MaplePrimes Announcement

Maplesoft now has a new approach to providing customer support for Maple users! The Maple Customer Support Updates allows Maplesoft to provide important updates to our customers as fast as possible. These updates contain a series of improvements and fixes to any area of the Maple library, enabling a rapid response for customer reports and requests. When a Maple user reports a bug or weakness, or requests some missing functionality that can be addressed with an update to the Maple library, such an update can now be provided immediately after the fix or improvement is developed. Furthermore, the update will not just be available to that customer who reported it, but also to any other Maple users who wishes to use them. Of course, not all reports will be able to be addressed quickly, and for those that are, it will be up to the developer's discretion whether to make the fix or improvement available via these new Maple Customer Support Updates. Please note that these Updates may contain experimental elements that could change in subsequent official releases.

The updates are available as a workbook containing a Maple library file that can be downloaded and installed from the Maple Cloud. To install the Maple Customer Support Updates from the Maple Cloud,

  • Click the MapleCloud icon in the upper-right corner of the Maple GUI window and select Packages.
  • Find the Maple Customer Support Updates package and click the Install button, the last one under Actions.
  • To check for new versions of Maple Customer Support Updates, click the MapleCloud icon and select Updates. If the cloud icon in the Actions column of Maple Customer Support Updates has the word Update beside it, then you can click on it to download a new update.

To make the process of installing and maintaining the Maple Customer Support Updates as smooth as possible, we've also introduced a new Maple library package, SupportTools, with 3 commands, Update, Version, and RemoveUpdates.

Load the SupportTools package:
with(SupportTools)

[RemoveUpdates, Update, Version]

(1)

Check which version is currently installed:
Version()

`The Customer Support Updates version in the MapleCloud is 10. The version installed in this computer is 9 created April 22, 2025, 15:14 hours Eastern Time, found in the directory C:\Users\Austin\Maple\toolbox\2025\Maple Customer Support Updates\lib\Maple`

(2)


Update to the latest version (you could also call Update(latest)):

Update()

Warning, You have just upgraded from version 9 to version 10 of the Customer Support Updates. In order to have this version active, please close Maple entirely, then open Maple and enter SupportTools:-Version() to confirm the active version.

 


Check the version again:

Version()

`The Customer Support Updates version in the MapleCloud is 10 and is the same as the version installed in this computer, created April 22, 2025, 15:14 hours Eastern Time.`

(3)


Remove all updates for this release of Maple (except for those installing the SupportTools package itself):

RemoveUpdates()RemoveUpdates()

Warning, You have just reverted to version 4 of the Customer Support Updates. This version contains no actual updates other than the SupportTools package itself. In order to verify this, please close Maple entirely, then open Maple and enter SupportTools:-Version() to verify that the version number is 4.

 


Note: You can also specify which version to install by supplying the version number as the argument to the Update command:

Update(10)

Warning, You have just upgraded from version 4 to version 10 of the Customer Support Updates. In order to have this version active, please close Maple entirely, then open Maple and enter SupportTools:-Version() to confirm the active version.

 

Download SupportTools.mw

In Maple 2025.0, the SupportTools package is not installed by default. For the first installation, you can also run the command
PackageTools:-Install(4797495082876928); instead of installing it from the Maple Cloud.

The Maple Customer Support Updates were inspired by and modelled after the existing Physics Updates which many Maple users may be famiilar with already. Going forward, Physics Updates will only contain changes to the Physics package itself. All other library updates will be available via the Maple Customer Support Updates. For compatibility with the pre-existing Physics:-Version command, calling SupportTools:-Version(n) is equivalent to calling SupportTools:-Update(n), and similarly SupportTools:-Version(latest) and SupportTools:-Update(latest) are both equivalent to the single call SupportTools:-Update().

Featured Post

The Maplesoft Physics Updates, introduced over a decade ago, brought with them an innovative concept: to deliver fixes and new developments continuously, as soon as they enter the development version of the Maple library for the next release. A key aspect of this initiative was prioritizing the resolution of issues reported on MaplePrimes, ensuring that fixes became available to everyone within 24 to 48 hours. Initially focused solely on the Physics package, the scope of the updates quickly expanded to include other parts of the Maple library and the Typesetting system.

This initiative, which I developed outside regular work hours, aimed to enhance the Maple experience—where issues encountered in daily use could be resolved almost immediately, minimizing disruptions and benefiting the entire user community through shared updates.

As of January 1st, I have stepped away from my role at Maplesoft and have been increasingly involved in activities unrelated to Maple. This raises the question of what will happen with the Physics Updates for Maple 2025 and after.

The Physics project remains a unique and personally meaningful endeavor for me. So, for now, I will continue to dedicate some time to these Updates—but only for the Physics package, not for other parts of the library. As before, these fixes and developments will be included in the Physics Updates only after they have been integrated into the development version of Maple’s official library for the next release. In that sense, they will continue to be Maplesoft updates.

On that note, the first release of the Physics Updates for Maple 2025—focused solely on the Physics package—went out today as version 1854. To install it, the first time open Maple 2025 and use the Maplecloud toolbar -> Packages, or else input PackageTools:-Install(5137472255164416). Any next time, just enter Physics:-Version(latest)

As for fixes beyond the Physics package, I understand that Maplesoft is exploring the possibility of offering something similar to what was previously delivered through the Maplesoft Physics Updates.

All the best

PS: to install the last version of the Maplesoft Physics Updates for Maple 2024, open Maple and input Physics:-Version(1852), not 1853.
 
Edgardo S. Cheb-Terrab
Physics, Differential Equations, and Mathematical Functions
Maplesoft Emmeritus
Research and Education—passionate about all that.

Featured Post

What is new in Physics in Maple 2025

 

This post is, basically, the page of what is new in Physics distributed with Maple 2025. Why post it? Because this time we achieved a result that is a breakthrough/milestone in Computer Algebra: for the first time we can systematically compute Einstein's equations from first principles, using a computer, starting from a Lagrangian for gravity. This is something to celebrate.

 

Although being able to perform this computation on a computer algebra sheet is relevant mostly for physicists working in general relativity, the developments performed in the tensor manipulation and functional differentiation routines of the Maple system to cover this computation were tremendous, in number of lines of code, efforts and time, resulting in improvements not just fore general relativity but for physics all around, and in an area out of reach of neural network AIs . Other results, like the new routines for linearizing gravity, requested other times here in Mapleprimes, are also part of the relevant novelties.

 

 

Lagrange Equations and simplification of tensorial expressions in curved spacetimes

Linearized Gravity

Relative Tensors

New Physics:-Library commands

See Also

 

 

 

Lagrange Equations and simplification of tensorial expressions in curved spacetimes

 

 

LagrangeEquations  is a Physics command introduced in 2023 taking advantage of the functional differentiation  capabilities of the Physics  package . This command can handle tensors  and vectors  of the Physics  package as well as derivatives using vectorial differential operators (see d_  and Nabla ), works by performing functional differentiation (see Fundiff ), and handles 1st, and higher order derivatives of the coordinates in the Lagrangian automatically. LagrangeEquations  receives an expression representing a Lagrangian and returns a sequence of Lagrange equations with as many equations as coordinates are indicated. The number of parameters can also be many. For example, in electrodynamics, the "coordinate" is a tensor field A[mu](x, y, z, t), there are then four coordinates, one for each of the values of the index mu, and there are four parameters x, y, z, t.

 

New in Maple 2025, the "coordinates" can now also be the components of the metric tensor in a curved spacetime, in which case the equations returned are Einstein's equations. Also new, instead of a coordinate or set of them, you can pass the keyword EnergyMomentum, in which case the output is the conserved energy-momentum tensor of the physical model represented by the given Lagrangian L.

 

Examples

 

with(Physics)

Setup(mathematicalnotation = true, coordinates = cartesian)

[coordinatesystems = {X}, mathematicalnotation = true]

(1)

The lambda*Phi^4 model in classical field theory and corresponding field equations, as in previous releases

CompactDisplay(Phi(X))

Phi(x, y, z, t)*`will now be displayed as`*Phi

(2)

L := (1/2)*d_[mu](Phi(X))*d_[mu](Phi(X))-(1/2)*m^2*Phi(X)^2+(1/4)*lambda*Phi(X)^4

(1/2)*Physics:-d_[mu](Phi(X), [X])*Physics:-d_[`~mu`](Phi(X), [X])-(1/2)*m^2*Phi(X)^2+(1/4)*lambda*Phi(X)^4

(3)

Lagrange's equations

LagrangeEquations(L, Phi)

Phi(X)^3*lambda-Phi(X)*m^2-Physics:-dAlembertian(Phi(X), [X]) = 0

(4)

New: The energy-momentum tensor can be computed as the Lagrange equations taking the metric as the coordinate, not equating to 0 the result, but multiplying the variation of the action "(delta S)/(delta g[]^(mu,nu))" by 2/sqrt(-%g_[determinant]) (in flat spacetimes sqrt(-%g_[determinant]) = 1). For that purpose, you can use the EnergyMomentum keyword. You can optionally indicate the indices to be used in the output as well as their covariant or contravariant character

LagrangeEquations(L, EnergyMomentum[mu, nu])

Physics:-EnergyMomentum[mu, nu] = (-(1/4)*lambda*Phi(X)^4+(1/2)*m^2*Phi(X)^2-(1/2)*Physics:-d_[`~beta`](Phi(X), [X])*Physics:-d_[beta](Phi(X), [X]))*Physics:-g_[mu, nu]+Physics:-d_[mu](Phi(X), [X])*Physics:-d_[nu](Phi(X), [X])

(5)

To further compute using the above as the definition for T[mu, nu], you can use the Define  command

Define(Physics:-EnergyMomentum[mu, nu] = (-(1/4)*lambda*Phi(X)^4+(1/2)*m^2*Phi(X)^2-(1/2)*Physics[d_][`~beta`](Phi(X), [X])*Physics[d_][beta](Phi(X), [X]))*Physics[g_][mu, nu]+Physics[d_][mu](Phi(X), [X])*Physics[d_][nu](Phi(X), [X]))

`Defined objects with tensor properties`

 

{Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-EnergyMomentum[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(6)

After which the system knows about the symmetry properties and the components of T[mu, nu]

EnergyMomentum[definition]

Physics:-EnergyMomentum[mu, nu] = (-(1/4)*lambda*Phi(X)^4+(1/2)*m^2*Phi(X)^2-(1/2)*Physics:-d_[`~beta`](Phi(X), [X])*Physics:-d_[beta](Phi(X), [X]))*Physics:-g_[mu, nu]+Physics:-d_[mu](Phi(X), [X])*Physics:-d_[nu](Phi(X), [X])

(7)

Library:-IsTensorialSymmetric(EnergyMomentum[mu, nu])

true

(8)

EnergyMomentum[]

Physics:-EnergyMomentum[mu, nu] = Matrix(%id = 36893488151952536988)

(9)

New: LagrangeEquations takes advantage of the extension of Fundiff  to compute functional derivatives in curved spacetimes introduced for Maple 2025, and so it also handles the case of a scalar field in a curved spacetime. Set for instance an arbitrary metric

g_[arb]

_______________________________________________________

 

`Setting `*lowercaselatin_is*` letters to represent `*space*` indices`

 

`The arbitrary metric in coordinates `*[x, y, z, t]

 

`Signature: `(`- - - +`)

 

_______________________________________________________

 

Physics:-g_[mu, nu] = Matrix(%id = 36893488152257720060)

(10)

For the action to be a true scalar in spacetime, the Lagrangian density now needs to be multiplied by the square root of the determinant of the metric

L := sqrt(-%g_[determinant])*L

(-%g_[determinant])^(1/2)*((1/2)*Physics:-d_[mu](Phi(X), [X])*Physics:-d_[`~mu`](Phi(X), [X])-(1/2)*m^2*Phi(X)^2+(1/4)*lambda*Phi(X)^4)

(11)

New: With the extension of the tensorial simplification algorithms for curved spacetimes, the Lagrange equations can be computed arriving directly to the compact form

LagrangeEquations(L, Phi)

Phi(X)^3*lambda-Phi(X)*m^2-Physics:-D_[kappa](Physics:-d_[`~kappa`](Phi(X), [X]), [X]) = 0

(12)

Comparing with the result (4) for the same Lagrangian in a flat spacetime, we see the only difference is that the dAlembertian  is now expressed in terms of covariant derivatives D_ .

