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This study examines the effects of nanoparticles for the blood flow of Jeffrey fluid in tapered artery with stenosis.
The slip effects along with permeable nature of the arterial wall in the presence of convection are also taken into
account.Mathematicalmodeling is based upon continuity,momentumand energy equations. This analysis is car-
ried out under the constraints of mild stenosis. Closed form solutions for velocity and concentration are obtained.
Numerical integration is used to analyze the novel features of flow impedance, pressure rise and stream function.
Effects of pertinent parameters such as Brownian diffusion coefficient, thermospheric diffusion parameter,
Grashof number and material constant of Jeffrey fluid on velocity, temperature and concentration are discussed
through graphs.
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1. Introduction

Blood is driven through the body by a complex network of veins and
arteries. It is constantly inmotion as the heart pumps blood through ar-
teries to the different organs and cells of the body. It turns back to heart
by veins. The veins are squeezedwhenmuscles in the body contract and
push the blood back to the heart. Stenosis is an abnormal narrowing in a
blood vessel or other tabular organ or structure. It is also sometimes
called a stricture. Most of the times these stenosis cause death when
the degree of narrowing becomes significant enough to impede the
flow of blood. Due to stenosis in the human artery, the flow of blood is
disturbed and resistance to flow becomes higher than that of normal
one. The main cause of formation of such stenosis is not yet known
clearly but their consequences can be recognized easily.

Complete understanding of flow of blood through arteries of various
geometries demands the basics concepts of mechanics of fluid. Some of
the basic studies dealing different models of Newtonian and non-
Newtonian fluids are given in references [1–6]. Several investigators
have highlighted different aspects of blood flow analysis in arteries.
Noreen [7] has examined the heat and mass transfer effects on Careau
fluid model for blood flow through tapered arteries with stenosis.
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Mekheimer and El Kot [8] have studied the mathematical modeling of
unsteady flow of fluid through anisotropically tapered elastic arteries
with time variant overlapping stenosis. They analytically solved their
mathematically model for mild stenosis case. Riahi et al. [9] have ana-
lyzed the problem of blood flow in an artery in the presence of an over-
lapping stenosis. A mathematical study on three layered oscillatory
blood flow through stenosed arteries has been investigated by Tripathi
[10]. Mishra et al. [11] have studied the blood flow through a composite
stenosis in an artery with permeable wall.

It is well accepted now that slip effects may appear for two types of
fluids (i.e., rare field gases [12] and fluids having much more elastic
character). In thesefluids, slippage appears as a result of large tangential
traction. It is noticed through experiment observations [13–19] that the
occurrence of slippage is possible in the non-Newtonian fluids (i.e. poly-
mer solution and molten polymer). In addition, a clear layer is some-
times found next to the wall when flow of dilute suspension of
particles is examined. In experimental physiology such a layer is ob-
served when blood flow through capillary vessels is studied [20]. The
fluids that exhibit slip effect have many applications, for instance, the
polishing of artificial heart valves and internal cavities [21]. Moreover,
the slip phenomenon is supported by the molecular theories [22–25].

In recent years, some interest has been promoted to the study of
nanofluids. Nanotechnology has beenwidely used in industry sincema-
terials with sizes of nanometers possess unique physical and chemical
properties. Nano-scale particle added fluids are called as nanofluid,
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Fig. 1. Geometry of the stenosed tapered artery for different tapering angle.

Nomenclature

u ,v velocity components
μ viscosity
p pressure
ρ density
ξ tapering parameter
δ height of the stenosis
C1 concentration
T1 temperature
R0 radius of non-tapered artery
d0 radius of tapered artery
DB Brownian diffusion coefficient
DT thermospheric diffusion coefficient
Nt thermophoresis parameter
Nb Brownian motion parameter
Gr Grashof number
L finite length of tube
c volumetric volume expansion coefficient
l linear operator
q embedding parameter

Fig. 2. Variation in impedance λ against
ffiffiffiffiffiffi
Da

p
for α=0.1,0.3,0.5.
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which is firstly introduced by Choi [26]. Choi et al. [27] showed that the
addition of a small amount less than 1% by volume of nanoparticles to
convectional heat transfer liquids increased the thermal conductivity
of the fluid up to approximately two times. Khanafer et al. [28] seem
to be the first who have examined heat transfer performance of
nanofluids inside an enclosure taken into account the solid particle dis-
persion. After these studies, nanotechnology is considered by many to
be one of the significant forces that drive the next major industrial rev-
olution in the entire world. Currently, convective heat transfer in
nanofluids is a topic of major contemporary interest in biological sci-
ences. Some numerical and experimental studies on nanofluids include
thermal conductivity are listed in [29–33].

