
Reiner Rivlin fluid in the case of mild stenosis ðd�d0
� 1Þ;

subject to the additional conditions [4]

ðiÞRe d�n
1

n�1ð Þ
b

� 1; ð11aÞ

ðiiÞ d0n
1

n�1ð Þ
b

�Oð1Þ; ð11bÞ

can be written as

ou
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¼ 0; ð12Þ

op

or
¼ 0; ð13Þ

op

oz
¼ 1

r

o

or
r

ow

or

� �
þ k1 2

ow

or

ow

oz

� �� �� �
; ð14Þ

1

r

o

or
r
oh
or

� �
þ Br

ow

or

� �2

þk1 2
ow

oz

� �
ow

or

� �2
 !

¼ 0;

ð15Þ
1

Sc

1

r

o

or
r
or
or

� �� �
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r
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or

� �� �
¼ 0; ð16Þ

in which Sr is the Soret number, Sc Schmidt number, u0 is

the velocity averaged over the section of the tube of the

width d0 and r is concentration.

The corresponding boundary conditions are

ow

or
¼ 0;

oh
or
¼ 0;

or
or
¼ 0 at r ¼ 0; ð17aÞ

w ¼ 0; h ¼ 0; r ¼ 0 at r ¼ hðzÞ; ð17bÞ

where

hðzÞ ¼ ð1þ nzÞ 1� g1ððz� rÞ � ðz� rÞnÞ½ �;
r� z� rþ 1;

ð18Þ

and

g1 ¼
dn

n
n�1

ðn� 1Þ ; d ¼ d�

d0

; r ¼ a

b
; n0 ¼ nb

d0

ð19Þ

in which ðn ¼ tan /Þ; / is called tappered angle and for

converging tapering (/\ 0), non-tapered artery (/ = 0)

and the diverging tappering (/[ 0) (as shown in Fig. 2).

3 Solution of the problem

Since Eqs. 14 and 15 are non-linear equation so its exact

solution is not possible. Therefore, we are seeking the

perturbation solutions, for perturbation solution, we expand

w, h, r, Q and p by taking k1 as perturbation parameter

w ¼ w0 þ k1w1 þ Oðk2
1Þ; ð20aÞ

Q ¼ Q0 þ k1Q1 þ Oðk2
1Þ; ð20bÞ

p ¼ p0 þ k1p1 þ Oðk2
1Þ; ð20cÞ

h ¼ h0 þ k1h1 þ Oðk2
1Þ; ð20dÞ

r ¼ r0 þ k1r1 þ Oðk2
1Þ: ð20eÞ

Making use of these above equations, the solutions for

velocity, temperature and concentration, satisfying the

boundary conditions take the form

wðr; zÞ ¼ r2 � h2

4
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We can defined the volume flow rate Q by

Q ¼
Zh

0

rw dr; ð24Þ

Making use of the Eq. 21 into Eq. 24 and solving for dp/dz

we get

Fig. 2 Geometry of the axially stenosied tapered artery for different

tapered angle
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¼ � 16Q
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8Q

3h2
� 16Q

h4

� �0
� 256Q2h0

h7

� �
; ð25Þ

The pressure drop (Dp = p at z = 0 and Dp = - p at

z = L) across the stenosis between the section z = 0 and

z = L can be obtain from (25) as done by [4]

Dp ¼
ZL

0

� dp

dz

� �
dz; ð26Þ

3.1 Resistance impedance

The expression resistance impedance is defined as

~k¼Dp

Q

¼
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0
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;;
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where
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3h2
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þ 256Qh0

h7

� �
:

Eq. (27) in simplified form can be written as
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3.2 Expression for the wall shear stress

The nonzero dimensionless shear stress is given by

~srz ¼ 2
ow

or

� �
þ k1 2

ow

or

ow

oz

� �� �
; ð29Þ

From Eq. (29) we can find the expression for wall shear

stress by

~srz ¼ 2
ow

or

� �
þ k1 2

ow

or

ow

oz

� �� �����
r¼h

; ð30Þ

With the help of Eq. 21, Eq. 30 can be written as

~srz ¼ a11r7 þ a12r5 þ a13r3 þ a14r þ a15; ð31Þ

We can note that the shearing stress at the stenosis throat

i.e the wall shear at the maximum height of the stenosis

located at z ¼ a
bþ 1

n
n

n�1
i.e ~ss ¼ ~srzjh¼1�d is

~ss ¼ a11r7 þ a12r5 þ a13r3 þ a14r þ a15

��
h¼1�d

: ð32Þ

where a1–a15 are defined in appendix.

We can find the final expression for the dimensionless

resistance to k, wall shear stress srz and the shearing stress

at the throat ss are defined as

k ¼ 1

3
1� b
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� �
16þ k1 �

8

3
ð�16QÞ0 þ 256Qh0

� �� ��
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srz ¼
1

4Q
ða11r7 þ a12r5 þ a13r3 þ a14r þ a15Þ; ð34Þ

ss ¼
1

4Q
ða11r7 þ a12r5 þ a13r3 þ a14r þ a15jh¼1�dÞ; ð35Þ

where

k ¼
~k
k0

; srz ¼
~srz

s0

; ss ¼
~ss

s0

; k0 ¼ 3L; s0 ¼ 4Q:

4 Numerical results and discussion

To observe the quantitative effects of the Reiner Rivlin

fluid parameter k1, the stenosis shape n and maximum

height of the stenosis d for converging tapering, diverging

tapering and non-tapered arteries for Reiner Rivlin fluid.

We have made Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. The

variation of axial velocity for k1, n, and d for the case of a

converging tapering, diverging tapering and non-tapered

arteries are displayed in Figs. 3, 4 and 5. We observed that

with an increase in k 1, n and d, velocity profile decreases.
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It is also seen that for the case of converging tapering

velocity gives larger values as compared to the case of

diverging tapering and non-tapered arteries. Figures 6, 7

and (8 show how the converging tapering, diverging

tapering and non-tapered arteries influence on the wall

shear stress srz. It is observed that with an increase in k1, n,

and d shear stress increases, the stress yield diverging

tapering with tapered angle /[ 0, converging tapering

with tapered angle /\ 0 and non-tapered artery with

tapered angle / = 0. In Figs. 9 and 10 we notice that the

impedance resistance increases for converging tapering,

diverging tapering and non-tapered arteries when we

increase k1, while decreases when we increase n. We also

observed that resistive impedance in a diverging tapering

appear to be smaller than those in converging tapering

because the flow rate is higher in the former than that in the

latter, as anticipated and impedance resistance attains its

maximum values in the symmetric stenosis case (n = 2).

Finally Figs. 11 and 12 are prepared to see the variation of

the shearing stress at the stenosis throat ss with d. It is

analyzed that shearing stress at the stenosis throat decrea-

ses with an increase in Q and k1. Figures 13 and 14 show

the variation of temperature profile for different values of

Brickmann number Br and Reiner Rivlin fluid parameter

k1. It is observed that with an increase in Brickmann

number Br, temperature profile decreases while increases

with an increase in Reiner Rivlin fluid parameter k1 and

temperature profile gives the large values for converging

tapering as compared to the diverging and non-tapered

artery. Figures 15, 16 and 17 are prepared to see the var-

iation of concentration profile for Brickmann number Br,

Reiner Rivlin fluid parameter k1 and Soret number Sr. It is
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