 

The EnergyMomentum  tensor is computed in the same way as when the spacetime is flat

LagrangeEquations(L, EnergyMomentum[mu, nu])

Physics:-EnergyMomentum[mu, nu] = (-(1/4)*lambda*Phi(X)^4+(1/2)*m^2*Phi(X)^2-(1/2)*Physics:-d_[`~beta`](Phi(X), [X])*Physics:-d_[beta](Phi(X), [X]))*Physics:-g_[mu, nu]+Physics:-d_[mu](Phi(X), [X])*Physics:-d_[nu](Phi(X), [X])

(13)

General Relativity

 

New: the most significant development in LagrangeEquations is regarding General Relativity. It can now compute Einstein's equations directly from the Lagrangian, not using tabulated cases, and properly handling several (traditional or not) alternative ways of presenting the Lagrangian.

 

Einstein's equations concern the case of a curved spacetime with metric g[mu, nu] as, for instance, the general case of an arbitrary metric set lines above. In the Lagrangian formulation, the coordinates of the problem are the components of the metric g[mu, nu], and as in the case of electrodynamics the parameters are the spacetime coordinates X^alpha. The simplest case is that of Einstein's equation in vacuum, for which the Lagrangian density is expressed in terms of the trace of the Ricci  tensor by

L := sqrt(-%g_[determinant])*Ricci[alpha, `~alpha`]

(-%g_[determinant])^(1/2)*Physics:-Ricci[alpha, `~alpha`]

(14)

Einstein's equations in vacuum:

LagrangeEquations(L, g_[mu, nu])

-(1/2)*Physics:-g_[mu, nu]*Physics:-Ricci[alpha, `~alpha`]+Physics:-Ricci[mu, nu] = 0

(15)

where in the above instead of passing g as second argument, we passed g[mu, nu] to get the equations using those free indices. The tensorial equation computed is also the definition of the Einstein  tensor

Einstein[definition]

Physics:-Einstein[mu, nu] = -(1/2)*Physics:-g_[mu, nu]*Physics:-Ricci[alpha, `~alpha`]+Physics:-Ricci[mu, nu]

(16)

The Lagrangian L used to compute Einstein's equations (15)  contains first and second derivatives of the metric. To see that, rewrite L in terms of Christoffel  symbols

L__C := convert(L, Christoffel)

(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*(Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])-Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X])+Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]-Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda])

(17)

Recalling the definition

Christoffel[definition]

Physics:-Christoffel[alpha, mu, nu] = (1/2)*Physics:-d_[nu](Physics:-g_[alpha, mu], [X])+(1/2)*Physics:-d_[mu](Physics:-g_[alpha, nu], [X])-(1/2)*Physics:-d_[alpha](Physics:-g_[mu, nu], [X])

(18)

in L[C] the two terms containing derivatives of Christoffel symbols contain second order derivatives of g[mu, nu]. Now, it is always possible to add a total spacetime derivative to L[C] without changing Einstein's equations (assuming the variation of the metric in the corresponding boundary integrals vanishes), and in that way, in this particular case of L[C], obtain a Lagrangian involving only 1st order derivatives. The total derivative, expressed using the inert `∂` command to see it before the differentiation operation is performed, is

TD := %d_[alpha](g_[`~mu`, `~nu`]*sqrt(-%g_[determinant])*(g_[`~alpha`, mu]*Christoffel[`~beta`, nu, beta]-Christoffel[`~alpha`, mu, nu]))

%d_[alpha](Physics:-g_[`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu]))

(19)

Adding this term to L[C], performing the `∂` differentiation operation and simplifying we get

L__1 := L__C+TD

(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*(Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])-Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X])+Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]-Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda])+%d_[alpha](Physics:-g_[`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu]))

(20)

L__1 := eval(L__1, %d_ = d_)

(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*(Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])-Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X])+Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]-Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda])+Physics:-d_[alpha](Physics:-g_[`~mu`, `~nu`], [X])*(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu])-(1/2)*Physics:-g_[`~mu`, `~nu`]*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu])*%g_[determinant]*Physics:-g_[`~kappa`, `~lambda`]*Physics:-d_[alpha](Physics:-g_[kappa, lambda], [X])/(-%g_[determinant])^(1/2)+Physics:-g_[`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-d_[alpha](Physics:-Christoffel[`~beta`, beta, nu], [X])-Physics:-d_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X]))

(21)

L__1 := Simplify(L__1)

(Physics:-Christoffel[alpha, beta, kappa]*Physics:-Christoffel[`~beta`, `~alpha`, `~kappa`]-Physics:-Christoffel[alpha, beta, `~alpha`]*Physics:-Christoffel[`~beta`, kappa, `~kappa`])*(-%g_[determinant])^(1/2)

(22)

which is a Lagrangian depending only on 1st order derivatives of the metric through Christoffel  symbols. As expected, the equations of motion resulting from this Lagrangian are the same Einstein equations computed in (15)

LagrangeEquations(L__1, g_[mu, nu])

-(1/2)*Physics:-Ricci[iota, `~iota`]*Physics:-g_[mu, nu]+Physics:-Ricci[mu, nu] = 0

(23)

To illustrate the new Maple 2025 tensorial simplification capabilities note that `≡`(L[1], (Physics[Christoffel][alpha, beta, kappa]*Physics[Christoffel][`~beta`, `~alpha`, `~kappa`]-Physics[Christoffel][alpha, beta, `~alpha`]*Physics[Christoffel][`~beta`, kappa, `~kappa`])*(-%g_[determinant])^(1/2)) is no just L[C] ≡ (17) after discarding its two terms involving derivatives of Christoffel symbols. To verify this, split L[C] into the terms containing or not derivatives of Christoffel

L__22, L__11 := selectremove(has, expand(L__C), d_)

(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])-(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X]), (-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]-(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda]

(24)

Comparing, the total derivative TD≡ (19) is not just -L[22], but

TD = -L__22-2*L__11

%d_[alpha](Physics:-g_[`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu])) = -(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])+(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X])-2*(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]+2*(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda]

(25)

Things like these, TD = -L__22-2*L__11, can now be verified directly with the new tensorial simplification capabilities: take the left-hand side minus the right-hand side, evaluate the inert derivative `∂` and simplify to see the equality is true

(lhs-rhs)(%d_[alpha](Physics[g_][`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics[g_][mu, `~alpha`]*Physics[Christoffel][`~beta`, beta, nu]-Physics[Christoffel][`~alpha`, mu, nu])) = -(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[d_][nu](Physics[Christoffel][`~nu`, alpha, lambda], [X])+(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[d_][lambda](Physics[Christoffel][`~nu`, alpha, nu], [X])-2*(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[Christoffel][`~beta`, alpha, lambda]*Physics[Christoffel][`~nu`, beta, nu]+2*(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[Christoffel][`~beta`, alpha, nu]*Physics[Christoffel][`~nu`, beta, lambda])

%d_[alpha](Physics:-g_[`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu]))+(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])-(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X])+2*(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]-2*(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda]

(26)

eval(%d_[alpha](Physics[g_][`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics[g_][mu, `~alpha`]*Physics[Christoffel][`~beta`, beta, nu]-Physics[Christoffel][`~alpha`, mu, nu]))+(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[d_][nu](Physics[Christoffel][`~nu`, alpha, lambda], [X])-(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[d_][lambda](Physics[Christoffel][`~nu`, alpha, nu], [X])+2*(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[Christoffel][`~beta`, alpha, lambda]*Physics[Christoffel][`~nu`, beta, nu]-2*(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[Christoffel][`~beta`, alpha, nu]*Physics[Christoffel][`~nu`, beta, lambda], %d_ = d_)

(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu])*Physics:-d_[alpha](Physics:-g_[`~mu`, `~nu`], [X])-(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu])*Physics:-g_[`~mu`, `~nu`]*%g_[determinant]*Physics:-g_[`~kappa`, `~lambda`]*Physics:-d_[alpha](Physics:-g_[kappa, lambda], [X])/(-%g_[determinant])^(1/2)+(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-d_[alpha](Physics:-Christoffel[`~beta`, beta, nu], [X])-Physics:-d_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X]))*Physics:-g_[`~mu`, `~nu`]+(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])-(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X])+2*(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]-2*(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda]

(27)

Simplify((-%g_[determinant])^(1/2)*(Physics[g_][mu, `~alpha`]*Physics[Christoffel][`~beta`, beta, nu]-Physics[Christoffel][`~alpha`, mu, nu])*Physics[d_][alpha](Physics[g_][`~mu`, `~nu`], [X])-(1/2)*(Physics[g_][mu, `~alpha`]*Physics[Christoffel][`~beta`, beta, nu]-Physics[Christoffel][`~alpha`, mu, nu])*Physics[g_][`~mu`, `~nu`]*%g_[determinant]*Physics[g_][`~kappa`, `~lambda`]*Physics[d_][alpha](Physics[g_][kappa, lambda], [X])/(-%g_[determinant])^(1/2)+(-%g_[determinant])^(1/2)*(Physics[g_][mu, `~alpha`]*Physics[d_][alpha](Physics[Christoffel][`~beta`, beta, nu], [X])-Physics[d_][alpha](Physics[Christoffel][`~alpha`, mu, nu], [X]))*Physics[g_][`~mu`, `~nu`]+(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[d_][nu](Physics[Christoffel][`~nu`, alpha, lambda], [X])-(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[d_][lambda](Physics[Christoffel][`~nu`, alpha, nu], [X])+2*(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[Christoffel][`~beta`, alpha, lambda]*Physics[Christoffel][`~nu`, beta, nu]-2*(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[Christoffel][`~beta`, alpha, nu]*Physics[Christoffel][`~nu`, beta, lambda])

0

(28)

That said, it is also true that TD = -L[22]-2*L[11] results in the Lagrangian L[1] = -L[11], and since the equations of movement don't depend on the sign of the Lagrangian, for this Lagrangian `≡`(L[C], (-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*(Physics[d_][nu](Physics[Christoffel][`~nu`, alpha, lambda], [X])-Physics[d_][lambda](Physics[Christoffel][`~nu`, alpha, nu], [X])+Physics[Christoffel][`~beta`, alpha, lambda]*Physics[Christoffel][`~nu`, beta, nu]-Physics[Christoffel][`~beta`, alpha, nu]*Physics[Christoffel][`~nu`, beta, lambda])) adding the term TD happens to be equivalent to just discarding the terms of L__C involving derivatives of Christoffel symbols.

