω) r 1 , 2 e iθ + 3 r 2 
1 , 2 

e i 2 θ
(20)

= 

2 μω(u − it) 

u 

2 + t 2 
, 

where u = −ω(B + μ) + 2(B + μ − ω) r 1 , 2 cos (θ ) + 3 r 2 1 , 2 cos (2 θ )

and t = 2(B + μ − ω) r 1 , 2 sin (θ ) + 3 r 2 
1 , 2 

sin (2 θ ) . Let λ(A ) = p + iq,
hen arg (λ(A )) = arctan 

(
q 
p 

)
. By differentiating with respect to A ,

e get 

d 

dA 

arg (λ(A )) = 

pq ′ − qp ′ 
p 2 + q 2 

, (21)

= 

1 

| λ(A ) | 2 W (p, q ) , 

here W (p, q ) = | p q 
p ′ q ′ | . Thus 

d 

dA 

arg (λ(A )) 

∣∣∣
A = A h 

= 

1 

| λ(A h ) | 2 
W (p, q )(A h ) . (22)

s | λ( A )| < ∞ , it suffices to prove that W ( p , q )( A ) 
 = 0. 
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(a) A = 1.0
(b) A = 8.0 (c) A = 8.3

(d) A = 8.5 (e) A = 8.6 (f) A = 9.4

(g) A = 13.0 (h) A = 18.3 (i) A = 27.3

Fig. 3. Phase portraits of BG system with α = 1 and initial conditions (0.1, 0.1, 0.1) and (−0 . 1 , −0 . 1 , −0 . 1) for certain values of A . 
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Suppose W (p, q )(A h ) = 0 . From (15) we have p(A h ) =
 1 , 2 cos (θ ) and q (A h ) = r 1 , 2 sin (θ ) . Also from (20) we have 

p ′ (A h ) = 

2 μωu 

u 

2 + t 2 
, q ′ (A h ) = 

2 μωt 

u 

2 + t 2 
. (23) 

n view of this 

 (p, q )(A h ) = 

∣∣∣∣r 1 , 2 cos (θ ) r 1 , 2 sin (θ ) 
2 μωu 
u 2 + t 2 

2 μωt 
u 2 + t 2 

∣∣∣∣, 
= 

2 μω 

u 

2 + t 2 
[ −r 1 , 2 cos (θ ) t − r 1 , 2 sin (θ ) u ] . (24) 

s W (p, q )(A h ) = 0 , using (11) we get 

r 1 , 2 cos (θ ) t − r 1 , 2 sin (θ ) u = 0 . 

his implies 

3 r 3 1 , 2 [ sin (2 θ ) cos (θ ) + cos (2 θ ) sin (θ )] − 2 r 2 1 , 2 (B + μ − ω) 

× sin (2 θ ) + ω(B + μ) r 1 , 2 sin (θ ) = 0 . 

nd hence [
r 3 1 , 2 sin (3 θ ) + r 2 1 , 2 (B + μ − ω) sin (2 θ ) − ω(B + μ) r 1 , 2 sin (θ ) 

]
2 r 3 1 , 2 sin (3 θ ) − r 2 1 , 2 (B + μ − ω) sin (2 θ ) = 0 . 
his further simplifies as 

r 2 1 , 2 [ 2 r 1 , 2 sin (3 θ ) + (B + μ − ω) sin (2 θ ) ] = 0 . (25) 

s r 1, 2 
 = 0 and sin (3 θ ) 
 = 0 by rearranging (25) we get 

 1 , 2 = 

−(B + μ − ω) sin (2 θ ) 

2 sin (3 θ ) 
. (26) 

omparing (13) and (26) we get � = 0 . This is a contradiction to

he hypothesis � > 0. Hence the result. �

Consider case(a): Let ω = −2 . 667 , μ = 10 fixed and α >

 / 3 , (B + μ) > 0 . We plot the curves (16) in A − B plane for α =
 , 0 . 92 , 0 . 89 , 0 . 86 (cf. Fig. (1 a)). All the curves are parabolic in

ature and are tangential to line B = A . Line B = −μ forms the

ower boundary of the region due to the restriction B + μ > 0 . We

bserve that as α decreases, the slope of parabola also decreases. 

