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Abstract

Pauli first noticed the hidden SO(4) symmetry for the Hydrogen atom in the early stages of quantum 
mechanics [1]. Departing from that symmetry, one can recover the spectrum of a spinless hydrogen atom and the
degeneracy of its states without explicitly solving Schrödinger's equation [2]. In this paper, we derive that SO(4)
symmetry and spectrum using a computer algebra system (CAS). While this problem is well known [3, 4], its 
solution involves several steps of manipulating expressions with tensorial quantum operators, simplifying them 
by taking into account a combination of commutator rules and Einstein's sum rule for repeated indices. 
Therefore, it is an excellent model to test the current status of CAS concerning this kind of quantum-and-tensor-
algebra computations. Generally speaking, when capable, CAS can significantly help with manipulations that, 
like non-commutative tensor calculus subject to algebra rules, are tedious, time-consuming and error-prone. The 
presentation also shows a pattern of computer algebra operations that can be useful for systematically tackling 
more complicated symbolic problems of this kind.

Introduction
The primary purpose of this work is to derive, step-by-step, the SO(4) symmetry of the Hydrogen atom and its spectrum 
using a computer algebra system (CAS). To the best of our knowledge, such a derivation using symbolic computation has 
not been shown before. Part of the goal was also to see whether this computation can be performed entering only the main 
definition formulas, followed by only simplification commands, and without using previous knowledge of the result. The 
intricacy of this problem is in the symbolic manipulation and simplification of expressions involving noncommutative 
quantum tensor operators. The simplifications need to take into account commutator rules, symmetries under permutation of 
indices of tensorial subexpressions, and use Einstein's sum rule for repeated indices.

We performed the derivation using the Maple 2020 system with the Maplesoft Physics Updates v.705. Generally speaking, 
the default computational domain of CAS doesn't include tensors, noncommutative operators nor related simplifications. On 
the other hand, the Maple system is distributed with a Physics package that extends that default domain to include those 
objects and related operations. Physics includes a Simplify command that takes into account custom algebra rules and the 
sum rule for repeated indices, and uses tensor-simplification algorithms [5] extended to the noncommutative domain.

A note about notation: when working with a CAS, besides the expectation of achieving a correct result for a complicated 
symbolic calculation, readability is also an issue. It is desired that one be able to enter the definition formulas and 
computational steps to be performed (the input, preceded by a prompt >, displayed in black) in a way that resembles as 
closely as possible their paper and pencil representation, and that the results (the output, computed by Maple, displayed in 
blue) use textbook mathematical-physics notation. The Physics package implements such dedicated typesetting. In what 
follows, within text and in the output, noncommutative objects are displayed using a different color, e.g. H , vectors and 
tensor indices are displayed the standard way, as in L, and L

q
, and commutators are displayed with a minus subscript, e.g. 

H, L
q

. Although the Maple system allows for providing dedicated typesetting also for the input, we preferred to keep 

visible the Maple input syntax, allowing for comparison with paper and pencil notation. We collected the names of the 
commands used and a one line description for them in an Appendix at the end. Maple also implements the concept of inert
representations of computations, which are activated only when desired. We use this feature in several places. Inert 
computations are entered by preceding the command with % and are displayed in grey. Finally, as is usual in CAS, every 
output has an equation label, which we use throughout the presentation to refer to previous intermediate results.

In Sec.1, we recall the standard formulation of the problem and present the computational goal, which is the derivation of 
the formulas representing the SO(4) symmetry and related spectrum.

In Sec.2, we set tensorial non-commutative operators representing position and linear and angular momentum, respectively 
X

a
, p

a
 and L

a
, their commutation rules used as departure point, and the form of the quantum Hamiltonian H . We also 

derive a few related identities used in the sections that follow. 

In Sec.3, we derive the conservation of both angular momentum and the Runge-Lenz quantum operator, respectively 



H, L
q

= 0 and H, Z
k

= 0. Taking advantage of the differentialoperators functionality in the Physics package, we 

perform the derivation exploring two equivalent approaches; first using only a symbolic tensor representation p
j
 of the 

momentum operator, then using an explicit differential operator representation for it in configuration space, p
j
= i  

j
.  

With the first approach, expressions are simplified only using the departing commutation rules and Einstein's sum rule for 
repeated indices. Using the second approach, the problem is additionally transformed into one where the differentiation 
operators are applied explicitly to a test function G X . Presenting both approaches is of potential interest as it offers two 
partly independent methods for performing the same computation, which is helpful to provide confidence on in the results 
when unknown, a relevant issue when using computer algebra.

In Sec. 4, we derive L
m

, Z
n

=  i 
m, n, u

 Z
u
 and show that the classical relation between angular momentum and the 

Runge-Lenz vectors,  L Z  = 0, due to the orbital momentum being perpendicular to the elliptic plane of motion while the 
Runge-Lenz vector lies in that plane, still holds in quantum mechanics, where the components of these quantum vector 
operators do not commute but L Z  = Z L = 0.

In Sec. 5, we derive Z
a
, Z

b
=

2 i  
a, b, c

 H L
c

m
e

 using the two alternative approaches described for Sec.3.

In Sec. 6, we derive the well-known formula for the square of the Runge-Lenz vector, Z
k
2 =

2 H 2 L
a
2

m
e

2 .

Finally, in Sec. 7, we use the SO(4) algebra derived in the previous sections to obtain the spectrum of the Hydrogen atom. 
Following the literature, this approach is limited to the bound states for which the energy is negative. 

Some concluding remarks are presented at the end, and input syntax details are summarized in an Appendix. 

