1. PROBLEM STATEMENT
We want to compute the steady-state oscillations of the equation

Uy + C2U;cxa:a: = f(x) cos t,

(1) w(0,t) = uz2(0,1) = u(L,t) = uze (L, t) = 0.

2. THE HOMOGENEOUS EQUATION
We first look at the homogeneous equation:
st + Clggze =0,
u(0,1) = uz2(0,t) = u(L,t) = uge(L,t) =0,
and separate the variables by letting u(x,t) = X (z)T'(t). Thus,
X(2)T"(t) + X" (x)T(t) = 0,

and therefore
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and we arrive at these two ordinary differential equations
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T"(#) + W?T() =0,  X""(z)+ (%) X(z) = 0.
For convenience, we define A = \/g , whereby the second equation takes the form

X" 4+ MX = 0. Then we solve for T'(t) and X (z):
T(t) = A, coswt + By, sinwt,

X (x) = ¢18in A\x + ¢ cos Ax + ¢ sinh Az + ¢4 cosh Az.

The original PDE’s boundary conditions translate to X(0) = X" (0) = X(L) =
X"(L) = 0. Considering that

X"(x) = \? [c18in Az + ¢3 cos Az + ¢z sinh Az + ¢4 cosh Az],

we see that X (0) = X”(0) = 0 imply that ¢; = ¢4 = 0, and thus we are left with
X () = 1 sin Az + ¢ sinh Az. Applying the boundary conditions X (L) = X" (L) =
0 yields

cysin AL + cgsinh AL = 0,
c1sin AL — c3sinh AL = 0.

Subtracting the two equations we get c3sinh AL = 0. We don’t want A = 0 since
that gives us the trivial solution only. But if A # 0, we have sinh AL # 0, and
therefore ¢ = 0. Then either of the two equations above imply that ¢ sin AL = 0.

We don’t what ¢; = 0 since that gives us the trivial solution only. Therefore
sin AL = 0 which has infinitely many solutions
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Referring to the definition A = \/g, we denote the corresponding w values by
Wy = CA2.
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The family of function {sin )\nx}zozl is an orthogonal basis for square-integrable
functions on (0, L) under the inner product

L

(f,9) = ; f(@)g(z) d.

Therefore, any square-integrable function f(z) may be expressed as

(2) f(x) = Z ap sin A, z,
n=1
where
9 (L
(3) ap = —/ f(x)sin A,z dx.
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3. STEADY-STATE OSCILLATIONS

We return to the original statement of the problem in (1). We expand f(z)
into a sum of eigenfunctions as in (2), where the coeflicients a,, may be computed
through (3). We also expand the solution u(z,t) into a sum of eigenfunctions

u(z,t) = Z P (t) sin A,z
n=1

where the coefficients p,(t) are to be determined. Plug these into the PDE in (1).
We get:

i P (t)sin Ay + ¢ i Xnn (1) 8in A2 = (i a, sin Anx) cos U,
n=1 n=1 n=1
whence
P (t) + S Aypn(t) = ap cos Q.
Recalling the definition of w,, this takes the form
P! (t) + wipp(t) = an cos Qt.

Look for a particular solution of this ODE in the form p(t) = K, cos Qt. Plugging
that form into the ODE we get

2 2
VK, +w, K, =an,
whence
an
nT o2 02
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We conclude that the steady-state oscillations of (1) are given by

o~ an
(4) u(z,t) = <nz::1 e sin )\nx) cos Q.



4. THE SPECIAL FORCING FUNCTION

The expression (4) gives the steady-state oscillations of the beam in (1) for any
function f(x). In particular if f is given as

x
then from (3) we get
2 L
ap = —/ f(x)sin A,z dx
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’LL(.T, t) = 7 (Z W S An$> cos t.

n=1

(1 — %) sin A\, x dx

and therefore