In short, no such analysis is available in the literature which can de-
scribe the combined effects of slip, heat convection and nanoparticles
for theflowof Jeffreyfluid in the tapered arterywith stenosis.Motivated
by these facts, the present work has been undertaken for the said pur-
pose. To derive the solutions of nonlinear coupled equations, we have
used one of the most effective methods, homotopy perturbation meth-
od (HPM). This method is not only valid for small (or large) values of
physical parameter but also provides us a simpleway to ensure the con-
vergence of series solutions of a nonlinear problem. Some relevant stud-
ies on the topic can be seen from the list of references [34–37]. The
paper is organized as follows. Section 2 contains the formulation of
the problem. In Section 3 solution of the problem is obtained using
HPM. Results and discussion are given in Section 4. This section devoted
to analyzed, four cases namely, impedance variation, shear stress, vari-
ation in velocity distribution and variation in temperature and concen-
tration distributions. The trapping phenomenon is also presented at the
end. The conclusion is given in Section 5. Finally the physical features of
the major parameters have been illustrated through graphs.

2. Formulation of the problem

Consider an incompressible nanofluid of viscosity μ and density ρ
flowing through a tube having finite length Lwith overlapping stenosis.
Let (r,θ,z) be the coordinates of a material point in the cylindrical polar
coordinate system. Here z− axis is taken along the axis of artery while
r ,θ are along the radial and circumferential direction respectively.
Moreover r=0 is taken as the axis of symmetry of the tube. Heat and
nanoparticle phenomenon are taken into account by giving tempera-
ture T1 and concentration C1 to the wall of the tube. At the centre of
the tube, we consider symmetric conditions for velocity, temperature
and concentration. The geometry of the arterial wall of overlapping ste-
nosis for different tapering angles [38,39] is defined as

R zð Þ ¼ d zð Þ 1−ψ Ln−1
0 z−d0ð Þ− z−d0ð Þn

� �h i
;d0 b z ≤ d0 þ L0;

¼ d zð Þ;otherwise
ð1Þ

with

ψ ¼ δn n
n−1

R0L
n
0 n−1ð Þ ; ð2Þ

d zð Þ ¼ R0 þ ξz; ð3Þ



Fig. 3. Variation in impedance λ against
ffiffiffiffiffiffi
Da

p
for δ=0.05,0.1,0.2.

Fig. 5. Variation in impedance λ against δ for Gr=0.1,1.0,10.
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in which δ denotes the maximum height of the stenosis located at

z ¼ d0 þ L0
nn−1

n
; ð4Þ

where R0 is the radius of non-tapered artery in non-stenotic region. ξ is
the tapering parameter and L0 is the length of stenosis. The constant pa-
rametern(≥2) is responsible to determine the shape of constriction pro-
file referred to as shape parameter for which symmetric stenosis is
found for n=2. The radius d0 of tapered arterial segment in stenotic re-
gion indicates the location of stenosis as shown in Fig. 1.

The equations for unsteady flow of an incompressible nano fluid in
the presence of body force are given by

1
r
∂ rvð Þ
∂r

þ ∂u
∂z

¼ 0; ð5Þ

ρ v
∂v
∂r

þ u
∂v
∂z

� �
¼ −

∂p
∂r

þ 1
r
∂
∂r

rSrrð Þ þ ∂
∂z

Srzð Þ−1
r
Sθθ; ð6Þ

ρ v
∂u
∂r

þ u
∂u
∂z

� �
¼ −

∂p
∂z

þ 1
r
∂
∂r

rSrzð Þ þ ∂
∂z

Szzð Þ þ ρgα1 T−T1ð Þ
þ ρgα1 C−C1ð Þ; ð7Þ

v
∂T
∂r

þ u
∂T
∂z

� �
¼ α1

∂2T
∂r2

þ 1
r
∂T
∂r

þ ∂2T
∂z2

 !

