Featured Post

I like tweaking plots to get the look and feel I want, and luckily Maple has many plotting options that I often play with. Here, I visualize the same data several times, but each time with different styling.

First, some data.

restart:
data_1 := [[0,0],[1,2],[2,1.3],[3,6]]:
data_2 := [[0.5,3],[1,1],[2,5],[3,2]]:
data_3 := [[-0.5,3],[1.3,1],[2.5,5],[4.5,2]]:

This is the default look.

plot([data_1, data_2, data_3])

I think the darker background on this plot makes it easier to look at.

gray_grid :=
 background      = "LightGrey"
,color           = [ ColorTools:-Color("RGB",[150/255, 40 /255, 27 /255])
                    ,ColorTools:-Color("RGB",[0  /255, 0  /255, 0  /255])
                    ,ColorTools:-Color("RGB",[68 /255, 108/255, 179/255]) ]
,axes            = frame
,axis[2]         = [color = black, gridlines = [10, thickness = 1, color = ColorTools:-Color("RGB", [1, 1, 1])]]
,axis[1]         = [color = black, gridlines = [10, thickness = 1, color = ColorTools:-Color("RGB", [1, 1, 1])]]
,axesfont        = [Arial]
,labelfont       = [Arial]
,size            = [400*1.78, 400]
,labeldirections = [horizontal, vertical]
,filled          = false
,transparency    = 0
,thickness       = 5
,style           = line:

plot([data_1, data_2, data_3], gray_grid);

I call the next style Excel, for obvious reasons.

excel :=
 background      = white
,color           = [ ColorTools:-Color("RGB",[79/255,  129/255, 189/255])
                    ,ColorTools:-Color("RGB",[192/255, 80/255,   77/255])
                    ,ColorTools:-Color("RGB",[155/255, 187/255,  89/255])]
,axes            = frame
,axis[2]         = [gridlines = [10, thickness = 0, color = ColorTools:-Color("RGB",[134/255,134/255,134/255])]]
,font            = [Calibri]
,labelfont       = [Calibri]
,size            = [400*1.78, 400]
,labeldirections = [horizontal, vertical]
,transparency    = 0
,thickness       = 3
,style           = point
,symbol          = [soliddiamond, solidbox, solidcircle]
,symbolsize      = 15:

plot([data_1, data_2, data_3], excel)

This style makes the plot look a bit like the oscilloscope I have in my garage.

dark_gridlines :=
 background      = ColorTools:-Color("RGB",[0,0,0])
,color           = white
,axes            = frame
,linestyle       = [solid, dash, dashdot]
,axis            = [gridlines = [10, linestyle = dot, color = ColorTools:-Color("RGB",[0.5, 0.5, 0.5])]]
,font            = [Arial]
,size            = [400*1.78, 400]:

plot([data_1, data_2, data_3], dark_gridlines);

The colors in the next style remind me of an Autumn morning.

autumnal :=
 background      =  ColorTools:-Color("RGB",[236/255, 240/255, 241/255])
,color           = [  ColorTools:-Color("RGB",[144/255, 54/255, 24/255])
                     ,ColorTools:-Color("RGB",[105/255, 108/255, 51/255])
                     ,ColorTools:-Color("RGB",[131/255, 112/255, 82/255]) ]
,axes            = frame
,font            = [Arial]
,size            = [400*1.78, 400]
,filled          = true
,axis[2]         = [gridlines = [10, thickness = 1, color = white]]
,axis[1]         = [gridlines = [10, thickness = 1, color = white]]
,symbol          = solidcircle
,style           = point
,transparency    = [0.6, 0.4, 0.2]:

plot([data_1, data_2, data_3], autumnal);

In honor of a friend and ex-colleague, I call this style "The Swedish".

swedish :=
 background      = ColorTools:-Color("RGB", [0/255, 107/255, 168/255])
,color           = [ ColorTools:-Color("RGB",[169/255, 158/255, 112/255])
                    ,ColorTools:-Color("RGB",[126/255,  24/255,   9/255])
                    ,ColorTools:-Color("RGB",[254/255, 205/255,   0/255])]
,axes            = frame
,axis            = [gridlines = [10, color = ColorTools:-Color("RGB",[134/255,134/255,134/255])]]
,font            = [Arial]
,size            = [400*1.78, 400]
,labeldirections = [horizontal, vertical]
,filled          = false
,thickness       = 10:

plot([data_1, data_2, data_3], swedish);

This looks like a plot from a journal article.

experimental_data_mono :=

background       = white
,color           = black
,axes            = box
,axis            = [gridlines = [linestyle = dot, color = ColorTools:-Color("RGB",[0.5, 0.5, 0.5])]]
,font            = [Arial, 11]
,legendstyle     = [font = [Arial, 11]]
,size            = [400, 400]
,labeldirections = [horizontal, vertical]
,style           = point
,symbol          = [solidcircle, solidbox, soliddiamond]
,symbolsize      = [15,15,20]:

plot([data_1, data_2, data_3], experimental_data_mono, legend = ["Annihilation", "Authority", "Acceptance"]);

If you're willing to tinker a little bit, you can add some real character and personality to your visualizations. Try it!