 

Also new in Maple 2025, due to the extension of Fundiff  to compute in curved spacetimes, it is now also possible to compute Einstein's equations from first principles by constructing the action,

S := Intc(L, X)

Int(Int(Int(Int((-%g_[determinant])^(1/2)*Physics:-Ricci[alpha, `~alpha`], x = -infinity .. infinity), y = -infinity .. infinity), z = -infinity .. infinity), t = -infinity .. infinity)

(29)

and equating to zero the functional derivative with respect to the metric. To avoid displaying the resulting large expression, end the input line with ":"

EE__unsimplified := Fundiff(S, g_[alpha, beta]) = 0

Simplifying this result, we get an expression in terms of Christoffel  symbols and its derivatives

EEC := Simplify(EE__unsimplified)

(1/4)*(2*Physics:-Christoffel[chi, iota, kappa]*Physics:-Christoffel[`~iota`, `~chi`, `~kappa`]-2*Physics:-Christoffel[chi, iota, `~chi`]*Physics:-Christoffel[`~iota`, kappa, `~kappa`]-2*Physics:-D_[iota](Physics:-Christoffel[chi, `~chi`, `~iota`], [X])+2*Physics:-D_[chi](Physics:-Christoffel[`~chi`, iota, `~iota`], [X]))*Physics:-g_[`~alpha`, `~beta`]+(1/4)*(Physics:-Christoffel[`~alpha`, chi, `~beta`]+Physics:-Christoffel[`~beta`, chi, `~alpha`])*Physics:-Christoffel[`~chi`, iota, `~iota`]-(1/4)*Physics:-Christoffel[`~beta`, chi, iota]*Physics:-Christoffel[`~chi`, `~alpha`, `~iota`]-(1/2)*Physics:-Christoffel[chi, iota, `~alpha`]*Physics:-Christoffel[`~iota`, `~beta`, `~chi`]+(1/2)*Physics:-Christoffel[chi, `~alpha`, `~beta`]*Physics:-Christoffel[iota, `~chi`, `~iota`]-(1/4)*Physics:-Christoffel[`~alpha`, chi, iota]*Physics:-Christoffel[`~chi`, `~beta`, `~iota`]+(1/4)*Physics:-D_[chi](Physics:-Christoffel[`~alpha`, `~beta`, `~chi`], [X])+(1/4)*Physics:-D_[chi](Physics:-Christoffel[`~beta`, `~alpha`, `~chi`], [X])-(1/2)*Physics:-D_[chi](Physics:-Christoffel[`~chi`, `~alpha`, `~beta`], [X])-(1/4)*Physics:-D_[`~alpha`](Physics:-Christoffel[`~beta`, chi, `~chi`], [X])+(1/2)*Physics:-D_[`~beta`](Physics:-Christoffel[chi, `~alpha`, `~chi`], [X])-(1/4)*Physics:-D_[`~beta`](Physics:-Christoffel[`~alpha`, chi, `~chi`], [X]) = 0

(30)

In this result, we see`▿` derivatives of Christoffel  symbols, expressed using the D_  command for covariant differentiation. Although, such objects have not the geometrical meaning of a covariant derivative, computationally, they here represent what would be a covariant derivative if the Christoffel symbols were a tensor. For example,

"`▿`[chi](GAMMA[]^(alpha,beta,chi)) :"

% = expand(%)

Physics:-D_[chi](Physics:-Christoffel[`~alpha`, `~beta`, `~chi`], [X]) = Physics:-d_[chi](Physics:-Christoffel[`~alpha`, `~beta`, `~chi`], [X])+Physics:-Christoffel[`~alpha`, chi, mu]*Physics:-Christoffel[`~mu`, `~beta`, `~chi`]+Physics:-Christoffel[`~beta`, chi, mu]*Physics:-Christoffel[`~alpha`, `~chi`, `~mu`]+Physics:-Christoffel[`~chi`, chi, mu]*Physics:-Christoffel[`~alpha`, `~beta`, `~mu`]

(31)

With this computational meaning for the`▿` derivatives of Christoffel symbols appearing in (30), rewrite EEC(30) in terms of the Ricci  and Riemann  tensors. For that, consider the definition

Ricci[definition]

Physics:-Ricci[mu, nu] = Physics:-d_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X])-Physics:-d_[nu](Physics:-Christoffel[`~alpha`, mu, alpha], [X])+Physics:-Christoffel[`~beta`, mu, nu]*Physics:-Christoffel[`~alpha`, beta, alpha]-Physics:-Christoffel[`~beta`, mu, alpha]*Physics:-Christoffel[`~alpha`, nu, beta]

(32)

Rewrite the noncovariant derivatives `∂` in terms of`▿` derivatives using the computational representation (31), simplify and isolate one of them

convert(Physics[Ricci][mu, nu] = Physics[d_][alpha](Physics[Christoffel][`~alpha`, mu, nu], [X])-Physics[d_][nu](Physics[Christoffel][`~alpha`, mu, alpha], [X])+Physics[Christoffel][`~beta`, mu, nu]*Physics[Christoffel][`~alpha`, beta, alpha]-Physics[Christoffel][`~beta`, mu, alpha]*Physics[Christoffel][`~alpha`, nu, beta], D_)

Physics:-Ricci[mu, nu] = Physics:-D_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X])-Physics:-Christoffel[`~alpha`, alpha, kappa]*Physics:-Christoffel[`~kappa`, mu, nu]+Physics:-Christoffel[`~kappa`, alpha, mu]*Physics:-Christoffel[`~alpha`, kappa, nu]+Physics:-Christoffel[`~kappa`, alpha, nu]*Physics:-Christoffel[`~alpha`, mu, kappa]-Physics:-D_[nu](Physics:-Christoffel[`~alpha`, alpha, mu], [X])-Physics:-Christoffel[`~lambda`, mu, nu]*Physics:-Christoffel[`~alpha`, alpha, lambda]+Physics:-Christoffel[`~beta`, mu, nu]*Physics:-Christoffel[`~alpha`, alpha, beta]-Physics:-Christoffel[`~beta`, alpha, mu]*Physics:-Christoffel[`~alpha`, beta, nu]

(33)

Simplify(Physics[Ricci][mu, nu] = D_[alpha](Physics[Christoffel][`~alpha`, mu, nu], [X])-Physics[Christoffel][`~alpha`, alpha, kappa]*Physics[Christoffel][`~kappa`, mu, nu]+Physics[Christoffel][`~kappa`, alpha, mu]*Physics[Christoffel][`~alpha`, kappa, nu]+Physics[Christoffel][`~kappa`, alpha, nu]*Physics[Christoffel][`~alpha`, mu, kappa]-D_[nu](Physics[Christoffel][`~alpha`, alpha, mu], [X])-Physics[Christoffel][`~lambda`, mu, nu]*Physics[Christoffel][`~alpha`, alpha, lambda]+Physics[Christoffel][`~beta`, mu, nu]*Physics[Christoffel][`~alpha`, alpha, beta]-Physics[Christoffel][`~beta`, alpha, mu]*Physics[Christoffel][`~alpha`, beta, nu])

Physics:-Ricci[mu, nu] = Physics:-Christoffel[alpha, beta, mu]*Physics:-Christoffel[`~beta`, nu, `~alpha`]-Physics:-Christoffel[beta, mu, nu]*Physics:-Christoffel[alpha, `~alpha`, `~beta`]+Physics:-D_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X])-Physics:-D_[nu](Physics:-Christoffel[alpha, mu, `~alpha`], [X])

(34)

C_to_Ricci := isolate(Physics[Ricci][mu, nu] = Physics[Christoffel][alpha, beta, mu]*Physics[Christoffel][`~beta`, nu, `~alpha`]-Physics[Christoffel][beta, mu, nu]*Physics[Christoffel][alpha, `~alpha`, `~beta`]+D_[alpha](Physics[Christoffel][`~alpha`, mu, nu], [X])-D_[nu](Physics[Christoffel][alpha, mu, `~alpha`], [X]), D_[alpha](Christoffel[`~alpha`, mu, nu]))

Physics:-D_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X]) = -Physics:-Christoffel[alpha, beta, mu]*Physics:-Christoffel[`~beta`, nu, `~alpha`]+Physics:-Christoffel[beta, mu, nu]*Physics:-Christoffel[alpha, `~alpha`, `~beta`]+Physics:-Ricci[mu, nu]+Physics:-D_[nu](Physics:-Christoffel[alpha, mu, `~alpha`], [X])

(35)

Analogously, derive an expression to rewrite`▿` derivatives of Christoffel symbols using the Riemann  tensor

Riemann[`~alpha`, beta, mu, nu, definition]

Physics:-Riemann[`~alpha`, beta, mu, nu] = Physics:-d_[mu](Physics:-Christoffel[`~alpha`, beta, nu], [X])-Physics:-d_[nu](Physics:-Christoffel[`~alpha`, beta, mu], [X])+Physics:-Christoffel[`~alpha`, upsilon, mu]*Physics:-Christoffel[`~upsilon`, beta, nu]-Physics:-Christoffel[`~alpha`, upsilon, nu]*Physics:-Christoffel[`~upsilon`, beta, mu]

(36)

convert(Physics[Riemann][`~alpha`, beta, mu, nu] = Physics[d_][mu](Physics[Christoffel][`~alpha`, beta, nu], [X])-Physics[d_][nu](Physics[Christoffel][`~alpha`, beta, mu], [X])+Physics[Christoffel][`~alpha`, upsilon, mu]*Physics[Christoffel][`~upsilon`, beta, nu]-Physics[Christoffel][`~alpha`, upsilon, nu]*Physics[Christoffel][`~upsilon`, beta, mu], D_)

Physics:-Riemann[`~alpha`, beta, mu, nu] = Physics:-D_[mu](Physics:-Christoffel[`~alpha`, beta, nu], [X])+Physics:-Christoffel[`~kappa`, mu, nu]*Physics:-Christoffel[`~alpha`, beta, kappa]-Physics:-Christoffel[`~alpha`, kappa, mu]*Physics:-Christoffel[`~kappa`, beta, nu]+Physics:-Christoffel[`~kappa`, beta, mu]*Physics:-Christoffel[`~alpha`, kappa, nu]-Physics:-D_[nu](Physics:-Christoffel[`~alpha`, beta, mu], [X])-Physics:-Christoffel[`~lambda`, mu, nu]*Physics:-Christoffel[`~alpha`, beta, lambda]-Physics:-Christoffel[`~lambda`, beta, nu]*Physics:-Christoffel[`~alpha`, lambda, mu]+Physics:-Christoffel[`~alpha`, lambda, nu]*Physics:-Christoffel[`~lambda`, beta, mu]+Physics:-Christoffel[`~alpha`, mu, upsilon]*Physics:-Christoffel[`~upsilon`, beta, nu]-Physics:-Christoffel[`~alpha`, nu, upsilon]*Physics:-Christoffel[`~upsilon`, beta, mu]

