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Abstract. We outline a general approach to solving the Poisson problem with

a Robin boundary condition on a disk through Fourier series. Then we present
a special case for illustration.

1. The statement of the problem

We wish to solve this Poisson problem on a disk:

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
+ f(r, θ) = 0 0 < r < R,−π ≤ θ < π,(1a) [

p(θ)u(r, θ) + q(θ)
∂u

∂r

]
r=R

= g(θ) − π ≤ θ < π,(1b)

where the given function f(r, θ), p(θ), q(θ), g(θ), and the solution u(r, θ) are ex-
pected to be 2π-periodic in θ. Thus, we expand u(r, θ) and f(r, θ) into Fourier
series

u(r, θ) = a0(r) +

∞∑
n=1

an(r) cosnθ + bn(r) sinnθ,(2a)

f(r, θ) = α0(r) +

∞∑
n=1

αn(r) cosnθ + βn(r) sinnθ,(2b)

where the coefficients a0(r), an(r), and bn(r) are to be determined, and the coeffi-
cients α0(r), αn(r), and βn(r) are given by

α0(r) =
1

2π

∫ π

π

f(r, θ) dθ,(3a)

αn(r) =
1

π

∫ π

π

f(r, θ) cosnθ dθ, n = 1, 2, . . . ,(3b)

βn(r) =
1

π

∫ π

π

f(r, θ) sinnθ dθ, n = 1, 2, . . . .(3c)
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2. Solving the PDE

Plugging the expressions (2) into the PDE (1a) we get

1

r

(
ra′0(r)

)′
+

1

r

∞∑
n=1

[(
ra′n(r)

)′
cosnθ +

(
rb′n(r)

)′
sinnθ

]

− n2

r2

∞∑
n=1

[
an(r) cosnθ + bn(r) sinnθ

]
+ α0(r) +

∞∑
n=1

[
αn(r) cosnθ + βn(r) sinnθ

]
= 0,

which we regroup as

1

r

(
ra′0(r)

)′
+ α0(r) +

∞∑
n=1

[
1

r

(
ra′n(r)

)′
− n2

r2
an(r) + αn(r)

]
cosnθ

+

∞∑
n=1

[
1

r

(
rb′n(r)

)′
− n2

r2
bn(r) + βn(r)

]
sinnθ = 0.

We conclude that

1

r

(
ra′0(r)

)′
+ α0(r) = 0,(4a)

1

r

(
ra′n(r)

)′
− n2

r2
an(r) + αn(r) = 0 n = 1, 2, . . . ,(4b)

1

r

(
rb′n(r)

)′
− n2

r2
bn(r) + βn(r) = 0 n = 1, 2, . . . .(4c)

Considering that α0(r), αn(r), and βn(r) are known and given by (3), we solve
the differential equations (4) to determine a0(r), an(r), and bn(r). These will
each come with undetermined constant coefficients which are to be determined by
applying the boundary condition (1b).

Applying the boundary condition in the general case can be a messy affair since
evaluating a term such as p(θ)u(r, θ) requires multiplying two infinite series.

3. A special case

Here we completely solve a special case of our boundary value problem

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
+ 1 = 0 0 < r < 1,−π ≤ θ < π,(5a)

(1 + cos2 θ)u(r, θ) +
∂u

∂r

∣∣∣
r=1

= 0 − π ≤ θ < π,(5b)

which corresponds to f(r, θ) = 1, p(θ) = 1 + cos2 θ, q(θ) = 1, g(θ) = 0, R = 1.
From (3) we get

α0(r) = 1, αn(r) = 0, βn(r) = 0,
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and consequently the differential equations (4) reduce to

1

r

(
ra′0(r)

)′
+ 1 = 0,(6a)

1

r

(
ra′n(r)

)′
− n2

r2
an(r) = 0 n = 1, 2, . . . ,(6b)

1

r

(
rb′n(r)

)′
− n2

r2
bn(r) = 0 n = 1, 2, . . . ,(6c)

whose solutions are

a0(r) = A0 + Ã0 ln r − 1

4
r2,

an(r) = Anr
n + Ãnr

−n n = 1, 2, . . . ,

bn(r) = Bnr
n + B̃nr

−n n = 1, 2, . . . ,

where the uppercase letters indicate generic constants. To have a finite solution at
r = 0, we need to take Ã0, Ãn, and B̃n to be zero. We conclude that the general
solution of (5a) is

u(r, θ) = A0 −
1

4
r2 +

∞∑
n=1

rn
[
An cosnθ +Bn sinnθ

]
.

To apply the boundary condition (5b), we calculate

∂u

∂r
= −1

2
r +

∞∑
n=1

nrn−1
[
An cosnθ +Bn sinnθ

]
.

