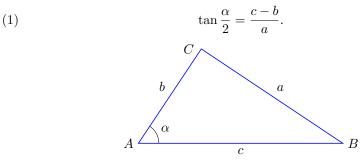
CIRCLES INSCRIBED IN A RIGHT TRIANGLE

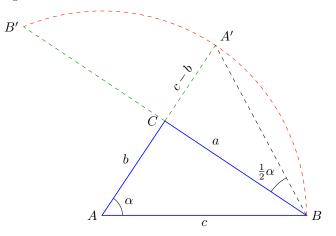
ROUBEN ROSTAMIAN

Theorem 1. Consider the right triangle ABC with the right angle at vertex C, and side lengths a, b, and c, as shown in the diagram below. If α is the size of the angle at the vertex A, then we have



Proof. Draw the circular arc BB' centered at A as shown in the diagram below, and let A' be where the extension of AC meets the arc. The arc's radius is c, and consequently the length of CA' is c - b.

The size of the arc A'B is α as it subtends the angle A'AB. The size of the arc A'B' is also α by symmetry, and therefore the angle A'B'B' which is subtended by that arc is $\frac{1}{2}\alpha$. The theorem's assertion follows from the geometry of the right triangle A'CB.



Date: January 2025.

Remark 1. The theorem above may be demonstrated purely through trigonometry, as follows. From $\cos\alpha=\frac{b}{c}$ and the half-angle formula we get

$$2\cos^2\frac{\alpha}{2} - 1 = \frac{b}{c},$$

whence $\cos^2 \frac{\alpha}{2} = \frac{c+b}{2c}$, and therefore

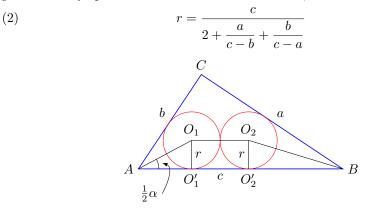
$$1 + \tan^2 \frac{\alpha}{2} = \frac{1}{\cos^2 \frac{\alpha}{2}} = \frac{2c}{c+b}$$

It follows that

$$\tan^2 \frac{\alpha}{2} = \frac{2c}{c+b} - 1 = \frac{c-b}{c+b} = \frac{(c-b)^2}{(c-b)(c+b)} = \frac{(c-b)^2}{c^2 - b^2} = \frac{(c-b)^2}{a^2},$$

whence $\tan \frac{\alpha}{2} = \frac{c-b}{a}$, as asserted.

Theorem 2. Let ABC the right triangle as before, and suppose two mutually tangent circles of equal radii r have been inscribed in it, as shown below. Then



Proof. The center O_1 of the left circle lies on the bisector drawn from the vertex A. Therefore the angle O_1AO' is $\frac{1}{2}\alpha$ and consequently

$$AO'_1 = \frac{r}{\tan\frac{\alpha}{2}} = \frac{r}{\frac{c-b}{a}} = \frac{a}{c-b}r,$$

where we have applied equation (1). Similarly,

$$O_2'B = \frac{b}{c-a}r.$$

Considering that $O'_1O'_2 = 2r$, we obtain

$$\frac{a}{c-b}r + 2r + \frac{b}{c-a}r = c,$$

as asserted.

Examples:

Equation (2) applied to the right triangle with the edge lengths a = 3, b = 4, c = 5 yields

$$r = \frac{5}{7}.$$

Similarly, for the right triangle with the edge lengths a = 5, b = 12, c = 13, we get

$$r = \frac{26}{17}.$$