A Maple worksheet containing this presentation can be downloaded from https://www.mapleprimes.com/posts/208810-The-
Hidden-SO4-Symmetry-Of-The-Hydrogen-Atom.

1. The hidden SO(4) symmetry of the Hydrogen atom

Let's consider the Hydrogen atom and its Hamiltonian

H = p 2

2 m
e

 r ,

where p  is the electron momentum, m
e
 its mass,  a real positive constant, r = r X

a
2  the distance of the electron 

from the proton located at the origin, and X
a
 is its tensorial representation with components [x, y, z . We assume that the 

proton's mass is infinite. The electron and nucleus spin are not taken into account. Classically, from the potential r  , one

can derive a central force F =  
 r
r2  that drives the electron's motion. Introducing the angular momentum

L = r p ,

one can further define the Runge-Lenz vector Z :

Z =
1

m
e

 L p   r
r .

It is well known that Z  is a constant of the motion, i.e. 
d
dt Z t = 0. Switching to Quantum Mechanics, this condition 

reads

H, Z = 0.



    

> > 

> > 

(1)(1)

where, for hermiticity purpose, the expression of Z  must be symmetrized

Z =
1

2 m
e

 L p p L  r
r .

In what follows, departing from the Hamiltonian H, the basic commutation rules between position r , momentum p  and 
angular momentum L in tensor notation, we derive the following commutation rules between the quantum Hamiltonian, 
angular momentum and Runge-Lenz vector Z

H, L
n

= 0

H, Z
n

= 0

L
m

, Z
n

= i  
m, n, o

 Z
o

Z
m

, Z
n

= 2 
i 
m

e
 H 

m, n, o
  L

o

Since H commutes with both L   and Z, defining

M
n

=
m

e
2 H  Z

n
,

these commutation rules can be rewritten as

L
m

, L
n

= i  
m, n, o

 L
o

L
m

, M
n

= i  
m, n, o

 M
o

M
m

, M
n

= i  
m, n, o

  L
o

This set constitutes the Lie algebra of the SO(4) group.

2. Setting the problem, commutation rules and useful identities
Load the Physics package and its Library subpackage containing additional manipulation commands; set the imaginary unit 
to be represented by a lowercase Latin i letter.

restart;
with Physics : with Library :
interface imaginaryunit = i :

Set the context: Cartesian coordinates, 3D Euclidean space, lowercase letters representing tensor indices, use automatic 
simplification (automatically simplify the size of everything being displayed) and indicate that all of , , m

e
 are real 

objects. 
Setup coordinates = cartesian, realobjects = , , m

e
, automaticsimplification = true, dimension = 3, metric

= Euclidean, spacetimeindices = lowercaselatin, quiet

automaticsimplification = true, coordinatesystems = X , dimension = 3, metric = 1, 1 = 1, 2, 2 = 1, 3, 3

= 1 , realobjects = , , m
e
, x, y, z , spacetimeindices = lowercaselatin

Set quantum Hermitian operators (not Z, we derive that property for it further below) and related commutators:



> > 

(3)(3)

(6)(6)

> > 

(8)(8)

> > 

(5)(5)

> > 

(4)(4)

> > 

> > 

(2)(2)

> > 

(7)(7)

- The dimensionless potential  V = 
1
r  is assumed to commute with position, not with momentum - the commutation rule 

with p is derived in Sec.2.2.
- The commutator rules between position X

n
 on the one hand, and linear p

k
 and angular momentum L

k
 are the departure 

point, entered using the inert form of the Commutator command. Tensors are indexed using the standard Maple indexation []
.

Setup quantumoperators = Z ,
hermitianoperators = V, H, L, X, p ,
algebrarules =
     %Commutator p k , p l = 0,
     %Commutator X k , p l = i g_ k, l ,
     %Commutator L j , L k  = i LeviCivita j, k, n L n ,
     %Commutator p j , L k = i LeviCivita j, k, n p n ,
     %Commutator X j , L k = i LeviCivita j, k, n X n ,
     %Commutator X k , V X = 0

algebrarules = L
j
, L

k
= i  

j, k, n
 L

n
, p

j
, L

k
= i  

j, k, n
 p

n
, p

k
, p

l
= 0, X

j
, L

k
= i  

j, k, n
 X

n
, X

k
,

p
l

= i  g
k, l

, X
k
, V X = 0 , hermitianoperators = H, L, V, p, x, y, z , quantumoperators = H, L, V,

Z, p, x, y, z

Define the tensor quantum operators representing the linear momentum, angular momentum and the Runge-Lenz vectors
Define p k = p

x
, p

y
, p

z
, L k = L

x
, L

y
, L

z
, Z k = Z

x
, Z

y
, Z

z
, quiet

a, L
k
, a, Z

k
,

a
, g

a, b
, p

k
,

a, b, c
, X

a

For readability, avoid redundant display of functionality
CompactDisplay V X

 V X  will now be displayed as V
The Hamiltonian for the hydrogen atom is entered as

H = p l 2

2 m
e

V X

H =
pl

2

2 m
e

 V

2.1 Definition of V X and related identities

We use the dimensionless potential V X

V X =
1

X l 2
1
2

V = Xl
2

1
2

The gradient of V X  is 
d_ n (6)

n
V = Xl

2
3
2  X

n

where we note that all these commands (including product and power), distribute over equations. So that
subs rhs = lhs (6)3 , (7)

n
V = V3 X

n

Equivalently, from (6) one can deduce V3 X
l
2 = V  that will often be used afterwards



(14)(14)