þ τ

DB
∂C
∂r

∂T
∂r

þ ∂C
∂z

∂T
∂z

� �

þDT

T0

∂T
∂r

� �2
þ ∂T

∂z

� �2� �
#
;

2
6664 ð8Þ
Fig. 4. Variation in impedance λ against δ for
ffiffiffiffiffiffi
Da

p ¼ 0:1; 0:2;0:3.
v
∂C
∂r

þ u
∂C
∂z

� �
¼ DB

∂2C
∂r2

þ 1
r
∂C
∂r

þ ∂2C
∂z2

 !
þ DT

T0

∂2T
∂r2

þ 1
r
∂T
∂r

þ ∂2T
∂z2

 !
: ð9Þ

Here τ=(ρc)p/(ρc)f is the ratio between effective heat capacity of
nano particle material and heat capacity of the fluid, c is the volumetric
volume expansion coefficient, u and v are the axial and radial velocities
respectively, p is the pressure C is the nanoparticle phenomena.DB is the
Brownian diffusion coefficient, DT is the thermospheric diffusion coeffi-
cient, the ambient values of T and C as r tends to R are denoted by T1 and
C1 respectively.

Srr ¼ 2μ
1þ λ1

1þ λ2 v
∂
∂r

þ u
∂
∂z

� �� �
∂v
∂r

; ð10Þ

Srz ¼ μ
1þ λ1

1þ λ2 v
∂
∂r

þ u
∂
∂z

� �� �
∂v
∂z

þ ∂u
∂r

� �
; ð11Þ

Szz ¼ 2μ
1þ λ1

1þ λ2 v
∂
∂r

þ u
∂
∂z

� �� �
∂u
∂z

: ð12Þ

Introducing the following non-dimensional variables

r ¼ r
R0

; z ¼ z
L0
; v ¼ L0

δU
v;u ¼ u

U
;R ¼ R

R0
; p ¼ R2

0

UL0μ
p;

T ¼ T1 þ T0−T1ð Þθ;C ¼ C1 þ C0−C1ð Þσ ;Gr ¼ ρgα1R
3
0T1

μ
;

Br ¼ ρgα1R
3
0T1

μ
; Nt ¼ ρcð ÞpDTT0

ρcð Þ fα1
;Nb ¼ ρcð ÞpDTC0

ρcð Þ fα1
;Re ¼ ρUR0

μ

9>>>>>=
>>>>>;

ð13Þ

in which U is the velocity over the section of tube with radius R0. Nt, Nb,
Gr and Br are respectively the thermophoresis parameter, the Brownian
Fig. 6. Variation in impedance λ against δ for n=2,6,11.



Fig. 7. Variation in impedance λ against λ1 for α=0.1,0.3,0.5.

Fig. 9. Variation in stress Srz against radius z for λ1=1,2,3.
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motion parameter, the local temperature Grashof number and the local
nanoparticle Grashof number. Making use of these variables in
Eqs. (5) to (9) and after applying the additional condition ε=R0/L0=
o(1) for the case of mild stenosis (δ∗=δ/R0b b1), the non-
dimensional governing equations after dropping the dashes can bewrit-
ten as

∂v
∂r

þ v
r

� �
δ� þ ∂u

∂z
¼ 0; ð14Þ

∂p
∂r

¼ 0; ð15Þ

∂p
∂z

¼ 1
r
∂
∂r

r
1þ λ1

∂u
∂r

� �� �
þ Grθþ Brσ ; ð16Þ

1
r
∂
∂r

r
∂θ
∂r

� �
þ Nb

∂σ
∂r

∂θ
∂r

þ Nt
∂θ
∂r

� �2

¼ 0; ð17Þ

Nb
∂
∂r

r
∂σ
∂r

� �
þ Nt

∂
∂r

r
∂θ
∂r

� �
¼ 0: ð18Þ

The non-dimensional boundary conditions on velocity for perme-
able wall are

∂u
∂r

¼ 0 at r ¼ 0; ð19Þ

u ¼ uB;
∂u
∂r

¼ αffiffiffiffiffiffi
Da

p uB−up
� �

at r ¼ R zð Þ; ð20Þ
Fig. 8. Variation in stress Srz against radius z for δ=0.1,0.2,0.3.
where uB is the slip velocity to be determined. The non-dimensional
conditions for θ and σ are

