Your problem very much looks like a constraint mechanical system with stiffness matrix K_{11} and mass matrix M_{11} for the corresponding free system and constraint matrix K'_{12} . For that reason I assume here that N < M and K_{12} has rank N.

Let $K_{12} = Q \begin{pmatrix} R \\ 0 \end{pmatrix}$ be a QR decomposition of K_{12} . We use $\begin{pmatrix} Q & 0 \\ 0 & 1 \end{pmatrix}$ as transformation matrix for your eigenproblem.

Your stiffness matrix then transforms like
$$\begin{pmatrix} Q' & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} K_{11} & K_{12} \\ K'_{12} & 0 \end{pmatrix} \begin{pmatrix} Q & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} Q'K_{11}Q & \begin{pmatrix} R \\ 0 \end{pmatrix} \\ \begin{pmatrix} R' & 0 \end{pmatrix} & 0 \end{pmatrix}.$$

We name the left-upper part of the transformed stiffness and mass matrix as $\bar{K} = Q'K_{11}Q$, $\bar{M} = Q'M_{11}Q$ and the transformed coordinates as \bar{X} . The Lagrange coefficients λ retain in the transformed system.

Because of the last N transformed equations $R \cdot \bar{X}(1:N) = 0$ the first N components of \bar{X} are zero. Thus we can just split off those components from \bar{X} and only consider X(N+1:M) in the following. Furthermore, the first N transformed equations

The only transformed equations relevant for the eigenproblem are:

$$\left(\bar{K}(N+1:M,N+1:M) - \omega^2 \bar{M}(N+1:M,N+1:M)\right) \bar{X}(N+1:M) = 0$$

Thus you only need to solve the reduced eigenproblem with the reduced positive definite system matrices $\bar{K}(N+1:M,N+1:M)=Q'_{\rm pr}K_{11}Q_{\rm pr}$ and $\bar{M}(N+1:M,N+1:M)=Q'_{\rm pr}M_{11}Q_{\rm pr}$ where $Q_{\rm pr}=Q(:,N+1:M)$.