> restart; > with(PDEtools); with(Units[Standard]); with(ScientificConstants); [CanonicalCoordinates, ChangeSymmetry, CharacteristicQ, CharacteristicQInvariants, ConservedCurrentTest, ConservedCurrents, ConsistencyTest, D_Dx, DeterminingPDE, Eta_k, Euler, FromJet, InfinitesimalGenerator, Infinitesimals, IntegratingFactorTest, IntegratingFactors, InvariantSolutions, InvariantTransformation, Invariants, Laplace, Library, PDEplot, PolynomialSolutions, ReducedForm, SimilaritySolutions, SimilarityTransformation, SymmetrySolutions, SymmetryTest, SymmetryTransformation, TWSolutions, ToJet, build, casesplit, charstrip, dchange, dcoeffs, declare, diff_table, difforder, dpolyform, dsubs, mapde, separability, splitstrip, splitsys, undeclare] [*, +, -, /, <, <=, <>, =, Im, Re, Unit, ^, abs, add, arccos, arccosh, arccot, arccoth, arccsc, arccsch, arcsec, arcsech, arcsin, arcsinh, arctan, arctanh, argument, ceil, collect, combine, conjugate, convert, cos, cosh, cot, coth, csc, csch, csgn, diff, eval, evalc, evalr, exp, expand, factor, floor, frac, int, ln, log, log10, max, min, mul, normal, polar, root, round, sec, sech, seq, shake, signum, simplify, sin, sinh, sqrt, surd, tan, tanh, trunc, type, verify] [AddConstant, AddElement, AddProperty, Constant, Element, GetConstant, GetConstants, GetElement, GetElements, GetError, GetIsotopes, GetProperties, GetProperty, GetUnit, GetValue, HasConstant, HasElement, HasProperty, ModifyConstant, ModifyElement] > Digits := 5; 5 > sigma := Units[Standard][`*`](6.5, Units[Standard][`^`](10, Units[Standard][`-`](19))); P := 50; k := Units[Standard][`*`](1.3, Units[Standard][`^`](10, Units[Standard][`-`](23))); T := 300; `#msub(mi("n"),mi("e"))` := Units[Standard][`*`](1.55, Units[Standard][`^`](10, 12)); `#msub(mi("E"),mn("0"))` := 5360; e := Units[Standard][`*`](1.6, Units[Standard][`^`](10, Units[Standard][`-`](19))); Q = Units[Standard][`*`](1000, e); -19 6.5000 10 50 -23 1.3000 10 300 12 1.5500 10 5360 -19 1.6000 10 -16 Q = 1.6000 10 > `#msub(mi("n"),mi("n"))` := Units[Standard][`*`](P, Units[Standard][`/`](Units[Standard][`*`](k, T))); l := Units[Standard][`^`](Units[Standard][`*`](`#msub(mi("n"),mi("n"))`, sigma), Units[Standard][`-`](1)); 22 1.2820 10 0.00012000 > lambda := Units[Standard][`^`](Units[Standard][`*`](Units[Standard][`*`](Units[Standard][`*`](e, `#msub(mi("E"),mn("0"))`), l), Units[Standard][`/`](Units[Standard][`*`](Units[Standard][`*`](Units[Standard][`*`](4, Pi), `#msub(mi("n"),mi("e"))`), Units[Standard][`^`](e, 2)))), Units[Standard][`/`](2)); (1/2) /1 \ 805.21 |--| \Pi/ > X := Units[Standard][`+`](1, Units[Standard][`-`](sqrt(Units[Standard][`+`](1, Units[Standard][`*`](I, t))))); (1/2) 1 - (1 + I t) > Y := Units[Standard][`+`](Units[Standard][`*`](Units[Standard][`*`](Units[Standard][`*`](2, sqrt(Units[Standard][`+`](1, Units[Standard][`*`](I, t)))), Units[Standard][`/`](Units[Standard][`*`](I, t))), int(Units[Standard][`/`](Units[Standard][`^`](Units[Standard][`+`](1, Units[Standard][`*`](Units[Standard][`*`](I, t), Units[Standard][`+`](1, Units[Standard][`-`](Units[Standard][`^`](x, 2))))), 2)), x = 0 .. 1)), Units[Standard][`-`](Units[Standard][`/`](Units[Standard][`*`](Units[Standard][`*`](I, t), Units[Standard][`+`](1, Units[Standard][`*`](I, t)))))); (1/2) / (1/2) / t \\ I (1 + I t) |I (-(I - t) t) + arctanh|-----------------|| | | (1/2)|| \ \(-(I - t) t) // - ------------------------------------------------------------------- (1/2) t (I - t) (-(I - t) t) I + ----------- t (1 + I t) > Phi := Units[Standard][`*`](Units[Standard][`*`](Units[Standard][`*`](2, Q), Units[Standard][`/`](Units[Standard][`*`](Pi, l))), Re(int(Units[Standard][`*`](Units[Standard][`/`](Units[Standard][`+`](1, Units[Standard][`*`](Units[Standard][`^`](Units[Standard][`*`](l, Units[Standard][`/`](lambda)), 2), Y))), BesselK(0, Units[Standard][`*`](Units[Standard][`*`](r, Units[Standard][`/`](l)), sqrt(Units[Standard][`*`](Units[Standard][`+`](Units[Standard][`^`](t, 2), Units[Standard][`*`](Units[Standard][`^`](Units[Standard][`*`](l, Units[Standard][`/`](lambda)), 2), X)), Units[Standard][`/`](Units[Standard][`+`](1, Units[Standard][`*`](Units[Standard][`^`](Units[Standard][`*`](l, Units[Standard][`/`](lambda)), 2), Y)))))))), t = 0 .. infinity))); Warning, computation interrupted > plot(Units[Standard][`*`](Units[Standard][`*`](Units[Standard][`*`](2, Q), Units[Standard][`/`](Units[Standard][`*`](Pi, l))), Re(int(Units[Standard][`*`](Units[Standard][`/`](Units[Standard][`+`](1, Units[Standard][`*`](Units[Standard][`^`](Units[Standard][`*`](l, Units[Standard][`/`](lambda)), 2), Y))), BesselK(0, Units[Standard][`*`](Units[Standard][`*`](r, Units[Standard][`/`](l)), sqrt(Units[Standard][`*`](Units[Standard][`+`](Units[Standard][`^`](t, 2), Units[Standard][`*`](Units[Standard][`^`](Units[Standard][`*`](l, Units[Standard][`/`](lambda)), 2), X)), Units[Standard][`/`](Units[Standard][`+`](1, Units[Standard][`*`](Units[Standard][`^`](Units[Standard][`*`](l, Units[Standard][`/`](lambda)), 2), Y)))))))), t = 0 .. infinity))), r = Units[Standard][`-`](0.1e-2) .. 0.1e-2); Warning, computation interrupted >