∂θ
∂r

¼ 0;
∂σ
∂r

¼ 0; at r ¼ 0; ð21Þ

θ ¼ 0;σ ¼ 0at r ¼ R zð Þ: ð22Þ

Eq. (1) reduces to

R zð Þ ¼ 1þ ξ1zð Þ 1−ψ1 z−d�0
� �

− z−d�0
� �n� �h i

; d�0 b z ≤ d�0 þ 1;

¼ 1þ ξ1zð Þ; otherwise
ð23Þ

where

d�0 ¼ d0
L0

; ξ1¼
ξL0
R0

;ψ1¼
δ�n n

n−1

n−1ð Þ : ð24Þ

3. Solution of the problem

Our interest in this section is to carry out analytical solutions of the
coupled Eqs. (17) and (18) using homotopy perturbation method. For
series solutions up to second order, we expand θ and σ in terms of em-
bedding parameter q as follows:

θ r; zð Þ ¼ θ0 þ qθ1 þ q2θ2 þ… ð25Þ

σ r; zð Þ ¼ σ0 þ qσ1 þ q2σ2 þ…: ð26Þ
Fig. 10. Variation in stress Srz against radius z for n=2,6,11.



Fig. 11. Variation in velocity u against radius r for Bb=0.2,0.4,0.6.

Fig. 13. Variation in velocity u against radius r for Nt=1,2,3.
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Let us construct the homotopy

H q; θð Þ ¼ 1−qð Þ l θð Þ−l θ0ð Þ½ � þ q l θð Þ þ Nb
∂σ
∂r

∂θ
∂r

þ Nt
∂θ
∂r

� �2
" #

; ð27Þ

H q; θð Þ ¼ l θð Þ−l θ0ð Þ þ ql θð Þ þ q Nb
∂σ
∂r

∂θ
∂r

þ Nt
∂θ
∂r

� �2
" #

; ð28Þ

H q;σð Þ ¼ 1−qð Þ l σð Þ−l σ0ð Þ½ � þ q l σð Þ þ Nt

Nb

1
r
∂
∂r

r
∂θ
∂r

� �� �	 

; ð29Þ

H q;σð Þ ¼ l σð Þ−l σ0ð Þ þ ql σ0ð Þ þ q
Nt

Nb

1
r
∂
∂r

r
∂θ
∂r

� �� �	 

; ð30Þ

where q∈[0,1]. For HPM solution we select

θ0 r; zð Þ ¼ r2−R2

4

 !
;σ0 r; zð Þ ¼ −

r2−R2

4

 !
ð31Þ

as the initial approximation of θ andσ respectivelywhich satisfy the fol-
lowing linear operator and corresponding boundary conditions. The so-
lutions for temperature and concentration for q=1, can thus obtained
as

θ r; zð Þ ¼ 1
64

Nb−Ntð Þ r2−R2
� �

−
1
18
Nb r3−R3
� �

þ Nt

36864
N2

b þ N2
t

� �
r4−R4
� �

r6−R6
� �

2
4

3
5;