> > 

> > 

> > 

> > 

> > 

> > 

(11)(11)

> > 

(17)(17)

> > 
(21)(21)

(19)(19)

> > 

(18)(18)

(20)(20)

> > 

> > 

(16)(16)

> > 

(10)(10)

(12)(12)

> > 

(9)(9)

(15)(15)

(13)(13)

rhs = lhs V X 3

(6)2
V3 Xl

2 = V

2.2 The commutation rules between  L, p  and the potential V X
By definition,

L q  = LeviCivita q, m, n X m  p n
L

q
=

m, n, q
 X

m
 p

n

so
Commutator (10), V X

L
q
, V =

m, n, q
 X

m
 p

n
, V

The commutator on the right-hand side cannot be computed until providing more information. To derive the value of 
p

n
, V we introduce an arbitrary test function G X , and set p

n
 as a differentialoperator

Setup differentialoperators = p k , x, y, z
differentialoperators = p

k
, X

Now, apply to G X the differential operator p
n
 found in the commutator of the right-hand side of (11)

lhs = ApplyProductsOfDifferentialOperators@rhs (11) G X
L

q
, V  G X =

m, n, q
 X

m
 p

n
V G X V p

n
G X

The result of p
l

G X  is not known to the system at this point. Define then an explicit representation for p
n
 as the 

differential operator in configuration space p
n

= i  
n

p  u   i d_ op procname u
p u i  

op procname
u

With this definition, we can compute the commutator in (11)
(13)

L
q
, V  G X = i 

m, n, q
  X

m
 

n
V  G X

So that using (8) ≡ 
n

V = V3 X
n
 and multiplying by G X 1 , 

SubstituteTensor (8), (15) G X 1

L
q
, V = i 

m, n, q
  X

m
 V3 X

n

from where we get the first commutation rule:
Simplify (16)

L
q
, V = 0

Likewise, from the inert = active form of p
q
, V X

%Commutator = Commutator p q , V X
p

q
, V = p

q
, V

by applying this equation to the test function G X  we get
lhs = ApplyProductsOfDifferentialOperators@rhs (18) G X

p
q
, V  G X = i  

q
V  G X

SubstituteTensor (8), (19) G X 1

p
q
, V = i  V3 X

q

In the same way, for p
q
, V3   we get

%Commutator = Commutator p q , V X 3



> > 

> > 

> > 
(22)(22)

(26)(26)

(27)(27)

> > 

> > 

(30)(30)

(24)(24)

(21)(21)

(29)(29)

> > 

(23)(23)

(25)(25)

> > 

> > 

(32)(32)

(28)(28)

(31)(31)

> > 

> > 

(9)(9)

> > 

> > 

p
q
, V3 = p

q
, V3

lhs = ApplyProductsOfDifferentialOperators@rhs (21) G X
p

q
, V3  G X = i  

q
V  V2 V 

q
V  V V2 

q
V  G X

SubstituteTensor (8), (22) G X 1

p
q
, V3 = i  V3 X

q
 V2 V4 X

q
 V V5 X

q

lhs = Simplify@rhs (23)
p

q
, V3 = 3 i  V5 X

q

Add now these new commutation rules to the setup of the problem so that they are taken into account when using Simplify
(17), (20), (24)

L
q
, V = 0, p

q
, V = i  V3 X

q
, p

q
, V3 = 3 i  V5 X

q

Setup (25)
algebrarules = L

j
, L

k
= i  

j, k, n
 L

n
, L

q
, V = 0, p

j
, L

k
= i  

j, k, n
 p

n
, p

k
, p

l
= 0, p

q
, V

= i  V3 X
q
, p

q
, V3 = 3 i  V5 X

q
, X

j
, L

k
= i  

j, k, n
 X

n
, X

k
, p

l
= i  g

k, l
, X

k
, V = 0

Undo differentialoperators to work using two different approaches, with and without them.
Setup differentialoperators = none

differentialoperators = none

3. Commutation rules between the Hamiltonian and each of the angular 
momentum and Runge-Lenz tensors
Departing from the Hamiltonian of the hydrogen atom (5) and the definition of angular momentum (10)

(5); (10);

H =
pl

2

2 m
e

 V

L
q

=
m, n, q

 X
m

 p
n

by taking their commutator we get
Commutator (5), (10)

H, L
q

=
i 

m, n, q
  X

m
 V3 X

n
  m

e
p

l
 p

n
 g

l, m
m

e

Simplify (29)
H, L

q
= 0

3.1 H, Z
n

= 0, algebraic approach

Start from the definition of the quantum Runge-Lenz tensor

Z k =
1

2 m
e

LeviCivita a, b, k L a p b p a L b V X X k

Z
k

= a, b, k
 L

a
 p

b
p

a
 L

b
2 m

e
 V X

k

This tensor is Hermitian
(31) Dagger (31)



(39)(39)

> > 

(21)(21)

(37)(37)

> > 

(35)(35)

(38)(38)

(40)(40)

(42)(42)

> > 

(32)(32)

> > 

> > 

> > 

(34)(34)

> > 

> > 

(41)(41)

(33)(33)

> > 

> > 

(36)(36)

> > 

(9)(9)

Z
k

Z
k
† =

2  V X
k
 m

e
2  X

k
 V m

e a, b, k
 L

a
 p

b
L

b
 p

a
p

a
 L

b
p

b
 L

a
2 m

e

Simplify (32)
Z

k
Z

k
† = 0

Since the system knows about the commutation rule between linear and angular momentum,
%Commutator = Commutator L a , p b

L
a
, p

b
= i  

a, b, n
 p

n

the expression (31) for Z
k
 can be simplified

Simplify (31)