(37)

Simplify(Physics[Riemann][`~alpha`, beta, mu, nu] = D_[mu](Physics[Christoffel][`~alpha`, beta, nu], [X])+Physics[Christoffel][`~kappa`, mu, nu]*Physics[Christoffel][`~alpha`, beta, kappa]-Physics[Christoffel][`~alpha`, kappa, mu]*Physics[Christoffel][`~kappa`, beta, nu]+Physics[Christoffel][`~kappa`, beta, mu]*Physics[Christoffel][`~alpha`, kappa, nu]-D_[nu](Physics[Christoffel][`~alpha`, beta, mu], [X])-Physics[Christoffel][`~lambda`, mu, nu]*Physics[Christoffel][`~alpha`, beta, lambda]-Physics[Christoffel][`~lambda`, beta, nu]*Physics[Christoffel][`~alpha`, lambda, mu]+Physics[Christoffel][`~alpha`, lambda, nu]*Physics[Christoffel][`~lambda`, beta, mu]+Physics[Christoffel][`~alpha`, mu, upsilon]*Physics[Christoffel][`~upsilon`, beta, nu]-Physics[Christoffel][`~alpha`, nu, upsilon]*Physics[Christoffel][`~upsilon`, beta, mu])

Physics:-Riemann[`~alpha`, beta, mu, nu] = -Physics:-Christoffel[`~alpha`, kappa, mu]*Physics:-Christoffel[`~kappa`, beta, nu]+Physics:-Christoffel[`~kappa`, beta, mu]*Physics:-Christoffel[`~alpha`, kappa, nu]+Physics:-D_[mu](Physics:-Christoffel[`~alpha`, beta, nu], [X])-Physics:-D_[nu](Physics:-Christoffel[`~alpha`, beta, mu], [X])

(38)

C_to_Riemann := isolate(Physics[Riemann][`~alpha`, beta, mu, nu] = -Physics[Christoffel][`~alpha`, kappa, mu]*Physics[Christoffel][`~kappa`, beta, nu]+Physics[Christoffel][`~kappa`, beta, mu]*Physics[Christoffel][`~alpha`, kappa, nu]+D_[mu](Physics[Christoffel][`~alpha`, beta, nu], [X])-D_[nu](Physics[Christoffel][`~alpha`, beta, mu], [X]), D_[mu](Christoffel[`~alpha`, beta, nu]))

Physics:-D_[mu](Physics:-Christoffel[`~alpha`, beta, nu], [X]) = Physics:-Christoffel[`~alpha`, kappa, mu]*Physics:-Christoffel[`~kappa`, beta, nu]-Physics:-Christoffel[`~kappa`, beta, mu]*Physics:-Christoffel[`~alpha`, kappa, nu]+Physics:-Riemann[`~alpha`, beta, mu, nu]+Physics:-D_[nu](Physics:-Christoffel[`~alpha`, beta, mu], [X])

(39)

Substitute  these two equations, in sequence, into Einstein's equations EEC≡(30)

Substitute(C_to_Riemann, C_to_Ricci, EEC)

-(1/4)*Physics:-Christoffel[`~beta`, psi, `~alpha`]*Physics:-Christoffel[`~psi`, omega, `~omega`]+(1/4)*Physics:-Christoffel[`~beta`, psi, `~omega`]*Physics:-Christoffel[`~psi`, omega, `~alpha`]+(1/4)*Physics:-Christoffel[`~alpha`, lambda, mu]*Physics:-Christoffel[`~lambda`, `~beta`, `~mu`]-(1/4)*Physics:-Christoffel[`~alpha`, lambda, `~mu`]*Physics:-Christoffel[`~lambda`, mu, `~beta`]+(1/4)*Physics:-Christoffel[`~beta`, nu, sigma]*Physics:-Christoffel[`~sigma`, `~alpha`, `~nu`]-(1/4)*Physics:-Christoffel[`~beta`, sigma, `~nu`]*Physics:-Christoffel[`~sigma`, nu, `~alpha`]+(1/2)*Physics:-Christoffel[omicron, zeta, `~beta`]*Physics:-Christoffel[`~zeta`, `~alpha`, `~omicron`]-(1/2)*Physics:-Christoffel[omicron, zeta, `~omicron`]*Physics:-Christoffel[`~zeta`, `~alpha`, `~beta`]-Physics:-Ricci[`~alpha`, `~beta`]-(1/2)*Physics:-Christoffel[`~tau`, `~alpha`, `~beta`]*Physics:-Christoffel[`~upsilon`, tau, upsilon]-(1/2)*Physics:-Christoffel[chi, iota, `~alpha`]*Physics:-Christoffel[`~iota`, `~beta`, `~chi`]+(1/4)*(Physics:-Christoffel[`~alpha`, chi, `~beta`]+Physics:-Christoffel[`~beta`, chi, `~alpha`])*Physics:-Christoffel[`~chi`, iota, `~iota`]+(1/2)*Physics:-Christoffel[`~upsilon`, tau, `~beta`]*Physics:-Christoffel[`~tau`, upsilon, `~alpha`]-(1/4)*Physics:-Christoffel[`~beta`, chi, iota]*Physics:-Christoffel[`~chi`, `~alpha`, `~iota`]+(1/2)*Physics:-Christoffel[chi, `~alpha`, `~beta`]*Physics:-Christoffel[iota, `~chi`, `~iota`]-(1/4)*Physics:-Christoffel[`~alpha`, chi, iota]*Physics:-Christoffel[`~chi`, `~beta`, `~iota`]-(1/4)*Physics:-D_[`~rho1`](Physics:-Christoffel[`~alpha`, rho1, `~beta`], [X])+(1/4)*Physics:-D_[`~mu`](Physics:-Christoffel[`~alpha`, mu, `~beta`], [X])+(1/4)*Physics:-D_[`~nu`](Physics:-Christoffel[`~beta`, nu, `~alpha`], [X])-(1/2)*Physics:-D_[`~beta`](Physics:-Christoffel[`~upsilon`, upsilon, `~alpha`], [X])-(1/4)*Physics:-D_[`~omega`](Physics:-Christoffel[`~beta`, omega, `~alpha`], [X])+(1/2)*Physics:-D_[`~beta`](Physics:-Christoffel[alpha9, `~alpha`, `~alpha9`], [X])-(1/4)*Physics:-Christoffel[`~alpha`, rho, `~beta`]*Physics:-Christoffel[`~rho`, rho1, `~rho1`]+(1/4)*Physics:-Christoffel[`~alpha`, rho, `~rho1`]*Physics:-Christoffel[`~rho`, rho1, `~beta`]+(1/2)*Physics:-Christoffel[alpha10, `~alpha`, `~beta`]*Physics:-Christoffel[alpha9, `~alpha10`, `~alpha9`]-(1/2)*Physics:-Christoffel[alpha9, alpha10, `~alpha`]*Physics:-Christoffel[`~alpha10`, `~alpha9`, `~beta`]+(1/4)*(2*Physics:-Christoffel[chi, iota, kappa]*Physics:-Christoffel[`~iota`, `~chi`, `~kappa`]-2*Physics:-Christoffel[chi, iota, `~chi`]*Physics:-Christoffel[`~iota`, kappa, `~kappa`]-2*Physics:-Christoffel[alpha4, alpha5, alpha6]*Physics:-Christoffel[`~alpha6`, `~alpha4`, `~alpha5`]+2*Physics:-Christoffel[alpha4, alpha6, `~alpha5`]*Physics:-Christoffel[`~alpha6`, alpha5, `~alpha4`]-2*Physics:-D_[`~alpha5`](Physics:-Christoffel[alpha4, alpha5, `~alpha4`], [X])+2*Physics:-Christoffel[`~alpha1`, alpha1, alpha3]*Physics:-Christoffel[`~alpha3`, alpha2, `~alpha2`]-2*Physics:-Christoffel[`~alpha1`, alpha3, `~alpha2`]*Physics:-Christoffel[`~alpha3`, alpha1, alpha2]+2*Physics:-Ricci[alpha2, `~alpha2`]+2*Physics:-D_[`~alpha2`](Physics:-Christoffel[`~alpha1`, alpha1, alpha2], [X]))*Physics:-g_[`~alpha`, `~beta`] = 0

(40)