Then, the boundary condition (5b) yields

(1 + cos2 θ)
[
A0 −

1

4
+

∞∑
n=1

(An cosnθ +Bn sinnθ)
]

− 1

2
+

∞∑
n=1

n(An cosnθ +Bn sinnθ) = 0.

To simplify that expression, we apply the trigonometric identities

(1 + cos2 θ)
(
A0 −

1

4

)
− 1

2
=
(3

2
A0 −

7

8

)
+
(1

2
A0 −

1

8

)
cos 2θ,

(1 + cos2 θ) cosnθ =
1

4
cos(n− 2)θ +

3

2
cosnθ +

1

4
cos(n+ 2)θ,

(1 + cos2 θ) sinnθ =
1

4
sin(n− 2)θ +

3

2
sinnθ +

1

4
sin(n+ 2)θ,
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whereby the previous equation transforms into(3

2
A0 −

7

8

)
+
(1

2
A0 −

1

8

)
cos 2θ

+

∞∑
n=1

An

(1

4
cos(n− 2)θ +

3

2
cosnθ +

1

4
cos(n+ 2)θ

)
+

∞∑
n=1

Bn

(1

4
sin(n− 2)θ +

3

2
sinnθ +

1

4
sin(n+ 2)θ

)
+

∞∑
n=1

nAn cosnθ + nBn sinnθ = 0.

Observe that

∞∑
n=1

An cos(n− 2)θ

= A1 cos(−θ) +A2 cos(0θ) +A3 cos θ +A4 cos 2θ +

∞∑
n=5

An cos(n− 2)θ

= A2 + (A1 +A3) cos θ +A4 cos 2θ +

∞∑
n=3

An+2 cosnθ,

∞∑
n=1

An cosnθ = A1 cos θ +A2 cos 2θ +

∞∑
n=3

An cosnθ,

∞∑
n=1

An cos(n+ 2)θ =

∞∑
n=3

An−2 cosnθ,

and similarly for Bn sin(n − 2)θ, Bn sin(n + 2)θ, and Bn sinnθ. We continue our
calculation to obtain(3

2
A0 −

7

8

)
+
(1

2
A0 −

1

8

)
cos 2θ

+
1

4

[
A2 + (A1 +A3) cos θ +A4 cos 2θ +

∞∑
n=3

An+2 cosnθ

]

+
3

2

[
A1 cos θ +A2 cos 2θ +

∞∑
n=3

An cosnθ

]

+
1

4

[ ∞∑
n=3

An−2 cosnθ

]

+
1

4

[
(B3 −B1) sin θ +B4 sin 2θ +

∞∑
n=3

Bn+2 sinnθ

]

+
3

2

[
B1 sin θ +B2 sin 2θ +

∞∑
n=3

Bn sinnθ

]

+
1

4

[ ∞∑
n=3

Bn−2 sinnθ

]
= 0.
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Figure 1. The residual error in the boundary condition (5b) cor-
responding to N = 8 terms in the Fourier series is O(10−7).

Multiplying through by 4 and combining the terms, we arrive at the compact rep-
resentation

6A0 +A2 −
7

2
+ (11A1 +A3) cos θ +

(
2A0 + 14A2 +A4 −

1

2

)
cos 2θ

+ (9B1 +B3) sin θ + (14B2 +B4) sin 2θ

+

∞∑
n=3

[(
An−2 + 2(2n+ 3)An +An+2

)
cosnθ

+
(
Bn−2 + 2(2n+ 3)Bn +Bn+2

)
sinnθ

]
= 0.

To enforce the boundary condition, each of the coefficients in the Fourier se-
ries on the left-hand side of the equation above should be zero. That results
in an infinitely many equations in the infinitely many unknowns Ak, Bk. Trun-
cating the sums by replacing their upper limits with some number N ≥ 3 re-
sults in a system of 5 + 2(N − 2) = 2N + 1 equations in 2N + 5 unknowns
A0, A1, . . . AN , AN+1, AN+2, B1, . . . BN , BN+1, BN+2. To obtain a well-posed sys-
tem, we set the coefficients AN+1, AN+2, BN+1, BN+2 to zero, and then solve the
resulting system of 2N + 1 equations in 2N + 1 unknowns. The error in that sub-
stitution is expected to be small since the sequence of the coefficients of a Fourier
series tends to zero. For instance, setting N = 8 we obtain

u(r, t) = 0.591 − 0.250r2 − 0.0489r2 cos 2θ + 0.00223r4 cos 4θ

− 0.0000743r6 cos 6θ + 1.9610−6r8 cos 8θ,

which satisfies the PDE exactly, and the boundary condition approximately. The
residual error in evaluating the boundary condition (5b) is of the order of magnitude
of 10−7 as can be see in the graph in Figure 1. The corresponding solution is shown
in Figure 2.
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Figure 2. The solution of the boundary value problem (5) corre-
sponding to N = 8 terms in the Fourier series.