Z
k

=
i  p

k
m

e
 V X

k
a, b, k

 p
a
 L

b
m

e

and the angular momentum removed from the the right-hand side using (10) ≡ L
q

=
m, n, q

 X
m

 p
n
, so that Z

k
 gets expressed

entirely in terms of p
k
, X  and V

Simplify SubstituteTensor (10), (35)

Z
k

=
i  p

k
 V X

k
 m

e
X

m
 p

k
 p

m
X

k
 pm

2

m
e

Taking the commutator between (5) ≡ H =
 p

l
2

2 m
e

 V , and this expression for Z
k
 we have the starting point towards 

showing that H, Z
k

= 0

Simplify Commutator (5), (36)

H, Z
k

=
   V5 Xa

2 X
k

 V3 X
k

2 i X
a
 X

k
 p

a
 V3 2 i p

k
 V 2 i Xa

2 p
k
 V3 2 i V X

a
 X

k
 p

a
 V2

2 m
e

Sort the products in order to use the identities
(9), V X 2  (9)

V3 Xl
2 = V, V5 Xl

2 = V3

SortProducts (37), V X 5, V X 3, X a 2

H, Z
k

=
i p

k
 V i V3 Xa

2 p
k

i X
a
 X

k
 p

a
 V3 i V X

a
 X

k
 p

a
 V2

 V3 X
k

2

5  V5 Xa
2 X

k
2   

m
e

SubstituteTensor (38), (39)

H, Z
k

=
i p

k
 V i V p

k
i X

a
 X

k
 p

a
 V3 i V X

a
 X

k
 p

a
 V2 2  V3 X

k
  

m
e

Simplify (40)

H, Z
k

=
2  V3 X

k
V5 Xa

2 X
k

m
e

SubstituteTensor (38), (41)
H, Z

k
= 0

And this is the result we wanted to prove.



> > 

> > 

> > 

> > 

> > 

> > 

(21)(21)

(51)(51)

(46)(46)

> > 

(47)(47)

(32)(32)

(45)(45)

(49)(49)

(44)(44)

> > 

(48)(48)

(43)(43)

> > 

(9)(9)

(50)(50)

3.2 H, Z
n

= 0, alternative derivation using differential operators

As done in the previous section when deriving the commutators between linear and angular momentum, on the one hand, 
and the central potential V  on the other hand, the idea here is again to use differential operators taking advantage of the 
ability to compute with them as operands of a product, that get applied only when it appears convenient for us

Setup differentialoperators = p k , x, y, z
differentialoperators = p

k
, X

So take the starting point (37)
(37)

H, Z
k

=
   V5 Xa

2 X
k

 V3 X
k

2 i X
a
 X

k
 p

a
 V3 2 i p

k
 V 2 i Xa

2 p
k
 V3 2 i V X

a
 X

k
 p

a
 V2

2 m
e

and to show that the right-hand side is equal to 0, multiply by a generic function G X followed by transforming the 
products involving p

n
 into the application of this differential operator p

n
= i  

n
p

n
= i  

n

(37) G X
H, Z

k
 G X

=
   V5 Xa

2 X
k

 V3 X
k

2 i X
a
 X

k
 p

a
 V3 2 i p

k
 V 2 i Xa

2 p
k
 V3 2 i V X

a
 X

k
 p

a
 V2  G X

2 m
e

ApplyProductsOfDifferentialOperators (46)

H, Z
k

 G X =
1

2 m
e

  2  V X
a
 X

k
 

a
V  V V 

a
V  G X V2 

a
G X 2  Xa

2 
k

V  V2

V 
k

V  V V2 
k

V  G X V3 
k

G X 2  V 
k

G X 2  
k

V  G X

2  X
a
 X

k
 

a
V  V2 V 

a
V  V V2 

a
V  G X V3 

a
G X  V5 Xa

2 X
k
 G X

 V3 X
k
 G X

Simplify (47)

H, Z
k

 G X =
1

m
e

2  Xa
2 

k
V  G X  V2 V Xa

2 
k

V  G X  V V2 Xa
2 

k
V  G X V3 

Xa
2 

k
G X V 

k
G X

k
V  G X X

a
 X

k
 

a
V  G X  V2

G X  V5 Xa
2 X

k
2

G X  V3 X
k

2

In addition, consider the application of p
l
 to the test function G X

p l  G X
p

l
 G X

(49) = ApplyProductsOfDifferentialOperators (49)
p

l
 G X = i  

l
G X

isolate (50),
l

G X

l
G X =

i p
l
 G X

Using this identity (51) together with the derived identity (8) ≡ 
n

V X = V3 X
n
, followed by multiplying by G X 1  



> > 

> > 

(57)(57)

> > 

> > 

(52)(52)

> > 
(54)(54)

(21)(21)

> > 

(60)(60)

(56)(56)

(32)(32)

> > 

> > 

> > 

> > 

(58)(58)

(59)(59)

(55)(55)

(9)(9)

(53)(53)

to remove the test function from the equation, we get
Simplify SubstituteTensor (8), (51), (48) G X 1

H, Z
k

=
  i V p

k
i V3 Xa

2 p
k

3  V3 X
k

2

3  V5 Xa
2 X

k
2

m
e

Applying (38) ≡ V3 Xl
2 = V,  V5 Xl

2 = V3

SubstituteTensor (38), (52)
H, Z

k
= 0

Add to the setup these derived commutation rules between the Hamiltonian, angular momentum and Runge-Lenz tensors
(30), (53)