I'd also be very interested to learn what you find attractive in a plot - please do let me know.

Featured Post

A lot of scientific software propose packages enabling drawing figures in XKCD style/
Up to now I thought this was restricted to open products (R, Python, ...) but I recently discovered Matlab and even Mathematica were doing same.

Layton S (2012). “XKCDIFY! Adding flair to boring Matlab Axes one plot at a time.” Last accessed on December 08, 2014, URL https://github.com/slayton/matlab-xkcdify.

Woods S (2012). “xkcd-style graphs.” Last accessed on December 08, 2014, URL http://mathematica.stackexchange.com/questions/11350/xkcd-style-graphs/ 11355#11355.

 

So why not Maple?

As a regular user of R, I could have visualize the body of the corresponding procedures to see how these drawings were made and just translate theminto Maple.
But copying for the sake of copying is not of much interest.
So I started to develop some primitives for "XKCD-drawing" lines, polygons, circles and even histograms.
My goal is not to write an XKCD package (I don't have the skills for that) but just to arouse the interest of (maybe) a few people here who could continue this preliminary work


A main problem is the one of the XKCD fonts: no question to redefine them in Maple and I guess using them in a commercial code is not legal (?). So no XKCD font in this first work, nor even the funny guy who appears recurently on the drawings (but it could be easily constructed in Maple).

In a recent post (Plot styling - experimenting with Maple's plotting...) Samir Khan proposed a few styles made of several plotting options,  some of which he named "Excel style" or "Oscilloscope style"... maybe a future "XKCD xtyle" in Maple ?


This work has been done with Maple 2015 and reuses an old version of a 1D-Kriging procedure 

 

restart:

with(LinearAlgebra):
with(plots):
with(Statistics):

 

The principle is always the same:
    1/   Let L a straight line which is either defined by its two ending points (xkvd_hline) or taken as the default [0, 0], [1, 0] line.
          For xkvd_hline the given line L is firstly rotate to be aligned with the horizontal axis.

    2/   Let P1, ..., PN N points on L. Each Pn writes [xn, yn]

    3/   A random perturbation rn is added yo the values y1, ..., yN

    4/   A stationnary random process RP, with gaussian correlation function is used to build a smooth curve passing through the points
          (x1, y1+r1), ..., (xN, yN+rN) (procedure KG where "KG" stands for "Kriging")

    5/   The result is drawn or mapped to some predefined shape :
                  xkcd_hist,
                  xkcd_polyline,
                  xkcd_circle

    6/   A procedure xkcd_func is also provided to draw functions defined by an explicit relation.
 

KG := proc(X, Y, psi, sigma)
  local NX, DX, K, mu, k, y:
  NX := numelems(X);
  DX := < seq(Vector[row](NX, X), k=1..NX) >^+:
  K  := (sigma, psi) -> evalf( sigma^2 *~ exp~(-((DX - DX^+) /~ psi)^~2) ):
  mu := add(Y) / NX;
  k  := (x, sigma, psi) -> evalf( convert(sigma^2 *~ exp~(-((x -~ X ) /~ psi)^~2), Vector[row]) ):
  y  := mu + k(x, sigma, psi) . (K(sigma, psi))^(-1) . convert((Y -~ mu), Vector[column]):
  return y
end proc:


xkcd_hline := proc(p1::list, p2::list, a::nonnegative, lc::positive, col)
  # p1 : first ending point
  # p2 : second ending point
  # a  : amplitude of the random perturbations
  # lc : correlation length
  # col: color
  local roll, NX, LX, X, Z:
  roll := rand(-1.0 .. 1.0):
  NX   := 10:
  LX   := p2[1]-p1[1]:
  X    := [seq(p1[1]..p2[1], LX/(NX-1))]:
  Z    := [p1[2], seq(p1[2]+a*roll(), k=1..NX-1)]:
  return plot(KG(X, Z, lc*LX, 1), x=min(X)..max(X), color=col, scaling=constrained):
end proc:


xkcd_line := proc(L::list, a::nonnegative, lc::positive, col, {lsty::integer:=1})
  # L  : list which contains the two ending point
  # a  : amplitude of the random perturbations
  # lc : correlation length
  # col: color
  local T, roll, NX, DX, DY, LX, A, m, M, X, Z, P:
  T    := (a, x0, y0, l) ->
             plottools:-transform(
               (x,y) -> [ x0 + l * (x*cos(a)-y*sin(a)), y0 + l * (x*sin(a)+y*cos(a)) ]
             ):
  roll := rand(-1.0 .. 1.0):
  NX   := 5:
  DX   := L[2][1]-L[1][1]:
  DY   := L[2][2]-L[1][2]:
  LX := sqrt(DX^2+DY^2):
  if DX <> 0 then
     A := arcsin(DY/LX):
  else
     A:= Pi/2:
  end if:
  X := [seq(0..1, 1/(NX-1))]:
  Z := [ seq(a*roll(), k=1..NX)]:
  P := plot(KG(X, Z, lc, 1), x=0..1, color=col, scaling=constrained, linestyle=lsty):
  return T(A, op(L[1]), LX)(P)
end proc:


xkcd_func := proc(f, r::list, NX::posint, a::positive, lc::positive, col)
  # f  : function to draw
  # r  : plot range
  # NX : number of equidistant "nodes" in the range r (boundaries included)
  # a  : amplitude of the random perturbations
  # lc : correlation length
  # col: color
  local roll, F, LX, Pf, Xf, Zf:
  roll := rand(-1.0 .. 1.0):
  F    := unapply(f, indets(f, name)[1]);
  LX   := r[2]-r[1]:
  Pf   := [seq(r[1]..r[2], LX/(NX-1))]:
  Xf   := Pf +~ [seq(a*roll(), k=1..numelems(Pf))]:
  Zf   := F~(Pf) +~ [seq(a*roll(), k=1..numelems(Pf))]:
  return plot(KG(Xf, Zf, lc*LX, 1), x=min(Xf)..max(Xf), color=col):
end proc:




xkcd_hist := proc(H, ah, av, ax, ay, lch, lcv, lcx, lcy, colh, colxy)
  # H   : Histogram
  # ah  : amplitude of the random perturbations on the horizontal boundaries of the bins
  # av  : amplitude of the random perturbations on the vertical boundaries of the bins
  # ax  : amplitude of the random perturbations on the horizontal axis
  # ay  : amplitude of the random perturbations on the vertical axis
  # lch : correlation length on the horizontal boundaries of the bins
  # lcv : correlation length on the vertical boundaries of the bins
  # lcx : correlation length on the horizontal axis
  # lcy : correlation length on the vertical axis
  # colh: color of the histogram
  # col : color of the axes
  local data, horiz, verti, horizontal_lines, vertical_lines, po, rpo, p1, p2:
  data  := op(1..-2, op(1, H)):
  verti := sort( [seq(data[n][3..4][], n=1..numelems([data]))] , key=(x->x[1]) );
  verti := verti[1],
           map(
                n -> if verti[n][2] > verti[n+1][2] then
                        verti[n]
                      else
                        verti[n+1]
                      end if,
                [seq(2..numelems(verti)-2,2)]
           )[],
           verti[-1];
  horiz := seq(data[n][[4, 3]], n=1..numelems([data])):

  horizontal_lines := NULL:
  for po in horiz do
    horizontal_lines := horizontal_lines, xkcd_hline(po[1], po[2], ah, lch, colh):
  end do:

  vertical_lines := NULL:
  for po in [verti] do
    rpo := po[[2, 1]]:
    vertical_lines := vertical_lines, xkcd_hline([0, rpo[2]], rpo, av, lcv, colh):
  end do:

  p1 := [2*verti[1][1]-verti[2][1], 0]:
  p2 := [2*verti[-1][1]-verti[-2][1], 0]:

  return
    display(
      horizontal_lines,
      T~([vertical_lines]),
      xkcd_hline(p1, p2, ax, lcx, colxy),
      T(xkcd_hline([0, 0], [1.2*max(op~(2, [verti])), 0], ay, lcy, colxy)),
      axes=none,
      scaling=unconstrained
    );
end proc:


xkcd_polyline := proc(L::list, a::nonnegative, lc::positive, col)
  # xkcd_polyline reduces to xkcd_line whebn L has 2 elements
  # L  : List of points
  # a  : amplitude of the random perturbations
  # lc : correlation length
  # col: color
  local T, roll, NX, n, DX, DY, LX, A, m, M, X, Z, P:
  T    := (a, x0, y0, l) ->
             plottools:-transform(
               (x,y) -> [ x0 + l * (x*cos(a)-y*sin(a)), y0 + l * (x*sin(a)+y*cos(a)) ]
             ):
  roll := rand(-1.0 .. 1.0):
  NX   := 5:
  for n from 1 to numelems(L)-1 do
    DX   := L[n+1][1]-L[n][1]:
    DY   := L[n+1][2]-L[n][2]:
    LX := sqrt(DX^2+DY^2):
    if DX <> 0 then
      A := evalf(arcsin(abs(DY)/LX)):
      if DX >= 0 and DY <= 0 then A := -A end if:
      if DX <= 0 and DY >  0 then A := Pi-A end if:
      if DX <= 0 and DY <= 0 then A := Pi+A end if:
    else
      A:= Pi/2:
      if DY < 0 then A := 3*Pi/2 end if:
    end if:
    if n=1 then
      X := [seq(0..1, 1/(NX-1))]:
      Z := [seq(a*roll(), k=1..NX)]:
    else
      X := [0    , seq(1/(NX-1)..1, 1/(NX-1))]:
      Z := [Z[NX], seq(a*roll(), k=1..NX-1)]:
    end if:
    P    := plot(KG(X, Z, lc, 1), x=0..1, color=col, scaling=constrained):
    P||n := T(A, op(L[n]), LX)(P):
  end do;
  return seq(P||n, n=1..numelems(L)-1)
end proc:


xkcd_circle := proc(a::nonnegative, lc::positive, r::positive, cent::list, col)
  # a   : amplitude of the random perturbations
  # lc  : correlation length
  # r   : redius of the circle
  # cent: center of the circle
  # col : color
  local roll, NX, LX, X, Z, xkg, A:
  roll := rand(-1.0 .. 1.0):
  NX   := 10:
  X    := [seq(0..1, 1/(NX-1))]:
  Z    := [0, seq(a*roll(), k=1..NX-1)]:
  xkg  := KG(X, Z, lc, 1):
  A    := Pi*roll():
  return plot([cent[1]+r*(1+xkg)*cos(2*Pi*x+A), cent[2]+r*(1+xkg)*sin(2*Pi*x+A), x=0..1], color=col)
end proc:

T := plottools:-transform((x,y) -> [y, x]):
 

# Axes plot

x_axis := xkcd_hline([0, 0], [10, 0], 0.03, 0.5, black):
y_axis := xkcd_hline([0, 0], [10, 0], 0.03, 0.5, black):
display(
  x_axis,
  T(y_axis),
  axes=none,
  scaling=constrained
)

 

# A simple function

f := 1+10*(x/5-1)^2:
F := xkcd_func(f, [0.5, 9.5], 6, 0.3, 0.4, red):

display(
  x_axis,
  T(y_axis),
  F,
  axes=none,
  scaling=constrained
)

 

# An histogram

S := Sample(Normal(0,1),100):
H := Histogram(S, maxbins=6):
xkcd_hist(H,   0, 0.02, 0.001, 0.01,   1, 0.1, 0.01, 1,   red, black)

 

# Axes plus grid with two red straight lines

r := rand(-0.1 .. 0.1):

x_axis := xkcd_line([[-2, 0], [10, 0]], 0.01, 0.2, black):
y_axis := xkcd_line([[0, -2], [0, 10]], 0.01, 0.2, black):
d1     := xkcd_line([[-1, 1], [9, 9]] , 0.01, 0.2, red):
d2     := xkcd_line([[-1, 9], [9, -1]], 0.01, 0.2, red):
display(
  x_axis, y_axis,
  seq( xkcd_line([[-2+0.3*r(), u+0.3*r()], [10+0.3*r(), u+0.3*r()]], 0.005, 0.5, gray), u in [seq(-1..9, 2)]),
  seq( xkcd_line([[u+0.3*r(), -2+0.3*r()], [u+0.3*r(), 10+0.3*r()]], 0.005, 0.5, gray), u in [seq(-1..9, 2)]),
  d1, d2,
  axes=none,
  scaling=constrained
)

 

# Axes and a couple of polygonal lines

d1 := xkcd_polyline([[0, 0], [1, 3], [3, 5], [7, 1], [9, 7]], 0.01, 1, red):
d2 := xkcd_polyline([[0, 9], [2, 8], [5, 2], [8, 3], [10, -1]], 0.01, 1, blue):

display(
  x_axis, y_axis,
  d1, d2,
  axes=none,
  scaling=constrained
)

 