Simplify  to arrive at the traditional compact form of Einstein's equations

Simplify(-(1/4)*Physics[Christoffel][`~beta`, psi, `~alpha`]*Physics[Christoffel][`~psi`, omega, `~omega`]+(1/4)*Physics[Christoffel][`~beta`, psi, `~omega`]*Physics[Christoffel][`~psi`, omega, `~alpha`]+(1/4)*Physics[Christoffel][`~alpha`, lambda, mu]*Physics[Christoffel][`~lambda`, `~beta`, `~mu`]-(1/4)*Physics[Christoffel][`~alpha`, lambda, `~mu`]*Physics[Christoffel][`~lambda`, mu, `~beta`]+(1/4)*Physics[Christoffel][`~beta`, nu, sigma]*Physics[Christoffel][`~sigma`, `~alpha`, `~nu`]-(1/4)*Physics[Christoffel][`~beta`, sigma, `~nu`]*Physics[Christoffel][`~sigma`, nu, `~alpha`]+(1/2)*Physics[Christoffel][omicron, zeta, `~beta`]*Physics[Christoffel][`~zeta`, `~alpha`, `~omicron`]-(1/2)*Physics[Christoffel][omicron, zeta, `~omicron`]*Physics[Christoffel][`~zeta`, `~alpha`, `~beta`]-(1/2)*Physics[Christoffel][`~tau`, `~alpha`, `~beta`]*Physics[Christoffel][`~upsilon`, tau, upsilon]-(1/2)*Physics[Christoffel][chi, iota, `~alpha`]*Physics[Christoffel][`~iota`, `~beta`, `~chi`]+(1/4)*(Physics[Christoffel][`~alpha`, chi, `~beta`]+Physics[Christoffel][`~beta`, chi, `~alpha`])*Physics[Christoffel][`~chi`, iota, `~iota`]+(1/2)*Physics[Christoffel][`~upsilon`, tau, `~beta`]*Physics[Christoffel][`~tau`, upsilon, `~alpha`]-(1/4)*Physics[Christoffel][`~beta`, chi, iota]*Physics[Christoffel][`~chi`, `~alpha`, `~iota`]+(1/2)*Physics[Christoffel][chi, `~alpha`, `~beta`]*Physics[Christoffel][iota, `~chi`, `~iota`]-(1/4)*Physics[Christoffel][`~alpha`, chi, iota]*Physics[Christoffel][`~chi`, `~beta`, `~iota`]-(1/4)*Physics[Christoffel][`~alpha`, rho, `~beta`]*Physics[Christoffel][`~rho`, rho1, `~rho1`]+(1/4)*Physics[Christoffel][`~alpha`, rho, `~rho1`]*Physics[Christoffel][`~rho`, rho1, `~beta`]+(1/2)*Physics[Christoffel][alpha10, `~alpha`, `~beta`]*Physics[Christoffel][alpha9, `~alpha10`, `~alpha9`]-(1/2)*Physics[Christoffel][alpha9, alpha10, `~alpha`]*Physics[Christoffel][`~alpha10`, `~alpha9`, `~beta`]+(1/4)*(2*Physics[Christoffel][chi, iota, kappa]*Physics[Christoffel][`~iota`, `~chi`, `~kappa`]-2*Physics[Christoffel][chi, iota, `~chi`]*Physics[Christoffel][`~iota`, kappa, `~kappa`]-2*Physics[Christoffel][alpha4, alpha5, alpha6]*Physics[Christoffel][`~alpha6`, `~alpha4`, `~alpha5`]+2*Physics[Christoffel][alpha4, alpha6, `~alpha5`]*Physics[Christoffel][`~alpha6`, alpha5, `~alpha4`]-2*D_[`~alpha5`](Physics[Christoffel][alpha4, alpha5, `~alpha4`], [X])+2*Physics[Christoffel][`~alpha1`, alpha1, alpha3]*Physics[Christoffel][`~alpha3`, alpha2, `~alpha2`]-2*Physics[Christoffel][`~alpha1`, alpha3, `~alpha2`]*Physics[Christoffel][`~alpha3`, alpha1, alpha2]+2*Physics[Ricci][alpha2, `~alpha2`]+2*D_[`~alpha2`](Physics[Christoffel][`~alpha1`, alpha1, alpha2], [X]))*Physics[g_][`~alpha`, `~beta`]-(1/4)*D_[`~rho1`](Physics[Christoffel][`~alpha`, rho1, `~beta`], [X])+(1/4)*D_[`~mu`](Physics[Christoffel][`~alpha`, mu, `~beta`], [X])+(1/4)*D_[`~nu`](Physics[Christoffel][`~beta`, nu, `~alpha`], [X])-(1/2)*D_[`~beta`](Physics[Christoffel][`~upsilon`, upsilon, `~alpha`], [X])-(1/4)*D_[`~omega`](Physics[Christoffel][`~beta`, omega, `~alpha`], [X])+(1/2)*D_[`~beta`](Physics[Christoffel][alpha9, `~alpha`, `~alpha9`], [X])-Physics[Ricci][`~alpha`, `~beta`] = 0)

(1/2)*Physics:-Ricci[chi, `~chi`]*Physics:-g_[`~alpha`, `~beta`]-Physics:-Ricci[`~alpha`, `~beta`] = 0

(41)

 

Linearized Gravity

 

 

Generally speaking, linearizing gravity is about discarding in Einstein's field equations the terms that are quadratic in the metric and its derivatives, an approximation valid when the gravitational field is weak (the deviation from a flat Minkowski spacetime is small). Linearizing gravity is used, e.g. in the study of gravitational waves. In the context of Maple's Physics , the formulation of linearized gravity can be done using the general relativity tensors that come predefined in Physics plus a new in Maple 2025 Physics:-Library:-Linearize  command.

 

In what follows it is shown how to linearize the Ricci  tensor and through it Einstein 's equations. To compare results, see for instance the Wikipedia page for Linearized gravity. Start setting coordinates, you could use Cartesian, spherical, cylindrical, or define your own.

restart; with(Physics); Setup(coordinates = cartesian)

`Systems of spacetime coordinates are:`*{X = (x, y, z, t)}

 

_______________________________________________________

 

[coordinatesystems = {X}]

(42)

The default metric when Physics is loaded is the Minkowski metric, representing a flat (no curvature) spacetime

g_[]

Physics:-g_[mu, nu] = Matrix(%id = 36893488151987392132)

(43)

The weakly perturbed metric


Suppose you want to define a small perturbation around this metric. For that purpose, define a perturbation tensor h[mu, nu], that in the general case depends on the coordinates and is not diagonal, the only requirement is that it is symmetric (to have it diagonal, change symmetric by diagonal; to have it constant, change delta[i, j](X) by delta[i, j])

h[mu, nu] = Matrix(4, proc (i, j) options operator, arrow; delta[i, j](X) end proc, shape = symmetric)

h[mu, nu] = Matrix(%id = 36893488152568729716)

(44)

In the above it is understood that `≪`(`δ__i,j`, 1), so that quadratic or higher powers of it or its derivatives can be approximated to 0 (discarded). Define the components of `h__μ,ν` accordingly

"Define(?)"

`Defined objects with tensor properties`

 

{Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-d_[mu], Physics:-g_[mu, nu], h[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(45)

Define also a tensor `η__μ,ν` representing the unperturbed Minkowski metric

"eta[mu,nu] = rhs(?)"

eta[mu, nu] = Matrix(%id = 36893488151987392132)

(46)

"Define(?)"

`Defined objects with tensor properties`

 

{Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-d_[mu], eta[mu, nu], Physics:-g_[mu, nu], h[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(47)

The weakly perturbed metric is given by

g_[mu, nu] = eta[mu, nu]+h[mu, nu]

Physics:-g_[mu, nu] = eta[mu, nu]+h[mu, nu]

(48)

Make this be the definition of the metric

Define(Physics[g_][mu, nu] = eta[mu, nu]+h[mu, nu])

_______________________________________________________

 

`Coordinates: `[x, y, z, t]*`. Signature: `(`- - - +`)

 

_______________________________________________________

 

Physics:-g_[mu, nu] = Matrix(%id = 36893488152066920564)

 

_______________________________________________________

 

`Setting `*lowercaselatin_is*` letters to represent `*space*` indices`

 

`Defined objects with tensor properties`

 

{Physics:-D_[mu], Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-Ricci[mu, nu], Physics:-Riemann[mu, nu, alpha, beta], Physics:-Weyl[mu, nu, alpha, beta], Physics:-d_[mu], eta[mu, nu], Physics:-g_[mu, nu], Physics:-gamma_[i, j], h[mu, nu], Physics:-Christoffel[mu, nu, alpha], Physics:-Einstein[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(49)

 

Linearizing the Ricci tensor


The linearized form of the Ricci  tensor is computed by introducing this weakly perturbed metric (48) in the expression of the Ricci tensor as a function of the metric. This can be accomplished in different ways, the simpler being to use the conversion network between tensors , but for illustration purposes, showing steps one at time, a substitution of definitions one into the other one is used

Ricci[definition]

Physics:-Ricci[mu, nu] = Physics:-d_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X])-Physics:-d_[nu](Physics:-Christoffel[`~alpha`, mu, alpha], [X])+Physics:-Christoffel[`~beta`, mu, nu]*Physics:-Christoffel[`~alpha`, beta, alpha]-Physics:-Christoffel[`~beta`, mu, alpha]*Physics:-Christoffel[`~alpha`, nu, beta]

(50)

Christoffel[`~alpha`, mu, nu, definition]

Physics:-Christoffel[`~alpha`, mu, nu] = (1/2)*Physics:-g_[`~alpha`, `~beta`]*(Physics:-d_[nu](Physics:-g_[beta, mu], [X])+Physics:-d_[mu](Physics:-g_[beta, nu], [X])-Physics:-d_[beta](Physics:-g_[mu, nu], [X]))

(51)

Substitute(Physics[Christoffel][`~alpha`, mu, nu] = (1/2)*Physics[g_][`~alpha`, `~beta`]*(Physics[d_][nu](Physics[g_][beta, mu], [X])+Physics[d_][mu](Physics[g_][beta, nu], [X])-Physics[d_][beta](Physics[g_][mu, nu], [X])), Physics[Ricci][mu, nu] = Physics[d_][alpha](Physics[Christoffel][`~alpha`, mu, nu], [X])-Physics[d_][nu](Physics[Christoffel][`~alpha`, mu, alpha], [X])+Physics[Christoffel][`~beta`, mu, nu]*Physics[Christoffel][`~alpha`, beta, alpha]-Physics[Christoffel][`~beta`, mu, alpha]*Physics[Christoffel][`~alpha`, nu, beta])

Physics:-Ricci[mu, nu] = Physics:-d_[alpha]((1/2)*Physics:-g_[`~alpha`, `~kappa`]*(Physics:-d_[nu](Physics:-g_[kappa, mu], [X])+Physics:-d_[mu](Physics:-g_[kappa, nu], [X])-Physics:-d_[kappa](Physics:-g_[mu, nu], [X])), [X])-Physics:-d_[nu]((1/2)*Physics:-g_[`~alpha`, `~tau`]*(Physics:-d_[mu](Physics:-g_[tau, alpha], [X])+Physics:-d_[alpha](Physics:-g_[tau, mu], [X])-Physics:-d_[tau](Physics:-g_[alpha, mu], [X])), [X])+(1/4)*Physics:-g_[`~beta`, `~iota`]*(Physics:-d_[nu](Physics:-g_[iota, mu], [X])+Physics:-d_[mu](Physics:-g_[iota, nu], [X])-Physics:-d_[iota](Physics:-g_[mu, nu], [X]))*Physics:-g_[`~alpha`, `~lambda`]*(Physics:-d_[beta](Physics:-g_[lambda, alpha], [X])+Physics:-d_[alpha](Physics:-g_[lambda, beta], [X])-Physics:-d_[lambda](Physics:-g_[alpha, beta], [X]))-(1/4)*Physics:-g_[`~beta`, `~omega`]*(Physics:-d_[mu](Physics:-g_[omega, alpha], [X])+Physics:-d_[alpha](Physics:-g_[omega, mu], [X])-Physics:-d_[omega](Physics:-g_[alpha, mu], [X]))*Physics:-g_[`~alpha`, `~chi`]*(Physics:-d_[nu](Physics:-g_[chi, beta], [X])+Physics:-d_[beta](Physics:-g_[chi, nu], [X])-Physics:-d_[chi](Physics:-g_[beta, nu], [X]))

(52)

Introducing (48)g[mu, nu] = eta[mu, nu]+h[mu, nu], and also the inert form of the Ricci tensor to facilitate simplification some steps below,