H, L
q

= 0, H, Z
k

= 0

Setup (54)
algebrarules = H, L

q
= 0, H, Z

k
= 0, L

j
, L

k
= i  

j, k, n
 L

n
, L

q
, V = 0, p

j
, L

k
= i  

j, k, n
 p

n
,

p
k
, p

l
= 0, p

q
, V = i  V3 X

q
, p

q
, V3 = 3 i  V5 X

q
, X

j
, L

k
= i  

j, k, n
 X

n
, X

k
, p

l
= i  g

k, l
,

X
k
, V = 0

Reset differentialoperators in order to proceed to the next section working without them
Setup differentialoperators = none

differentialoperators = none

4. Commutation rules between the angular momentum L
q
 and the Runge-

Lenz Z
k
 tensors

Departing from the definition of these tensors, introduced in the previous sections
(10); (36)

L
q

=
m, n, q

 X
m

 p
n

Z
k

=
i  p

k
 V X

k
 m

e
X

m
 p

k
 p

m
X

k
 pm

2

m
e

the left-hand side of the identity to be proved is the left-hand side of the commutator of these two equations
Commutator (10), (36)

L
q
, Z

k
=

1
m

e m, n, q
  i X

m
 g

k, n
 V V3 X

n
 X

k
  m

e
 g

k, m
 p

n
2 i X

k
 p

a
 p

n
 g

a, m
i X

m
 pa

2 g
k, n

i X
m

 p
k
 p

a
 g
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Simplify (58)
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By eye, the right-hand side of (59) is similar to the right-hand side of the definition of Z
k
 in (57), so introduce this 

definition directly into the right-hand side of (59). For that purpose, isolate X
k
 pm

2

isolate (57), X k p m 2

X
k
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2 = Z
k
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e
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k
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k
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e
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Simplifying, we get the desired result, and we substitute the active by the inert form of Commutator for posterior use of this
formula without having the Commutator automatically executed.

subs Commutator = %Commutator, Simplify (61)
L

q
, Z

k
= i  Z
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a, k, q

Set now this algebra rule to be available to the system when convenient
Setup (62)
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j, k, n
 p
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q
, V3 = 3 i  V5 X
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l
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4.1 L  Z = Z  L = 0
Classically, the orbital momentum is perpendicular to the elliptic plane of motion, while the Runge-Lenz vector lies in that 

plane, so that  LClassical  ZClassical = 0.  In quantum mechanics, from (62) L
q
,  Zk 0 but  L  Z  = Z  L = 0 

still holds. To verify that, take the definition (31) of the quantum Runge-Lenz vector and multiply it by L
k

(31) . L k

L
k
 Z

k
= a, b, k
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a
 p

b
 L

k
p

a
 L

b
 L

k
2 m

e
 V X

k
 L

k

Simplify (64)
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=
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, 

lhs (65) = SubstituteTensor (10), rhs (65)
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Simplify (66)
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= 0

and due to (62) ≡ L
q
, Z

k
=  i Z
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a, k, q
, reversing the order in the product,

SortProducts (67), Z k , L k
Z

k
 L

k
= 0

5.  Commutation rules between the components of the Runge-Lenz tensor

Here again the starting point is (36), the definition of the quantum Runge-Lenz tensor
SubstituteTensorIndices k = q, (36)

Z
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The commutator Z
k
, Z

q
is computed via

Commutator (36), (69)



(73)(73)

(70)(70)

> > 

> > 

> > 

(75)(75)

> > 

(21)(21)

(61)(61)

(74)(74)

(32)(32)

(71)(71)

(72)(72)

> > 

(9)(9)

> > 

> > 

Z
k
, Z

q
=

1
m

e
2 2 i  g

m, q
 X

k
 p

m
 pa

2  m
e
 X

m
 i  p

k
 g

m, q
 V V3 X

m
 X

q
i  g

k, q
 V

V3 X
k
 X

q
 p

m
2 i  g

a, m
 X

k
 p

m
 p

q
 p

a
2 i  V X

q
 p

a
  m

e
 g

a, k
2 V3 X

k
 X

q
  m

e

2 V3 X
q
 X

k
  m

e
i  X

m
 g

a, k
 p

q
 p

a
 p

m
g

a, m
 p

k
 p

q
 p

a
2 i  g

a, k
 X

q
 p

a
 pm

2 i  X
a
 g

a, m
 p

q

g
m, q

 p
a

 p
k
 p

m
i  X

q
 2 p

a
 V3 X

a
V3 3 i 2 p

a
 X

a
3 i  V5 X

a
2 V3 p

a
 X

a
 X

k
  m

e

2 i  g
a, m

 X
q
 p

a
 p

k
 p

m
2 g

k, q
 pm

2 2 g
m, q

 p
k
 p

m
2 p

q
 p

a
 g

a, k
2 pa

2 g
k, q

2 i X
k
 V p

m
 g

m, q

2 p
m

 V3 X
m

V3 3 i 2 p
m

 X
m

3 i  V5 X
m

2 V3 p
m

 X
m

 X
q

2

i X
a
 p

q
 V3 X

a
V3 X

q
 p

a
 X

k
i V X

a
 g

a, k
 p

q
g

k, q
 p

a
  m

e
i X

m
 g

k, q
 pa

2 p
m

g
m, q

 p
k
 pa

2

i X
a
 g

a, k
 p

q
g

k, q
 p

a
 pm

2  

Simplify (70)
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In order to use (9) ≡ V3 X
l
2 = V , sort the products in (71) using the ordering V3 X

a
2

Normal SortProducts (71), V X 3, X a 2
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=
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Regarding the term quadratic in the momentum, from the expression for the Hamiltonian (5) ≡ H =
 p

l
2
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 V ,

isolate (5), p l 2
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e

In order to use this equation (74) to substitute pl
2 into the expression (73) for Z

k
, Z

q
 and not receive noncommutative 

products with H  in between the position X
k
 and momentum p

q
tensors (that would require using afterwards the commutator

between H and p
q

) , sort first the products in (73) positioning all square of momentums  p2 to the right of occurrences of p

SortProducts (73), p a , p k , p m , p q , p a 2, p m 2
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Finally, from the definition of the angular momentum (10) ≡  L
q

=
m, n, q
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m
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n
, multiplying by 

a, b, c
 we can construct an

expression for X
a
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b
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=
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Which is the identity we wanted to prove.