Some remarks for the case(a) are in order: 

emark 1. For B − A > 0 , only single equilibrium point exists and

he system is stable. As we increase the value of the parameter A ,

t the line B = A, the system undergoes a pitchfork bifurcation. As

er the value of α, fractional Hopf bifurcation will take place when

arameter value crosses the corresponding HCC. 
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(a) Bifurcation diagram for the parameter A

(b) Maximum Lyapunov Characteristic Exponent (LCE) versus A plot.

Fig. 4. Bifurcation diagram and maximum LCE plot for parameter A with initial conditions as (0.1, 0.1, 0.1) and (−0 . 1 , −0 . 1 , −0 . 1) and α = 0 . 89 . 
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Remark 2. In case(a), the nature of the Hopf bifurcation is sub-

critical. This has been verified through numerical explorations

in Sections 4 and 5 for α = 1 and α = 0 . 89 respectively. Due

to subcritical Hopf bifurcation, system soon turns chaotic be-

yond HCC. Thus BG system shows chaotic behavior when param-

eter value ( A, B ) lies inside region between the line B = −μ and

HCC. 

Remark 3. For α = 0 . 80 , the point P (27.3, 1) lies to the exterior

of the corresponding HCC and hence the system becomes stable

at this threshold value, while for another point say Q (40, 1) chaos

would still be present for the same α. Thus we emphasize that

for fractional systems, concept of threshold value is dependent on

other system parameter values. 
Case(b): Let ω = −2 . 667 , μ = 10 and α < 2 / 3 , (B + μ) < 0 .

opf Critical Curves (HCC) are plotted in A − B plane for α =
 . 10 , 0 . 30 , 0 . 40 , 0 . 50 (cf. Fig. (1 b)). 

Some remarks are in order for the case(b): 

emark 4. For B − A > 0 , only single equilibrium point exists and

he system is stable. As we increase parameter A , at line B = A, the

ystem undergoes a pitchfork bifurcation. According to the value of

, fractional Hopf bifurcation occurs when parameter value crosses

he corresponding HCC. 

emark 5. Nature of the Hopf bifurcation is supercritical. This has

een verified through numerical explorations in Section 6 for α =
 . 65 . Line B = −μ forms an upper boundary for this region. System

oes not show chaos for any parameter values in this region. 
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(a) A = 8.6 (b) A = 16.0 (c) A = 19.5

(d) A = 23.8 (e) A = 24.3 (f) A = 25.3

(g) A = 27.1 (h) A = 28.7 (i) A = 29.6

Fig. 5. Phase portraits of BG system with α = 0 . 89 and initial conditions (0.1, 0.1, 0.1) and (−0 . 1 , −0 . 1 , −0 . 1) for prominent values of A . 
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We define the global threshold value over (one or more) system

arameters as follows. 

efinition 8. We define global threshold value over parameter μ,

(α∗
μ) , of fractional system (1) as 

∗
μ = inf 

αc 

{ for α > αc , there exists μ = μ0 , 

such that system (1) is chaotic } . (27) 

Thus for any α < α∗
μ, the fractional system will be stable re-

ardless of the parameter value μ. 

For fractional BG system with μ = 10 , ω = −2 . 667 fixed, global

hreshold value over parameters A and B is α∗
(A,B, 10 , −2 . 667) 

=
 / 3 . 

In further sections we verify the results numerically. 

There are various numerical/ analytical methods for solving

onlinear fractional differential equations such as Fractional Adams

ethod (FAM) [17] , New Predictor Corrector Method (NPCM)

18] , Adomian Decomposition Method (ADM) [19] , New Iterative

ethod (NIM) [20] , Frequency Domain Method and so on. Among

hese methods ADM or NIM give analytical solutions in the neigh-

orhood of initial conditions. Hence these methods have limita-

ions while finding long time behavior of solutions. It has been

ointed out that frequency domain method is not always reliable

or detection of chaos in fractional systems [21] . Hence for simula-

ions pertaining to dynamical systems wherein long time behavior

f the trajectories is studied, methods such as FAM or NPCM are
ore suitable. Hence while performing the numerical computa-

ions in the present article, we have used Fractional Adams Method

FAM) which is extensively used in the literature [17] along with

athematica 10.0 software. 

