
1. Problem statement

We want to compute the steady-state oscillations of the equation

(1)
utt + c2uxxxx = f(x) cos Ωt,

u(0, t) = uxx(0, t) = u(L, t) = uxx(L, t) = 0.

2. The homogeneous equation

We first look at the homogeneous equation:

utt + c2uxxxx = 0,

u(0, t) = uxx(0, t) = u(L, t) = uxx(L, t) = 0,

and separate the variables by letting u(x, t) = X(x)T (t). Thus,

X(x)T ′′(t) + c2X ′′′′(x)T (t) = 0,

and therefore

−T
′′(t)

T (t)
= c2

X ′′′′(x)

X(x)
= ω2,

and we arrive at these two ordinary differential equations

T ′′(t) + ω2T (t) = 0, X ′′′′(x) +
(ω
c

)2
X(x) = 0.

For convenience, we define λ =
√

ω
c , whereby the second equation takes the form

X ′′′′ + λ4X = 0. Then we solve for T (t) and X(x):

T (t) = An cosωt+Bn sinωt,

X(x) = c1 sinλx+ c2 cosλx+ c3 sinhλx+ c4 coshλx.

The original PDE’s boundary conditions translate to X(0) = X ′′(0) = X(L) =
X ′′(L) = 0. Considering that

X ′′(x) = λ2
[
c1 sinλx+ c2 cosλx+ c3 sinhλx+ c4 coshλx

]
,

we see that X(0) = X ′′(0) = 0 imply that c2 = c4 = 0, and thus we are left with
X(x) = c1 sinλx+ c3 sinhλx. Applying the boundary conditions X(L) = X ′′(L) =
0 yields

c1 sinλL+ c3 sinhλL = 0,

c1 sinλL− c3 sinhλL = 0.

Subtracting the two equations we get c3 sinhλL = 0. We don’t want λ = 0 since
that gives us the trivial solution only. But if λ 6= 0, we have sinhλL 6= 0, and
therefore c3 = 0. Then either of the two equations above imply that c1 sinλL = 0.

We don’t what c1 = 0 since that gives us the trivial solution only. Therefore
sinλL = 0 which has infinitely many solutions

λn =
nπ

L
, n = 1, 2, . . . .

Referring to the definition λ =
√

ω
c , we denote the corresponding ω values by

ωn = cλ2n.
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The family of function
{

sinλnx
}∞
n=1

is an orthogonal basis for square-integrable

functions on (0, L) under the inner product

(f, g) =

∫ L

0

f(x)g(x) dx.

Therefore, any square-integrable function f(x) may be expressed as

(2) f(x) =

∞∑
n=1

an sinλnx,

where

(3) an =
2

L

∫ L

0

f(x) sinλnx dx.

3. Steady-state oscillations

We return to the original statement of the problem in (1). We expand f(x)
into a sum of eigenfunctions as in (2), where the coefficients an may be computed
through (3). We also expand the solution u(x, t) into a sum of eigenfunctions

u(x, t) =

∞∑
n=1

pn(t) sinλnx,

where the coefficients pn(t) are to be determined. Plug these into the PDE in (1).
We get:

∞∑
n=1

p′′n(t) sinλnx+ c2
∞∑

n=1

λ4npn(t) sinλnx =
( ∞∑
n=1

an sinλnx
)

cos Ωt,

whence

p′′n(t) + c2λ4npn(t) = an cos Ωt.

Recalling the definition of ωn, this takes the form

p′′n(t) + ω2
npn(t) = an cos Ωt.

Look for a particular solution of this ODE in the form p(t) = Kn cos Ωt. Plugging
that form into the ODE we get

−Ω2Kn + ω2
nKn = an,

whence

Kn =
an

ω2
n − Ω2

.

We conclude that the steady-state oscillations of (1) are given by

(4) u(x, t) =

( ∞∑
n=1

an
ω2
n − Ω2

sinλnx

)
cos Ωt.
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4. The special forcing function

The expression (4) gives the steady-state oscillations of the beam in (1) for any
function f(x). In particular if f is given as

f(x) = F0

(
1− x

L

)
,

then from (3) we get

an =
2

L

∫ L

0

f(x) sinλnx dx

=
2F0

L

∫ L

0

(
1− x

L

)
sinλnx dx

=
(2F0

L

)( L
nπ

)
=

2F0

nπ
,

and therefore

u(x, t) =
2F0

π

( ∞∑
n=1

1

n(ω2
n − Ω2)

sinλnx

)
cos Ωt.