5.1 Alternative demonstration using differential operators
Set again the differentialoperator representation for the momentum operator p

k
Setup differentialoperators = p k , x, y, z

differentialoperators = p
k
, X

and apply the expression (70) for Z
k
, Z

q
to the test function G X
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Recalling (8) ≡ 
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V = V3 X
n
 and (51)  

l
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Evaluating the term 
q

G X
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Inserting this result into the expression (85) for Z
k
, Z

q
and removing the test function multiplying by G X 1

Simplify SubstituteTensor (88), (85) G X 1
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This expression can be factored
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SubstituteTensor (9), (90)

Z
k
, Z

q
=

i  2 V  m
e

pd
2  X

q
 p

k
X

k
 p

q

m
e
2

Next using 
(74), (79)

pl
2 = 2  V H  m

e
, X

a
 p

b
X

b
 p

a
=

a, b, q
 L

q

SubstituteTensor (92), (91)

Z
k
, Z

q
=

2 i  
c, k, q

 H L
c

m
e

Which is the expected result. Set now differential operators to none.
Setup differentialoperators = none

differentialoperators = none

6. The square of the norm of the Runge-Lenz vector

Taking the square of the definition of Z
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 and simplifying
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Using the algebraic properties of the potential
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2 becomes

SubstituteTensor (97), (96)

Zk
2 =

4  2 V m
e

2 2 m
e
2 4 

a, b, c
 X

a
 p

b
 L

c
 V  m

e
p

a
 p

b
 L

b
 L

a
2 pa

2 Lb
2 p

a
 L

b
 L

a
 p

b

2 m
e
2

The term having 
a, b, c

 can be simplified using the expression of the momentum operator
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Equalizing the repeated indices, the right-hand side can be factored, resulting in

lhs = Factor@rhs EqualizeRepeatedIndices (107) 2 2
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Which is the result we wanted to demonstrate.

7. The atomic hydrogen spectrum
We now have all the algebra to reconstruct the hydrogen spectrum. Following the literature, this approach is limited to the 
bound states for which the energy is negative. Assuming an eigenstate of H with negative eigenvalue E, we now replace the 
Hamiltonian H by E, and look for the possible values of E. Another way to state the same thing is that the analysis is 

restricted to the subspace of energy E. The operator M
n

=
m

e
2 E  Z

n
, is introduced as mentioned in the presentation. The 

operators J and K, to be used soon after, are added to the system.



> > 

> > 

> > 

(118)(118)

> > 

(70)(70)

(89)(89)

(112)(112)

> > 

(75)(75)

(115)(115)

(21)(21)

> > 

> > 

(61)(61)

(119)(119)

(99)(99)

(116)(116)

(113)(113)

> > 

(111)(111)

(32)(32)

(114)(114)

> > 

> > 

> > 

(83)(83)

(109)(109)

(9)(9)

(110)(110)

> > 

> > 

> > 

(117)(117)

Setup hermitianoperators = M, J, K

hermitianoperators = H, J, K, L, M, V, p, x, y, z
Define M n , J n , K n , quiet

a, J
n
, K

n
, L

k
, M

n
, a, Z

k
,

a
, g

a, b
, p

k
,

a, b, c
, X

a

Assume m
e

0, E 0
E:: , 0 , m

e
:: 0,

M n =
m

e
2 E  Z n

M
n

=

2 m
e

E  Z
n

2
simplify isolate (112), Z n

Z
n

=
M

n
 2  E

m
e

Recalling the commutation rules (93)  ≡ Z
k
, Z

q
=

2 i  
a, k, q

 H L
a

m
e

 and (113)  above with E replacing H

SubstituteTensor H = E, (113), (93)
M

k
 2  E

m
e

,
M

q
 2  E

m
e

=
2 i  

c, k, q
 E L

c
m

e

Simplify (114)
2 E M

k
, M

q
m

e
=

2 i  
c, k, q

 E L
c

m
e

Isolating the commutator, the expression (93) for Z
k
, Z

q
appears rewritten in terms of the M

k
 as

isolate (115), Commutator M k , M q
M

k
, M

q
= i  

c, k, q
 L

c

Likewise, inserting (113) ≡ Z
n

=
M

n
 2  E

m
e

 into the expression (62) ≡ L
q
, Z

k
=  i 

a, k, q
 Z

a
, we get it 

rewritten in terms of L
q
, M

k
Simplify SubstituteTensor (113), (62)