. Numerical explorations for α = 1 

For B = 1 , μ = 10 and ω = −2 . 667 , the parameter A is varied in

he interval [ −5 , 30] in steps of 0.1 and the corresponding bifur-

ation diagram, maximum LCE plot and phase diagrams are stud-

ed for various values of A . For all the plots we use two sets of

nitial conditions i.e. (x 0 , y 0 , z 0 ) = (0 . 1 , 0 . 1 , 0 . 1) and (x 0 , y 0 , z 0 ) =
(−0 . 1 , −0 . 1 , −0 . 1) . 

It is clear from Fig. (2 ) that the system becomes chaotic be-

ond the critical value A h = 8 . 5 . For B − A = 0 , i.e. for A < 1, origin

 1 , is the only equilibrium point of the system which is stable. As

e increase A , at A = 1 , system undergoes supercritical pitchfork

ifurcation. Two new equilibrium points P 2 and P 3 start separat-

ng from the origin on y = z plane, while at the same time ori-

in loses its stability and turns into an index 1 saddle (cf. Fig.

3 a)). These new equilibrium points are stable attractors upto

 h = 8 . 5 (cf Fig. (3 c)). At A h = 8 . 5 they undergo subcritical Hopf

ifurcation. Due to this both P 2 and P 3 lose stability and turn into

ndex-2 saddle points, and start repelling the trajectories. This in-

ermixing of trajectories is visible in Fig. (3 e) and results into

ormation of chaotic attractor (cf. Fig. (3 f) and (3 g)). Fig. (3 h) and

3 i) show different stages in chaotic behavior. 
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(a) Bifurcation diagram for the parameter A

(b) Maximum Lyapunov Characteristic Exponent (LCE) versus A plot.

Fig. 6. Bifurcation diagram, maximum LCE plot for parameter A with initial conditions as (0.1, 0.1, 0.1) and (−0 . 1 , −0 . 1 , −0 . 1) and α = 0 . 65 and α = 0 . 65 . 
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5. Numerical explorations for α = 0 . 89 

For μ = 10 , ω = −2 . 667 and B = 1 , parameter A is varied in the

interval [ −5 , 30] . The corresponding bifurcation diagram and max-

imum LCE plots are presented in Fig. (4 ). It should be noted that

Hopf critical value for the system is A h = 26 . 6 , whereas Hopf criti-

cal value for the corresponding integer order BG system is A h = 8 . 5 .

It is noteworthy that for A ∈ [8.53, 26.6] the integer order sys-

tem shows chaotic behavior while fractional order system with

α = 0 . 89 still remains stable. The chaos ensues in α = 0 . 89 system

for A > A h (compare Fig. (2 ) and Fig. (4 )). 

In Fig. (5 ) phase diagrams for various values of A are drawn. 
. Numerical explorations for α = 0 . 65 

For μ = 10 , ω = −2 . 667 and B = −11 , parameter A is varied in

he interval [ −13 , 19] . Corresponding bifurcation diagram and max-

mum LCE has been plotted in Fig. (6 ). It should be noted that for

 = −11 , the system undergoes supercritical pitchfork bifurcation,

enerating two new stable equilibrium points. At A h = −10 . 88 , the

ystem undergoes supercritical Hopf bifurcation with formation of

ttracting limit cycles. (c.f. Fig. (7 )). It is clear from Fig. (6 ) that sys-

em remains stable for the entire interval [ −13 , 19] . Fig. (8 )shows

hase diagrams for various values of A ∈ [ −13 , 19] . 
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Fig. 7. Plot of y ( t ) for A = −10 . 8 . and α = 0 . 65 . 
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Fig. 8. Phase portraits of BG system for various values of A ( α = 0 . 65 and initial conditions (0.1, 0.1, 0.1) and (−0 . 1 , −0 . 1 , −0 . 1) ). 
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. Conclusions 

Fractional Hopf bifurcation has been studied in case of frac-

ional Bhalekar–Gejji system and the corresponding existence

urves i.e. Hopf critical curves (HCC) have been plotted for various

alues of α, 0 < α ≤ 1 in A − B parameter space. 

Exact regions in ( A, B, α) parameter space have been identified

or which the system is chaotic. Further global threshold value of
he fractional order α over A − B parameter space is found to be

/3. 
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