Substitute(Physics[g_][mu, nu] = eta[mu, nu]+h[mu, nu], Ricci = %Ricci, Physics[Ricci][mu, nu] = Physics[d_][alpha]((1/2)*Physics[g_][`~alpha`, `~kappa`]*(Physics[d_][nu](Physics[g_][kappa, mu], [X])+Physics[d_][mu](Physics[g_][kappa, nu], [X])-Physics[d_][kappa](Physics[g_][mu, nu], [X])), [X])-Physics[d_][nu]((1/2)*Physics[g_][`~alpha`, `~tau`]*(Physics[d_][mu](Physics[g_][tau, alpha], [X])+Physics[d_][alpha](Physics[g_][tau, mu], [X])-Physics[d_][tau](Physics[g_][alpha, mu], [X])), [X])+(1/4)*Physics[g_][`~beta`, `~iota`]*(Physics[d_][nu](Physics[g_][iota, mu], [X])+Physics[d_][mu](Physics[g_][iota, nu], [X])-Physics[d_][iota](Physics[g_][mu, nu], [X]))*Physics[g_][`~alpha`, `~lambda`]*(Physics[d_][beta](Physics[g_][lambda, alpha], [X])+Physics[d_][alpha](Physics[g_][lambda, beta], [X])-Physics[d_][lambda](Physics[g_][alpha, beta], [X]))-(1/4)*Physics[g_][`~beta`, `~omega`]*(Physics[d_][mu](Physics[g_][omega, alpha], [X])+Physics[d_][alpha](Physics[g_][omega, mu], [X])-Physics[d_][omega](Physics[g_][alpha, mu], [X]))*Physics[g_][`~alpha`, `~chi`]*(Physics[d_][nu](Physics[g_][chi, beta], [X])+Physics[d_][beta](Physics[g_][chi, nu], [X])-Physics[d_][chi](Physics[g_][beta, nu], [X])))

%Ricci[mu, nu] = (1/2)*Physics:-d_[alpha](eta[`~alpha`, `~kappa`]+h[`~alpha`, `~kappa`], [X])*(Physics:-d_[nu](eta[kappa, mu]+h[kappa, mu], [X])+Physics:-d_[mu](eta[kappa, nu]+h[kappa, nu], [X])-Physics:-d_[kappa](eta[mu, nu]+h[mu, nu], [X]))+(1/2)*(eta[`~alpha`, `~kappa`]+h[`~alpha`, `~kappa`])*(Physics:-d_[alpha](Physics:-d_[nu](eta[kappa, mu]+h[kappa, mu], [X]), [X])+Physics:-d_[alpha](Physics:-d_[mu](eta[kappa, nu]+h[kappa, nu], [X]), [X])-Physics:-d_[alpha](Physics:-d_[kappa](eta[mu, nu]+h[mu, nu], [X]), [X]))-(1/2)*Physics:-d_[nu](eta[`~alpha`, `~tau`]+h[`~alpha`, `~tau`], [X])*(Physics:-d_[mu](eta[alpha, tau]+h[alpha, tau], [X])+Physics:-d_[alpha](eta[mu, tau]+h[mu, tau], [X])-Physics:-d_[tau](eta[alpha, mu]+h[alpha, mu], [X]))-(1/2)*(eta[`~alpha`, `~tau`]+h[`~alpha`, `~tau`])*(Physics:-d_[mu](Physics:-d_[nu](eta[alpha, tau]+h[alpha, tau], [X]), [X])+Physics:-d_[alpha](Physics:-d_[nu](eta[mu, tau]+h[mu, tau], [X]), [X])-Physics:-d_[nu](Physics:-d_[tau](eta[alpha, mu]+h[alpha, mu], [X]), [X]))+(1/4)*(eta[`~beta`, `~iota`]+h[`~beta`, `~iota`])*(Physics:-d_[nu](eta[iota, mu]+h[iota, mu], [X])+Physics:-d_[mu](eta[iota, nu]+h[iota, nu], [X])-Physics:-d_[iota](eta[mu, nu]+h[mu, nu], [X]))*(eta[`~alpha`, `~lambda`]+h[`~alpha`, `~lambda`])*(Physics:-d_[beta](eta[alpha, lambda]+h[alpha, lambda], [X])+Physics:-d_[alpha](eta[beta, lambda]+h[beta, lambda], [X])-Physics:-d_[lambda](eta[alpha, beta]+h[alpha, beta], [X]))-(1/4)*(eta[`~beta`, `~omega`]+h[`~beta`, `~omega`])*(Physics:-d_[mu](eta[alpha, omega]+h[alpha, omega], [X])+Physics:-d_[alpha](eta[mu, omega]+h[mu, omega], [X])-Physics:-d_[omega](eta[alpha, mu]+h[alpha, mu], [X]))*(eta[`~alpha`, `~chi`]+h[`~alpha`, `~chi`])*(Physics:-d_[nu](eta[beta, chi]+h[beta, chi], [X])+Physics:-d_[beta](eta[chi, nu]+h[chi, nu], [X])-Physics:-d_[chi](eta[beta, nu]+h[beta, nu], [X]))

(53)

This expression contains several terms quadratic in the small perturbation `h__μ,ν` and its derivatives. The new in Maple 2025 routine to filter out those terms is Physics:-Library:-Linearize , which requires specifying the symbol representing the small quantities

Library:-Linearize(%Ricci[mu, nu] = (1/2)*Physics[d_][alpha](eta[`~alpha`, `~kappa`]+h[`~alpha`, `~kappa`], [X])*(Physics[d_][nu](eta[kappa, mu]+h[kappa, mu], [X])+Physics[d_][mu](eta[kappa, nu]+h[kappa, nu], [X])-Physics[d_][kappa](eta[mu, nu]+h[mu, nu], [X]))+(1/2)*(eta[`~alpha`, `~kappa`]+h[`~alpha`, `~kappa`])*(Physics[d_][alpha](Physics[d_][nu](eta[kappa, mu]+h[kappa, mu], [X]), [X])+Physics[d_][alpha](Physics[d_][mu](eta[kappa, nu]+h[kappa, nu], [X]), [X])-Physics[d_][alpha](Physics[d_][kappa](eta[mu, nu]+h[mu, nu], [X]), [X]))-(1/2)*Physics[d_][nu](eta[`~alpha`, `~tau`]+h[`~alpha`, `~tau`], [X])*(Physics[d_][mu](eta[alpha, tau]+h[alpha, tau], [X])+Physics[d_][alpha](eta[mu, tau]+h[mu, tau], [X])-Physics[d_][tau](eta[alpha, mu]+h[alpha, mu], [X]))-(1/2)*(eta[`~alpha`, `~tau`]+h[`~alpha`, `~tau`])*(Physics[d_][mu](Physics[d_][nu](eta[alpha, tau]+h[alpha, tau], [X]), [X])+Physics[d_][alpha](Physics[d_][nu](eta[mu, tau]+h[mu, tau], [X]), [X])-Physics[d_][nu](Physics[d_][tau](eta[alpha, mu]+h[alpha, mu], [X]), [X]))+(1/4)*(eta[`~beta`, `~iota`]+h[`~beta`, `~iota`])*(Physics[d_][nu](eta[iota, mu]+h[iota, mu], [X])+Physics[d_][mu](eta[iota, nu]+h[iota, nu], [X])-Physics[d_][iota](eta[mu, nu]+h[mu, nu], [X]))*(eta[`~alpha`, `~lambda`]+h[`~alpha`, `~lambda`])*(Physics[d_][beta](eta[alpha, lambda]+h[alpha, lambda], [X])+Physics[d_][alpha](eta[beta, lambda]+h[beta, lambda], [X])-Physics[d_][lambda](eta[alpha, beta]+h[alpha, beta], [X]))-(1/4)*(eta[`~beta`, `~omega`]+h[`~beta`, `~omega`])*(Physics[d_][mu](eta[alpha, omega]+h[alpha, omega], [X])+Physics[d_][alpha](eta[mu, omega]+h[mu, omega], [X])-Physics[d_][omega](eta[alpha, mu]+h[alpha, mu], [X]))*(eta[`~alpha`, `~chi`]+h[`~alpha`, `~chi`])*(Physics[d_][nu](eta[beta, chi]+h[beta, chi], [X])+Physics[d_][beta](eta[chi, nu]+h[chi, nu], [X])-Physics[d_][chi](eta[beta, nu]+h[beta, nu], [X])), h)

%Ricci[mu, nu] = (1/2)*eta[`~alpha`, `~tau`]*Physics:-d_[nu](Physics:-d_[tau](h[alpha, mu], [X]), [X])-(1/2)*eta[`~alpha`, `~tau`]*Physics:-d_[mu](Physics:-d_[nu](h[alpha, tau], [X]), [X])-(1/2)*eta[`~alpha`, `~kappa`]*Physics:-d_[alpha](Physics:-d_[kappa](h[mu, nu], [X]), [X])+(1/2)*eta[`~alpha`, `~kappa`]*Physics:-d_[alpha](Physics:-d_[nu](h[kappa, mu], [X]), [X])+(1/2)*eta[`~alpha`, `~kappa`]*Physics:-d_[alpha](Physics:-d_[mu](h[kappa, nu], [X]), [X])-(1/2)*eta[`~alpha`, `~tau`]*Physics:-d_[alpha](Physics:-d_[nu](h[mu, tau], [X]), [X])

(54)

Important: in this result, `η__μ,ν` is the flat Minkowski metric, not the perturbed metric g[mu, nu]. However, in the context of a linearized formulation, `η__μ,ν` raises and lowers tensor indices the same way as g[mu, nu]. Hence, to further simplify contracted products of eta[mu, nu] in (54) , it is practical to reintroduce `g__μ,ν`representing that Minkowski metric and simplify using the internal algorithms for a flat metric

g_[min]

_______________________________________________________

 

`The Minkowski metric in coordinates `*[x, y, z, t]

 

`Signature: `(`- - - +`)

 

_______________________________________________________

 

Physics:-g_[mu, nu] = Matrix(%id = 36893488152066895868)

(55)

To proceed simplifying, replace in the expression (54) for the Ricci tensor the intermediate Minkowski `η__μ,ν`by `#msub(mi("g"),mrow(mi("μ",fontstyle = "normal"),mo(","),mi("ν",fontstyle = "normal")))`

subs(eta = g_, %Ricci[mu, nu] = (1/2)*eta[`~alpha`, `~tau`]*Physics[d_][nu](Physics[d_][tau](h[alpha, mu], [X]), [X])-(1/2)*eta[`~alpha`, `~tau`]*Physics[d_][mu](Physics[d_][nu](h[alpha, tau], [X]), [X])-(1/2)*eta[`~alpha`, `~kappa`]*Physics[d_][alpha](Physics[d_][kappa](h[mu, nu], [X]), [X])+(1/2)*eta[`~alpha`, `~kappa`]*Physics[d_][alpha](Physics[d_][nu](h[kappa, mu], [X]), [X])+(1/2)*eta[`~alpha`, `~kappa`]*Physics[d_][alpha](Physics[d_][mu](h[kappa, nu], [X]), [X])-(1/2)*eta[`~alpha`, `~tau`]*Physics[d_][alpha](Physics[d_][nu](h[mu, tau], [X]), [X]))

%Ricci[mu, nu] = (1/2)*Physics:-g_[`~alpha`, `~tau`]*Physics:-d_[nu](Physics:-d_[tau](h[alpha, mu], [X]), [X])-(1/2)*Physics:-g_[`~alpha`, `~tau`]*Physics:-d_[mu](Physics:-d_[nu](h[alpha, tau], [X]), [X])-(1/2)*Physics:-g_[`~alpha`, `~kappa`]*Physics:-d_[alpha](Physics:-d_[kappa](h[mu, nu], [X]), [X])+(1/2)*Physics:-g_[`~alpha`, `~kappa`]*Physics:-d_[alpha](Physics:-d_[nu](h[kappa, mu], [X]), [X])+(1/2)*Physics:-g_[`~alpha`, `~kappa`]*Physics:-d_[alpha](Physics:-d_[mu](h[kappa, nu], [X]), [X])-(1/2)*Physics:-g_[`~alpha`, `~tau`]*Physics:-d_[alpha](Physics:-d_[nu](h[mu, tau], [X]), [X])

(56)

Simplifying, results in the linearized form of the Ricci tensor shown in the Wikipedia page for Linearized gravity.

