Lemma. Let $\psi(t) = a(t + b \sin t)$, and let $\eta(t) = \psi(t) \mod 2\pi$. We wish to show that η is periodic if and only if a is rational.

Part (a): Prove that η is periodic \Rightarrow a is rational.

Suppose η is periodic with a period p, that is, $\eta(t+p)=\eta(t)$ for all t. Then $\psi(t+p)=\psi(t)+2k\pi$ for some integer k. Thus

$$a[(t+p) + b\sin(t+p)] = a(t+b\sin t) + 2k\pi,$$

which simplifies to

$$ab \left[\sin(t+p) - \sin(t) \right] = 2k\pi - ap.$$

The right-hand side is a constant, therefore the left-hand side should also be a constant. That would be possible only if p is a multiple of 2π . Letting $p=2m\pi$, the above simplifies to $2k\pi=ap$, that is $2k\pi=a(2m\pi)$, which leads to $a=\frac{k}{m}$, and thus a is rational, as asserted.

Part (b): Prove that a is rational $\Rightarrow \eta$ is periodic.

Suppose is some rational of the form $a = \frac{k}{m}$, where k and m are positive integers. We wish to show that η is periodic of period $p = 2m\pi$. So let's compute

$$\psi(t+2m\pi) = a\Big[(t+2m\pi) + b\sin(t+2m\pi)\Big] = a\Big[t+2m\pi + b\sin t\Big].$$

It follows that

$$\psi(t + 2m\pi) - \psi(t) = 2ma\pi = 2k\pi,$$

and therefore

$$\left[\psi(t+2m\pi) \bmod 2\pi\right] - \left[\psi(t) \bmod 2\pi\right] = 2k\pi \bmod 2\pi = 0,$$

which shows that $\eta(t+2m\pi)=\eta(t)$, as asserted.