2  E  L
q
, M

k

m
e

=
i  M

a
 2  E  

a, k, q

m
e

isolate (117), Commutator L q , M k
L

q
, M

k
= i  M

a
 

a, k, q

Add these two newly derived commutators to the setup
Setup (116), (118)

algebrarules = H, L
q

= 0, H, Z
k

= 0, L
j
, L

k
= i  

j, k, n
 L

n
, L

q
, M

k
= i  M

a
 

a, k, q
, L

q
, Z

k

= i  Z
a
 

a, k, q
, L

q
, V = 0, M

k
, M

q
= i  

c, k, q
 L

c
, p

j
, L

k
= i  

j, k, n
 p

n
, p

k
, p

l
= 0, p

q
, V



(124)(124)

> > 

(122)(122)

(119)(119)

(99)(99)

> > 

(32)(32)

> > 

> > 

> > 

> > 

> > 

> > 

(125)(125)

> > 

(126)(126)

> > 

(70)(70)

> > 

(123)(123)

(89)(89)

(129)(129)

> > 

(75)(75)

> > 

(130)(130)

(127)(127)

(21)(21)

(61)(61)

(120)(120)

> > 

> > 

> > 

(121)(121)

(128)(128)

(83)(83)

(109)(109)

(9)(9)

(131)(131)

= i  V3 X
q
, p

q
, V3 = 3 i  V5 X

q
, X

j
, L

k
= i  

j, k, n
 X

n
, X

k
, p

l
= i  g

k, l
, X

k
, V = 0

These commutators (118), (116), together with the departing commutator
%Commutator = Commutator L m , L n

L
m

, L
n

= i  
a, m, n

 L
a

constitute a closed form, the algebra of the SO(4) group, that is, the rotation group in dimension 4.

We now define the two operators J and K as follows

J m =
1
2 L m M m

J
m

=
L

m
2

M
m

2

K m =
1
2 L m M m

K
m

=
L

m
2

M
m

2
Because M and L both commute with H (since M is proportional to Z up-to a commutative factor), it is straightforward to 
see that J and K commute with H. They are therefore a constant of the motion. Additionally after having set the commutators
(116) ≡ M

k
, M

q
 and (118) ≡ L

q
, M

k
 derived from the results of the previous sections, the commutator between the 

components of J
m

 results in

Commutator (121), SubstituteTensorIndices m = n, (121)

J
m

, J
n

=
i
4   L

a
2 M

a
 

a, m, n c, m, n
 L

c

Simplify (123)

J
m

, J
n

=
i
2  

a, m, n
  L

a
M

a

SubstituteTensor rhs = lhs (121) , (124)
J
m

, J
n

= i 
a, m, n

  J
a

In a similar manner
Commutator (122), SubstituteTensorIndices m = n, (122)

K
m

, K
n

=
i
4   L

a
2 M

a
 

a, m, n c, m, n
 L

c

Simplify (126)

K
m

, K
n

=
i
2  

a, m, n
  L

a
M

a

SubstituteTensor rhs = lhs (122) , (127)
K

m
, K

n
= i 

a, m, n
  K

a

Also
Commutator (121), subs m = n, (122)

J
m

, K
n

=
i
4   

a, m, n
 L

a c, m, n
 L

c

Simplify (129)
J
m

, K
n

= 0

Both J and K have the symmetry of a rotation operator in two independent 3 dimension spaces. H then has the symmetry of 
the group SO(3)⊗SO(3). Furthermore, one knows that the possible eigenvalues for the rotation operators J and K are 

j j 1  2  and k k 1  2 , with j, k 0,
1
2 , 1, 

3
2 , 2,... . Now, computing J2  and K2

Expand (121)2

Jm
2 =

Lm
2

4

L
m

 M
m

2

Mm
2

4



(136)(136)

(132)(132)

> > 

> > 

> > 

(70)(70)

> > 

(133)(133)

(89)(89)

(141)(141)

> > 

> > 

(75)(75)

(21)(21)

(61)(61)

(119)(119)

(99)(99)

> > 

> > 

(32)(32)

(135)(135)

(140)(140)

> > 

(138)(138)

> > 

> > 

> > 

> > 

(83)(83)

(109)(109)

(9)(9)

> > 

(139)(139)

(134)(134)

(137)(137)

Recalling (67) ≡ L
k
 Z

k
= 0, and considering that M is proportional to Z, we have that L

m
 M

m
= 0

subs L m  M m = 0, (131)

Jm
2 =

Lm
2

4

Mm
2

4

Next, from (122) ≡ K
m

=
L

m
2

M
m

2
Expand (122)2

Km
2 =

Lm
2

4

L
m

 M
m

2

Mm
2

4
subs L m  M m = 0, (133)

Km
2 =

Lm
2

4

Mm
2

4
So that

(132) (134)
Jm

2 Km
2 = 0

That is, J
m

2 = K
m

2,  which means they share the same eigenvalues, say j j 1  2  for a given eigenstate of H with the 
considered eigenvalue E. 

Next, inserting (113) ≡  Z
n

=
M

n
 2  E

m
e

 into  (108) ≡ Zk
2 =

2 H 2 La
2

m
e

2  we get an expression for Mk
2

SubstituteTensor H = E, (113), (108)
2 E Mk

2

m
e

=
2 E 2 La

2

m
e

2

m
e

2 E  (136)

Mk
2 =

2 2 E 2 E La
2 2 m

e
2 E

Substituting this result into the expression (132) for Jm
2  and simplifying we get

Simplify SubstituteTensor (137), (132)

Jm
2 =

2

4

2 m
e

8 E

Taking the average value of Jm
2  over an eigenvector, Jm

2  can be replaced by its eigenvalue j j 1  2

subs J m 2 = j j 1  2, (138)

j j 1  2 =
2

4

2 m
e

8 E
from where the possible values of the energy are

isolate (139), E

E =

2 m
e

2 2 2 j 1 2

Assuming n = 2 j 1, a positive integer and j 0,
1
2 , 1, 

3
2 , 2,... , the spectrum for an hydrogen atom is thus

subs 2 j 1 = n, E = E n , (140)



• • 

(70)(70)

(89)(89)

(141)(141)

> > 

(75)(75)

(21)(21)

(61)(61)

• • 

(119)(119)

(99)(99)

(32)(32)

> > 

> > 

• • 

(83)(83)

• • 

(109)(109)

(9)(9)

> > 

• • 

E n =

2 m
e

2 2 n2

Which is the energy spectrum for a spinless hydrogenoid system.