Simplify(%Ricci[mu, nu] = (1/2)*Physics[g_][`~alpha`, `~tau`]*Physics[d_][nu](Physics[d_][tau](h[alpha, mu], [X]), [X])-(1/2)*Physics[g_][`~alpha`, `~tau`]*Physics[d_][mu](Physics[d_][nu](h[alpha, tau], [X]), [X])-(1/2)*Physics[g_][`~alpha`, `~kappa`]*Physics[d_][alpha](Physics[d_][kappa](h[mu, nu], [X]), [X])+(1/2)*Physics[g_][`~alpha`, `~kappa`]*Physics[d_][alpha](Physics[d_][nu](h[kappa, mu], [X]), [X])+(1/2)*Physics[g_][`~alpha`, `~kappa`]*Physics[d_][alpha](Physics[d_][mu](h[kappa, nu], [X]), [X])-(1/2)*Physics[g_][`~alpha`, `~tau`]*Physics[d_][alpha](Physics[d_][nu](h[mu, tau], [X]), [X]))

%Ricci[mu, nu] = -(1/2)*Physics:-d_[mu](Physics:-d_[nu](h[tau, `~tau`], [X]), [X])-(1/2)*Physics:-dAlembertian(h[mu, nu], [X])+(1/2)*Physics:-d_[nu](Physics:-d_[tau](h[mu, `~tau`], [X]), [X])+(1/2)*Physics:-d_[mu](Physics:-d_[tau](h[nu, `~tau`], [X]), [X])

(57)

Linearizing Einstein's equations

Einstein's equations are the components of Einstein's tensor , whose definition in terms of the Ricci tensor is

Einstein[definition]

Physics:-Einstein[mu, nu] = Physics:-Ricci[mu, nu]-(1/2)*Physics:-g_[mu, nu]*Physics:-Ricci[alpha, `~alpha`]

(58)

Compute the trace R[alpha, `~alpha`] directly from the linearized form (57) of the Ricci tensor,

g_[mu, nu]*(%Ricci[mu, nu] = -(1/2)*Physics[d_][mu](Physics[d_][nu](h[tau, `~tau`], [X]), [X])-(1/2)*Physics[dAlembertian](h[mu, nu], [X])+(1/2)*Physics[d_][nu](Physics[d_][tau](h[mu, `~tau`], [X]), [X])+(1/2)*Physics[d_][mu](Physics[d_][tau](h[nu, `~tau`], [X]), [X]))

%Ricci[mu, nu]*Physics:-g_[`~mu`, `~nu`] = (-(1/2)*Physics:-d_[mu](Physics:-d_[nu](h[tau, `~tau`], [X]), [X])-(1/2)*Physics:-dAlembertian(h[mu, nu], [X])+(1/2)*Physics:-d_[nu](Physics:-d_[tau](h[mu, `~tau`], [X]), [X])+(1/2)*Physics:-d_[mu](Physics:-d_[tau](h[nu, `~tau`], [X]), [X]))*Physics:-g_[`~mu`, `~nu`]

(59)

Simplify(%Ricci[mu, nu]*Physics[g_][`~mu`, `~nu`] = (-(1/2)*Physics[d_][mu](Physics[d_][nu](h[tau, `~tau`], [X]), [X])-(1/2)*Physics[dAlembertian](h[mu, nu], [X])+(1/2)*Physics[d_][nu](Physics[d_][tau](h[mu, `~tau`], [X]), [X])+(1/2)*Physics[d_][mu](Physics[d_][tau](h[nu, `~tau`], [X]), [X]))*Physics[g_][`~mu`, `~nu`])

%Ricci[nu, `~nu`] = -Physics:-dAlembertian(h[alpha, `~alpha`], [X])+Physics:-d_[alpha](Physics:-d_[tau](h[`~alpha`, `~tau`], [X]), [X])

(60)

The linearized Einstein equations are constructed reproducing the definition (58) using (57) and (60)

(%Ricci[mu, nu] = -(1/2)*Physics[d_][mu](Physics[d_][nu](h[tau, `~tau`], [X]), [X])-(1/2)*Physics[dAlembertian](h[mu, nu], [X])+(1/2)*Physics[d_][nu](Physics[d_][tau](h[mu, `~tau`], [X]), [X])+(1/2)*Physics[d_][mu](Physics[d_][tau](h[nu, `~tau`], [X]), [X]))-(1/2)*g_[mu, nu]*(%Ricci[nu, `~nu`] = -Physics[dAlembertian](h[alpha, `~alpha`], [X])+Physics[d_][alpha](Physics[d_][tau](h[`~alpha`, `~tau`], [X]), [X]))

%Ricci[mu, nu]-(1/2)*Physics:-g_[mu, nu]*%Ricci[alpha, `~alpha`] = -(1/2)*Physics:-d_[mu](Physics:-d_[nu](h[tau, `~tau`], [X]), [X])-(1/2)*Physics:-dAlembertian(h[mu, nu], [X])+(1/2)*Physics:-d_[nu](Physics:-d_[tau](h[mu, `~tau`], [X]), [X])+(1/2)*Physics:-d_[mu](Physics:-d_[tau](h[nu, `~tau`], [X]), [X])-(1/2)*Physics:-g_[mu, nu]*(-Physics:-dAlembertian(h[alpha, `~alpha`], [X])+Physics:-d_[alpha](Physics:-d_[tau](h[`~alpha`, `~tau`], [X]), [X]))

(61)

which is the same formula shown in the Wikipedia page for Linearized gravity.


You can now redefine the general h[mu, nu] introduced in (44) in different ways (see discussion in the Wikipedia page), or, depending on the case, just substitute your preferred gauge in this formula (61) for the general case. For example, the condition for the Harmonic gauge also known as Lorentz gauge reduces the linearized field equations to their simplest form

d_[mu](h[`~mu`, nu]) = (1/2)*d_[nu](h[alpha, alpha])

Physics:-d_[mu](h[`~mu`, nu], [X]) = (1/2)*Physics:-d_[nu](h[alpha, `~alpha`], [X])

(62)

Substitute(Physics[d_][mu](h[`~mu`, nu], [X]) = (1/2)*Physics[d_][nu](h[alpha, `~alpha`], [X]), %Ricci[mu, nu]-(1/2)*Physics[g_][mu, nu]*%Ricci[alpha, `~alpha`] = -(1/2)*Physics[d_][mu](Physics[d_][nu](h[tau, `~tau`], [X]), [X])-(1/2)*Physics[dAlembertian](h[mu, nu], [X])+(1/2)*Physics[d_][nu](Physics[d_][tau](h[mu, `~tau`], [X]), [X])+(1/2)*Physics[d_][mu](Physics[d_][tau](h[nu, `~tau`], [X]), [X])-(1/2)*Physics[g_][mu, nu]*(-Physics[dAlembertian](h[alpha, `~alpha`], [X])+Physics[d_][alpha](Physics[d_][tau](h[`~alpha`, `~tau`], [X]), [X])))

%Ricci[mu, nu]-(1/2)*Physics:-g_[mu, nu]*%Ricci[alpha, `~alpha`] = -(1/2)*Physics:-d_[mu](Physics:-d_[nu](h[tau, `~tau`], [X]), [X])-(1/2)*Physics:-dAlembertian(h[mu, nu], [X])+(1/2)*Physics:-d_[nu]((1/2)*Physics:-d_[mu](h[lambda, `~lambda`], [X]), [X])+(1/2)*Physics:-d_[mu]((1/2)*Physics:-d_[nu](h[kappa, `~kappa`], [X]), [X])-(1/2)*Physics:-g_[mu, nu]*(-Physics:-dAlembertian(h[alpha, `~alpha`], [X])+Physics:-d_[alpha]((1/2)*Physics:-d_[`~alpha`](h[beta, `~beta`], [X]), [X]))

(63)

Simplify(%Ricci[mu, nu]-(1/2)*Physics[g_][mu, nu]*%Ricci[alpha, `~alpha`] = -(1/2)*Physics[d_][mu](Physics[d_][nu](h[tau, `~tau`], [X]), [X])-(1/2)*Physics[dAlembertian](h[mu, nu], [X])+(1/2)*Physics[d_][nu]((1/2)*Physics[d_][mu](h[lambda, `~lambda`], [X]), [X])+(1/2)*Physics[d_][mu]((1/2)*Physics[d_][nu](h[kappa, `~kappa`], [X]), [X])-(1/2)*Physics[g_][mu, nu]*(-Physics[dAlembertian](h[alpha, `~alpha`], [X])+Physics[d_][alpha]((1/2)*Physics[d_][`~alpha`](h[beta, `~beta`], [X]), [X])))

%Ricci[mu, nu]-(1/2)*Physics:-g_[mu, nu]*%Ricci[alpha, `~alpha`] = -(1/2)*Physics:-dAlembertian(h[mu, nu], [X])+(1/4)*Physics:-dAlembertian(h[alpha, `~alpha`], [X])*Physics:-g_[mu, nu]

(64)

Relative Tensors

 

 

In General Relativity, the context of a curved spacetime, it is sometimes necessary to work with relative tensors, for which the transformation rule under a transformation of coordinates involves powers of the determinant of the transformation - see Chapter 4 of  "Lovelock, D., and Rund, H. Tensors, Differential Forms and Variational Principles, Dover, 1989." Physics  in Maple 2025 includes a complete, new implementation of relative tensors.