ð32Þ
Fig. 12. Variation in velocity u against radius r for Nb=2.0,1.0,0.1.
σ r; zð Þ ¼ −
1
4

r2−R2
� � Nt

Nb

þ Nt

Nb

1
18

Nb r3−R3
� �

þ 1
36864

N2
b þ N2

t

� �
r6−R6
� �� �

: ð33Þ

Substituting Eqs. (32) and (33) in Eq. (16), the exact solution for ve-
locity is obtained as

u r; zð Þ ¼

1
530841600nb

−25bNtð r2−R2
� �

4r2
�

82944þ N3
t r

8
� �

þ4R2 −248832þ N3
t r

8
� �

−5N3
t r

6R4−21N3
t r

4R6

−21N3
t r

2R8 þ 123N3
t R

10
�

1þ λ1ð Þ−25GrN
3
bNt�

4r12−9r8R4−16r6R6 þ 144r2R10−123R12
�

1þ λ1ð Þ þ 25N2
b r2−R2
� �

BrN
2
t 4r10
��

þ 4r8R2−5r6R4−21r4R6−21r2R8 þ 123R10
�

þ9216Gr r4
� þ r2 R2−8

� �
−8R2 R2−3

� ���
1þ λ1ð Þ þ Nb 530841600uBð þ 132710400
dp
dz

r2−R2
� �

1þ λ1ð Þ þ N t294912Brð
4r5−25r2R2 þ 21R5
� �

þ 25Gr 4N2
t r

12
�

−9N2
t r

8R4−16r6

576þ N2
t R

6
� �

þ 144r2R4 576þ N2
t R

6
� �

−3R6 24576þ 41N2
t R

6
� ���

1þ λ1ð Þ
��

;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

;

ð34Þ
Fig. 14. Variation in velocity u against radius r for λ1=0.0,1.0,10.



Fig. 15. Variation in velocity u against radius r for α=0.1,0.2,0.3. Fig. 17. Variation in concentration σ against radius r for Nb=1.0,1.2,1.4.
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where

uB ¼ 1
4423680Nbα

� 4423680Nbαup−
ffiffiffiffiffiffi
Da

p
R −2211840Nb

dp
dz

−30720 2GrN
2
b þ 9BrNt

� �� �
R2

�

þ 73728BrNtNbR
3 þ 23040GrNb Nb−Ntð ÞR4

þ35Nt BrNt−GrNbð Þ N2
t −N2

b

� �
R10

!
1þ λ1ð Þ

!
;

ð35Þ

up ¼ −
Da

μ
dp
dz

: ð36Þ

The flux Q can be calculated as

Q ¼ 2
ZR
0

rudr; ð37Þ

Q ¼ −
∂p
∂z

� �
1

F zð Þ : ð38Þ

Impedance λ is calculated as

λ ¼ 1
Q

Z7
0

−
∂p
∂z

� �
dz; ð39Þ

λ ¼
Zd0
0

1
F zð Þ dzþ

Zd0þL0

d0

1
F zð Þ dzþ

ZL
d0þL0

1
F zð Þdz; ð40Þ
Fig. 16. Variation in velocity u against radius r for
ffiffiffiffiffiffi
Da

p ¼ 0:00;0:01;0:02.
λ ¼ L−L0ð Þ 1
F zð Þ=R¼1

þ
Zd0þL0

d0

1
F zð Þdz; ð41Þ

λ
L
¼ 1−

L0
L

� �
1

F zð Þ=R¼1
þ 1

L

Zd0þL0

d0

1
F zð Þ dz; ð42Þ

The impedance per unit length of the artery

λ ¼ 1−
L0
L

� �
1

F zð Þ=R¼1
þ 1

L

Zd0þL0

d0

1
F zð Þ dz: ð43Þ

The nonzero dimensionless shear stress in our problem is given by

Szr ¼ −
R
2
∂p
∂z

; ð44Þ

The expression for wall shear stress can be calculated as

Srz ¼ −
R
2

∂p
∂z

� �
r¼R

: ð45Þ

4. Results and discussion

This section describes the graphical features of pertinent parameters
on the profiles of impedance (λ), shear stress (Srz), velocity (u), concen-
tration (σ) and temperature (θ). The observations are made for con-
verging tapering, non-tapered artery and diverging tapering to see the
effects under different shapes of stenosis. The graphs of impedance
Fig. 18. Variation in concentration σ against radius r for Nt=0.4,0.3,0.2.



Fig. 19. Variation in temperature θ against radius r for Nb=0.1,0.2,0.3.