# A few polygonal shapes

display(
  xkcd_polyline([[0, 0], [1, 0], [1, 1], [0, 1], [0, 0]], 0.01, 1, red),
  xkcd_polyline([[1/3, 1/3], [2/3, 1/3], [2/3, 4/3], [-1, 4/3], [1/3, 1/3]], 0.01, 1, blue),
  xkcd_polyline([[-1/3, -1/3], [4/3, 1/2], [1/2, 1/2], [1/2,-1], [-1/3, -1/3]], 0.01, 1, green),
  axes=none,
  scaling=constrained
)

 

# A few circles

cols  := [red, green, blue, gold, black]:                                # colors
cents := convert( Statistics:-Sample(Uniform(-1, 3), [5, 2]), listlist): # centers
radii := Statistics:-Sample(Uniform(1/2, 2), 5):                         # radii
lcs   := Statistics:-Sample(Uniform(0.2, 0.7), 5):                       # correlations lengths

display(
  seq(
    xkcd_circle(0.02, lcs[n], radii[n], cents[n], cols[n]),
    n=1..5
  ),
  axes=none,
  scaling=constrained
)

 

# A 3D drawing

x_axis := xkcd_line([[0, 0], [5, 0]], 0.01, 0.2, black):
y_axis := xkcd_line([[0, 0], [4, 2]], 0.01, 0.2, black):
z_axis := xkcd_line([[0, 0], [0, 5]], 0.01, 0.2, black):

f1 := 4*cos(x/6)-1:
F1 := xkcd_func(f1, [0.5, 5], 6, 0.001, 0.8, red):
F2 := xkcd_line([[0.5, eval(f1, x=0.5)], [3, 4]], 0.01, 0.2, red):
f3 := 4*cos((x-2)/6):
F3 := xkcd_func(f3, [3, 7], 6, 0.001, 0.8, red):
F4 := xkcd_line([[5, eval(f1, x=5)], [7, eval(f3, x=7)]], 0.01, 0.2, red):

dx := xkcd_line([[2, 1], [4, 1]], 0.01, 0.2, gray, lsty=3):
dy := xkcd_line([[2, 0], [4, 1]], 0.01, 0.2, gray, lsty=3):
dz := xkcd_line([[4, 1], [4, 3]], 0.01, 0.2, gray, lsty=3):

po := xkcd_circle(0.02, 0.3, 0.1, [4, 3], blue):

# Numerical value come from "probe info + copy/paste"

nvect   := xkcd_polyline([[4, 3], [4.57, 4.26], [4.35, 4.1], [4.57, 4.26], [4.58, 4.02]], 0.01, 1, blue):
tg1vect := xkcd_polyline([[4, 3], [4.78, 2.59], [4.49, 2.87], [4.78, 2.59], [4.46, 2.57]], 0.01, 1, blue):
tg2vect := xkcd_polyline([[4, 3], [4.79, 3.35], [4.70, 3.13], [4.79, 3.35], [4.46, 3.35]], 0.01, 1, blue):
rec1    := xkcd_polyline([[4.118, 3.286], [4.365, 3.396], [4.257, 3.108]], 0.01, 1, blue):
rec2    := xkcd_polyline([[4.257, 3.108], [4.476, 2.985], [4.259, 2.876]], 0.01, 1, blue):



display(
  x_axis, y_axis, z_axis,
  F1, F2, F3, F4,
  dx, dy, dz,
  po,
  nvect, tg1vect, tg2vect, rec1, rec2,
  axes=none,
  scaling=constrained
)

 

# Arrow

d1 := xkcd_polyline([[0, 0], [1, 0], [0.9, 0.05], [1, 0], [0.9, -0.05]], 0.01, 1, red):


T := (a, x0, y0, l) ->
             plottools:-transform(
               (x,y) -> [ x0 + l * (x*cos(a)-y*sin(a)), y0 + l * (x*sin(a)+y*cos(a)) ]
             ):


display(
  seq( T(2*Pi*n/10, 0.5, 0, 1/2)(
           display(
              xkcd_polyline(
                  [[0, 0], [1, 0], [0.9, 0.05], [1, 0], [0.9, -0.05]],
                  0.01,
                  1,
                  ColorTools:-Color([rand()/10^12, rand()/10^12, rand()/10^12])
               )
           )
        ),
       n=1..10
  ),
  axes=none,
  scaling=constrained
)

 

 


 

Download XKCD.mw

 



found strange issue, using mla

Maple 2020 asked by nm 3851 August 04

Solving an ODE with random input

Maple asked by hajnayeb 15 August 04

Load package at restart

Maple 2020 asked by cloz54 50 Yesterday

How can I plot this surface?

Maple asked by Shady706 5 Yesterday