 

To indicate that a tensor being defined is relative pass its relative weight. For example, set a curved spacetime,

restart; with(Physics); g_[sc]

_______________________________________________________

 

`Systems of spacetime coordinates are:`*{X = (r, theta, phi, t)}

 

`Default differentiation variables for d_, D_ and dAlembertian are:`*{X = (r, theta, phi, t)}

 

`Setting `*lowercaselatin_is*` letters to represent `*space*` indices`

 

`The Schwarzschild metric in coordinates `*[r, theta, phi, t]

 

`Parameters: `[m]

 

`Signature: `(`- - - +`)

 

_______________________________________________________

 

Physics:-g_[mu, nu] = Matrix(%id = 36893488152573138332)

(65)

Define now two tensors of one index, one of them being relative

Define(T[mu])

`Defined objects with tensor properties`

 

{Physics:-D_[mu], Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-Ricci[mu, nu], Physics:-Riemann[mu, nu, alpha, beta], T[mu], Physics:-Weyl[mu, nu, alpha, beta], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-gamma_[i, j], Physics:-Christoffel[mu, nu, alpha], Physics:-Einstein[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(66)

Define(R[mu], relativeweight = 1)

`Defined objects with tensor properties`

 

{Physics:-D_[mu], Physics:-Dgamma[mu], Physics:-Psigma[mu], R[mu], Physics:-Ricci[mu, nu], Physics:-Riemann[mu, nu, alpha, beta], T[mu], Physics:-Weyl[mu, nu, alpha, beta], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-gamma_[i, j], Physics:-Christoffel[mu, nu, alpha], Physics:-Einstein[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(67)

Transformation of Coordinates

 

Consider a transformation of coordinates, from spherical r, theta, phi, t to  rho, theta, phi, t where

TR := r = (1+m/(2*rho))^2*rho

r = (1+(1/2)*m/rho)^2*rho

(68)

The transformed components of T[mu] and R[mu] are, respectively,

TransformCoordinates(TR, T[mu], [rho, theta, phi, t])

Vector[column](%id = 36893488151820263660)

(69)

TransformCoordinates(TR, R[mu], [rho, theta, phi, t])

Vector[column](%id = 36893488151823155676)

(70)

where, when comparing both results, we see that the transformed components for R[mu] are all multiplied by J^n with n = 1 and J is the determinant of the transformation:

J__matrix := simplify(VectorCalculus:-Jacobian([rhs(TR), theta, phi, t], [rho, theta, phi, t]))

Matrix(%id = 36893488151964220700)

(71)

J = LinearAlgebra:-Determinant(J__matrix)

J = (1/4)*(-m^2+4*rho^2)/rho^2

(72)

Relative weight

 

The relative weight of a scalar, tensor or tensorial expression can be computed using the Physics:-Library:-GetRelativeWeight  command. For the two tensors T[mu] and R[mu] used above,

Library:-GetRelativeWeight(T[mu])

0

(73)

Library:-GetRelativeWeight(R[mu])

1

(74)

The relative weight of a tensor does not depend on the covariant or contravariant character of its indices

Library:-GetRelativeWeight(R[`~mu`])

1

(75)

The LeviCivita  tensor is a special case, has its relative weight defined when Physics  is loaded, and because in a curved spacetime it is not a tensor its relative weight depends on the covariant or contravariant character of its indices

Library:-GetRelativeWeight(LeviCivita[alpha, beta, mu, nu])

-1

(76)

"Library:-GetRelativeWeight(LeviCivita[~alpha, ~beta, ~mu,~nu])   "

1

(77)

The relative weight w of a product is equal to the sum of relative weights of each factor

R[mu]^2

R[mu]*R[`~mu`]

(78)

Library:-GetRelativeWeight(R[mu]*R[`~mu`])

2

(79)

The relative weight w of a power is equal to the relative weight of the base multiplied by the power

1/R[mu]^2

1/(R[mu]*R[`~mu`])

(80)

Library:-GetRelativeWeight(1/(R[mu]*R[`~mu`]))

-2

(81)

The relative weight w of a sum is equal to the relative weight of one of its terms and exists if all the terms have the same w.

"R[~mu] + LeviCivita[~alpha, ~beta, ~mu,~nu]*T[alpha] T[beta] T[nu]"

T[alpha]*T[beta]*T[nu]*Physics:-LeviCivita[`~alpha`, `~beta`, `~mu`, `~nu`]+R[`~mu`]

(82)

Library:-GetRelativeWeight(T[alpha]*T[beta]*T[nu]*Physics[LeviCivita][`~alpha`, `~beta`, `~mu`, `~nu`]+R[`~mu`])

1

(83)

The relative weight of any determinant is always equal to 2

%g_[determinant]

%g_[determinant]

(84)

Library:-GetRelativeWeight(%g_[determinant])

2

(85)

Relative Term in covariant derivatives

 

When computing the covariant derivative of a relative scalar, tensor or tensorial expression that has non-zero relative weight w, a relative term is added, that can be computed using the Physics:-Library:-GetRelativeWeight  command.

g__det := %g_[:-determinant]

%g_[determinant]

(86)

Library:-GetRelativeTerm(g__det, mu)

-2*Physics:-Christoffel[`~nu`, mu, nu]*%g_[determinant]

(87)
  

Consequently,

(%D_[mu] = D_[mu])(g__det)

%D_[mu](%g_[determinant]) = 0

(88)
  

To understand this zero value on the right-hand side, express the left-hand side in terms of d_

convert(%D_[mu](%g_[determinant]) = 0, d_)

%d_[mu](%g_[determinant], [X])-2*Physics:-Christoffel[`~alpha`, alpha, mu]*%g_[determinant] = 0

(89)
  

evaluate the inert %d_

factor(eval(%d_[mu](%g_[determinant], [X])-2*Physics[Christoffel][`~alpha`, alpha, mu]*%g_[determinant] = 0, %d_ = d_))

%g_[determinant]*(Physics:-g_[`~alpha`, `~nu`]*Physics:-d_[mu](Physics:-g_[alpha, nu], [X])-2*Physics:-Christoffel[`~alpha`, alpha, mu]) = 0

(90)
  

The factor in parentheses is equal to `#mrow(msubsup(mi("g"),none(),mrow(mi("α",fontstyle = "normal"),mo(","),mi("ν",fontstyle = "normal"))),msub(mi("▿"),mi("μ",fontstyle = "normal")),mo("⁡"),mfenced(msub(mi("g"),mrow(mi("α",fontstyle = "normal"),mo(","),mi("ν",fontstyle = "normal")))))`, where the covariant derivative of the metric is equal to zero, so

Simplify(%g_[determinant]*(Physics[g_][`~alpha`, `~nu`]*Physics[d_][mu](Physics[g_][alpha, nu], [X])-2*Physics[Christoffel][`~alpha`, alpha, mu]) = 0)

0 = 0

(91)
  

Consider the covariant derivative of T[mu] and R[mu] defined in (66) and (67)

Library:-GetRelativeWeight(T[mu])

0

(92)

Library:-GetRelativeWeight(R[mu])

1

(93)

The corresponding covariant derivatives

(%D_[mu] = D_[mu])(T[mu](X))

%D_[mu](T[`~mu`](X)) = Physics:-D_[mu](T[`~mu`](X), [X])

(94)

expand(%D_[mu](T[`~mu`](X)) = D_[mu](T[`~mu`](X), [X]))

%D_[mu](T[`~mu`](X)) = 2*T[`~mu`](X)*Physics:-d_[mu](r, [X])/r+Physics:-d_[mu](theta, [X])*cos(theta)*T[`~mu`](X)/sin(theta)+Physics:-d_[mu](T[`~mu`](X), [X])

(95)

(%D_[mu] = D_[mu])(R[mu](X))

%D_[mu](R[`~mu`](X)) = Physics:-D_[mu](R[`~mu`](X), [X])

(96)

expand(%D_[mu](R[`~mu`](X)) = D_[mu](R[`~mu`](X), [X]))

%D_[mu](R[`~mu`](X)) = 2*R[`~mu`](X)*Physics:-d_[mu](r, [X])/r+Physics:-d_[mu](theta, [X])*cos(theta)*R[`~mu`](X)/sin(theta)+Physics:-d_[mu](R[`~mu`](X), [X])-Physics:-Christoffel[`~nu`, mu, nu]*R[`~mu`](X)

(97)

where in the above we see the additional (relative) term

Library:-GetRelativeTerm(R[`~mu`](X), mu)

-Physics:-Christoffel[`~nu`, mu, nu]*R[`~mu`](X)

(98)

 

New Physics:-Library commands

 

 

ConvertToF , Linearize , GetRelativeTerm , GetRelativeWeight.

 

Examples

 

• 

ConvertToF receives an algebraic expression involving tensors and/or tensor functions and rewrites them in terms of the tensor of name F when that is possible. This routine is similar, however more general than the standard convert  which only handles the existing conversion network for the tensors of General Relativity  in that ConvertToF also uses any tensor definition you introduce using Define , expressing a tensor in terms of others.

Load any curved spacetime metric automatically setting the coordinates

 

restart; with(Physics); g_[sc]

Physics:-g_[mu, nu] = Matrix(%id = 36893488152573203868)

(99)

 

For example, rewrite the Christoffel  symbols in terms of the metric g_ ; this works as in previous releases

Christoffel[mu, alpha, beta] = Library:-ConvertToF(Christoffel[mu, alpha, beta], g_)

Physics:-Christoffel[mu, alpha, beta] = (1/2)*Physics:-d_[beta](Physics:-g_[alpha, mu], [X])+(1/2)*Physics:-d_[alpha](Physics:-g_[beta, mu], [X])-(1/2)*Physics:-d_[mu](Physics:-g_[alpha, beta], [X])

(100)

Define a A[mu] representing the 4D electromagnetic potential as a function of the coordinates X and F[mu, nu] representing the electromagnetic field tensors

Define(A[mu] = A[mu](X), quiet)

{A[mu], Physics:-D_[mu], Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-Ricci[mu, nu], Physics:-Riemann[mu, nu, alpha, beta], Physics:-Weyl[mu, nu, alpha, beta], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-gamma_[i, j], Physics:-Christoffel[mu, nu, alpha], Physics:-Einstein[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(101)

Define(F[mu, nu] = d_[mu](A[nu])-d_[nu](A[mu]))

`Defined objects with tensor properties`

 

{A[mu], Physics:-D_[mu], Physics:-Dgamma[mu], F[mu, nu], Physics:-Psigma[mu], Physics:-Ricci[mu, nu], Physics:-Riemann[mu, nu, alpha, beta], Physics:-Weyl[mu, nu, alpha, beta], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-gamma_[i, j], Physics:-Christoffel[mu, nu, alpha], Physics:-Einstein[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(102)

Rewrite the following expression in terms of the electromagnetic potential A[mu]

F[mu, nu] = Library:-ConvertToF(F[mu, nu], A)

F[mu, nu] = Physics:-d_[mu](A[nu], [X])-Physics:-d_[nu](A[mu], [X])

(103)

In the example above, the output is similar to this other one

F[definition]

F[mu, nu] = Physics:-d_[mu](A[nu], [X])-Physics:-d_[nu](A[mu], [X])

(104)

The rewriting, however, works also with tensorial expressions

F[mu, nu]*A[mu]*A[nu]

F[mu, nu]*A[`~mu`]*A[`~nu`]

(105)

Library:-ConvertToF(F[mu, nu]*A[`~mu`]*A[`~nu`], A)

(Physics:-d_[mu](A[nu], [X])-Physics:-d_[nu](A[mu], [X]))*A[`~mu`]*A[`~nu`]

(106)
• 

Linearize receives a tensorial expression T and an indication of the small quantities h in T , and discards terms quadratic or of higher order in h. For an example of this new routine in action, see the section Linearized Gravity  above.

• 

GetRelativeTerm and GetRelativeWeight are illustrated in the section Relative Tensors  above.

 

See Also

 

Index of New Maple 2025 Features , Physics , Computer Algebra for Theoretical Physics, The Physics project, The Physics Updates

NULL


 

Download New_in_Physics_2025.mw

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions



Integral exact value

Maple asked by Zeineb 535 April 22