Fig. 20. Variation in temperature θ against radius r for Nt=3,2,1.
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(λ) are drawn against the Darcy number ð ffiffiffiffiffiffi
Da

p Þ, Jeffrey fluid parameter
(λ1) and stenosis height (δ) for different values of (α), (δ), ð ffiffiffiffiffiffi

Da
p Þ, (Gr)

and (n).Wall shear stress Srz is plotted against axial coordinate z and in-
fluences of (δ), (λ1) and (n) are characterized. The velocity profile u is
examined against radial coordinate r and effects of (Br), (Nb), (λ1), (α), ðffiffiffiffiffiffi
Da

p Þ and (Nt) are discussed. Variation in concentration (σ) is discussed
for various values of (Nb) and (Nt). Influence on temperature profile (θ)
also examined for different values (Nb) and (Nt). The streamlines are
displayed in the end to investigate the flow pattern under the presence
of different parameters to discuss the trapping bolus phenomenon.
4.1. The impedance profile

In Fig. 2, the impedance is plotted for the variation of the slip param-
eter α against the Darcy number

ffiffiffiffiffiffi
Da

p
. It is revealed here that impedance
Fig. 21. Streamlines for α. (a) α=
of theflow is larger in the domain0b
ffiffiffiffiffiffi
Da

p
b0:4as comparedwith the rest

of the regions. It is also seen that impedance has indirect relation with
the variation of slip parameter for three different types of arterial
shapes. The altitude of the impedance profile is getting higher for di-
verging tapering, non-tapered artery and converging tapering, respec-
tively. One can see the impact of δ on the distribution of impedance
against the Darcy number in Fig. 3. From this graph, it is measured
that impedance is increasing with the increase in δ but no much varia-
tion in the impedance is observed in the region 0:8b

ffiffiffiffiffiffi
Da

p
b1:0.Fig. 4 im-

plies the influence of
ffiffiffiffiffiffi
Da

p
on the impedance plotted along the stenosis

height δ. It is concluded here that impedance is very small in the region
0bδb0.1 and a significant variation is observed in the remaining part of
the domain. It is noticed that

ffiffiffiffiffiffi
Da

p
plays an inverse role in the variation of

impedance for diverging tapering, non-tapered artery and converging
tapering accordingly. Effects of Gr on impedance λ are seen in Fig. 5.
The converging lines for different values of Gr assure that in the region
δN0.4, they surely intersect and impedance λ will attain a fixed value
there. In thedomain δb0.4, increasing values ofGr decay the impedance.
Influences of stenosis shape n and slip parameter α on impedance λ are
examined in Figs. 6 and 7. Slip parameter enhances the impedance and a
peak value of impedance is seen for the symmetric stenosis (n=2).

4.2. The shear stress profile

In Fig. 8 the effects of different stenosis height (δ) on the shear stress
distribution is analyzed. It is depicted from this graph that stress is di-
rectly proportional to the stenosis height i.e., if we increase the stenosis
height, the stresswill get the higher amplitude. Fig. 9 corresponds to the
variation of shear stress Srz against the axial direction z under the effects
of λ1. Larger value of λ1 causes in less impedance. Effects of stenosis
shape parameter n is examined in Fig. 10. It is measured that in the re-
gion 0bzb0.6, the stress decreaseswith nwhile in the other part, the in-
verse behavior is described by the stress profile for large values of n.

4.3. The velocity profile

The variation of axial velocity profile u for Br is described in Fig. 11
which indicates that increasing values Br decrease the velocity profile.
The velocity profile u forNb is presented in Fig. 12 plotted against the ra-
dial axis r. It suggests that velocity profile is rising with the increase in
Nb but opposite attitude is reported forNt (see Fig. 13). The larger values
of Jeffrey parameter λ1 decelerate the flow as shown in Fig. 14. The ef-
fects of slip parameter α and Darcy number

ffiffiffiffiffiffi
Da

p
are displayed in

Figs. 15 and 16.

4.4. The concentration and temperature profiles

Effects of Nb and Nt on concentration σ and temperature θ profiles
are shown in Figs. 17 to 20 respectively. It is observed that by increasing
0.1, (b) α=0.3, (a) α=0.5.