Conclusions
In this presentation, we derived, step-by-step, the SO(4) symmetry of the Hydrogen atom and its spectrum using the 
symbolic computer algebra Maple system. The derivation was performed without departing from the results, entering only 
the main definition formulas in eqs. (1), (2) and (5), followed by using a few simplification commands - mainly Simplify,
SortProducts and SubstituteTensor - and a handful of Maple basic commands, subs, lhs, rhs and isolate. The computational 
path that was used to get the results of sections 2 to 7 is not unique. Instead of searching for the shortest path, we prioritized
clarity and illustration of the techniques that can be used to crack problems like this one. 

This problem is mainly about simplifying expressions using two different techniques. First, expressions with 
noncommutative operands in products need reduction with respect to the commutator algebra rules that have been set. 
Second, products of tensorial operators require simplification using the sum rule for repeated indices and the symmetries of 
tensorial subexpressions. Those techniques, which are part of the Maple Physics simplifier, together with the SortProducts 
and SubstituteTensor commands for sorting the operands in products to apply tensorial identities, sufficed. The derivations 
were performed in a reasonably small number of steps. 

Two different computational strategies - with and without differential operators - were used in sections 3 and 5, showing an 
approach for verifying results, a relevant issue in general when performing complicated algebraic manipulations. The Maple 
Physics ability to handle differential operators as noncommutative operands in products (as frequently done in paper and 
pencil computations) facilitates readability and ease in entering the computations. The complexity of those operations is then
handled by one Physics:-Library command, ApplyProductsOfDifferentialOperators (see eqs. (47) and (83)).

Besides the Maple Physics ability to handle noncommutative tensor operators and simplify such operators using commutator
algebra rules, it is interesting to note: a) the ability of the system to factorize expressions involving products of 
noncommutative operands (see eqs. (90) and (108)) and b) the extension of the algorithms for simplifying tensorial 
expressions [5] to the noncommutativity domain, used throughout this presentation.

It is also worth mentioning how equation labels can reduce the whole computation to entering the main definitions, followed
by applying a few commands to equation labels. That approach helps to reduce the chance of typographical errors to a very 
strict minimum. Likewise, the fact that commands and equations distribute over each other allows cumbersome 
manipulations to be performed in simple ways, as done, for instance, in eqs. (8), (9) and (13).

Finally, it was significantly helpful for us to have the typesetting of results using standard mathematical physics notation, as
shown in the presentation above.

Appendix
In this presentation, the input lines are preceded by a prompt > and the commands used are of three kinds: some basic Maple
manipulation commands, the main Physics package commands to set things and simplify expressions, and two commands 
of the Physics:-Library to perform specialized, convenient, operations in expressions.

The basic Maple commands used

interface is used once at the beginning to set the letter used to represent the imaginary unit (default is I but we used i).
isolate is used in several places to isolate a variable in an expression, for example isolating x in a x b = 0 results in 

x =
b
a

lhs and rhs respectively get the left-hand side A and right-hand side B of an equation A = B
subs substitutes the left-hand side of an equation by the righ-hand side in a given target, for example 
subs A = B, A C  results in B C
@ is used to compose commands. So A@B x  is the same as A B x . This command is useful to express an abstract
combo of manipulations, for example as in (108) ≡ lhs = Factor@rhs .

The Physics commands used



(70)(70)

• • 

(89)(89)

• • 

(141)(141)

• • 

> > 

(75)(75)

• • 

• • 

(21)(21)

(61)(61)

(119)(119)

(99)(99)

• • 

(32)(32)

• • 

> > 

• • 
• • 

• • 

> > 

(83)(83)

• • 

(109)(109)

(9)(9)

> > 

Setup is used to set algebra rules as well as the dimension of space, type of metric, and conventions as the kind of letter 
used to represent indices.
Commutator computes the commutator between two objects using the algebra rules set using Setup. If no rules are 
known to the system, it outputs a representation for the commutator that the system understands.
CompactDisplay is used to avoid redundant display of the functionality of a function.
d_[n] represents the 

n
 tensorial differential operator.

Define is used to define tensors, with or without specifying its components.
Dagger  computes the Hermitian transpose of an expression.
Normal, Expand, Factor respectively normalizes, expands and factorizes expressions that involve products of 
noncommutative operands.
Simplify performs simplification of tensorial expressions involving products of noncommutative factors taking into 
account Einstein's sum rule for repeated indices, symmetries of the indices of tensorial subexpressions and custom 
commutator algebra rules.
SortProducts uses the commutation rules set using Setup to sort the non-commutative operands of a product in an 
indicated ordering.

The Physics:-Library commands used

Library:-ApplyProductsOfDifferentialOperators applies the differential operators found in a product to the product 
operands that appear to its right. For example, applying this command to  p V X  m

e
 results in m

e
p V X

Library:-EqualizeRepeatedIndices  equalizes the repeated indices in the terms of a sum, so for instance applying this 
command to La

2 Lb
2  results in 2 La

2
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