Fig. 22. Streamlines for
ffiffiffiffiffiffi
Da

p
: (a)

ffiffiffiffiffiffi
Da

p ¼ 0:4; (b)
ffiffiffiffiffiffi
Da

p ¼ 0:5; (a)
ffiffiffiffiffiffi
Da

p ¼ 0:6.

Fig. 23. Streamlines for δ. (a) δ=0.10, (b) δ=0.20, (a) δ=0.30.
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Nb and decreasingNt, concentration profile decreases. An increment in θ
is observed by decreasing Nb and Nt.
4.5. Trapping phenomena

Fig. 21 shows the streamlines for the slip parameter α. It is seen here
that as we increase the slip parameter, the area of the bolus is expanding
and number of bolus is increased. The variation of Darcy number

ffiffiffiffiffiffi
Da

p
for

the streamlines is displayed in Fig. 22. It is noted that less boluses are ob-
tained with the increase in magnitude of Darcy number but size of the
bolus is increased gradually. Figs. 23 to 24 reveal the same behavior for
δ and inverse behavior of streamlineswith the variation of λ1 as observed
in the previousfigure for Darcy number. It is resulted from Fig. 25 that bo-
luses are decreased in size and their position is shifted frommeanposition
as we disturb stenosis shape from symmetric to a non-symmetric by
assigning n=2,6,11 respectively. Furthermore, Fig. 26 is presented for
Fig. 24. Streamlines for λ1. (a) λ1=
best interest of readers. One can easily observe that how the stenosis
shape vicissitudes for varying values of n which is in accordance with
the physical expectation available in the existing literature.

5. Conclusion

Thepresent study reveals the effects of heat andmass transfer on the
blood flow of Jeffrey fluid through tapered artery with stenosis. The
walls of the artery are taken permeable. The main observations of the
performed analysis are as follows:

• Themaximum impedance λ is offered by the symmetric stenosis n=2.
• Slip parameter enhances the impedance for the symmetric stenosis.
• The slip parameter α and the Darcy number

ffiffiffiffiffiffi
Da

p
have mutually oppo-

site effects on impedance.
• Impedance of the flow is larger in the domain 0 b

ffiffiffiffiffiffi
Da

p
b 0:4 as com-

pared with the rest of regions.
0.10, (b) λ1=0.5, (a) λ1=0.9.



Fig. 25. Streamlines for n. (a) n=02, (b) n=06, (a) n=11.

Fig. 26. Visual representation of stenosis.
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• The altitude of the impedance profile is getting higher for diverging ta-
pering, non-tapered artery and converging tapering, respectively.

• Grashof number Gr and mild stenosis δ have the same effects on
impedance.

• Larger value of λ1 causes in less impedance.
• Larger the stenosis height, greater thewall shear stress Srz is observed.
• Increasing values of Br decrease the velocity profile. It is seen that ve-
locity profile is rising with the increase in Nb but opposite attitude is
reported for Nt.

• The larger values of Jeffrey parameter λ1 decelerate the velocity
profile.

• The velocity exhibits same variation by varying Br and Nbwhereas the
velocity, temperature and nano-concentrations decrease by increas-
ing the thermophoresis parameter when Brownian diffusion coeffi-
cient is fixed and behave in an opposite manner is observed when
one vary Brownian diffusion coefficient keeping thermophoresis pa-
rameter fixed. This is in accordance with the fact that for thermal
boundary the effects of thermophoresis parameter and Brownian dif-
fusion coefficient are different.

• The area of the bolus is expanding and number of bolus is increased
for slip parameterwhereas less boluses are obtainedwith the increase
in magnitude of Darcy number but size of the bolus is increased grad-
ually. Same behavior for δ and inverse behavior of streamlines with
the variation of λ1 is observed for Darcy number. It is noticed that
the boluses are decreased in size and their position is shifted from
mean position for different shape of stenosis.

• The obtained results for the flow of heat transfer characteristics ex-
pose many interesting behaviors that warrant further study on the
non-Newtonian fluid phenomena, particularly the shear-thinning
and shear-thickening phenomena.
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