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We present symmetry classification and exact solutions of generalized modified
Boussinesq (GMB) equation. The direct method of group classification is utilized
to determine four different functional forms of f (u). The GMB equation admits
two-dimensional principle algebra for arbitrary f (u) and the algebra extends to
three-dimensional for other forms of f (u). Similarity reductions are made in each
case and exact solutions are derived.

Keywords: generalized modified Boussinesq equation; group classification;
similarity solutions

AMS Subject Classifications: 70G65; 35B06

1. Introduction

Joseph Valentin Boussinesq (1842–1929) derived an equation for the propagation of long
waves on the surface of water with a small amplitude. There have been several general-
izations of the Boussinesq equation such as the improved Boussinesq equation, modified
Boussinesq equation, or the dispersive water wave. Here we study the generalized modified
Boussinesq (GMB) equation which describes the nonlinear model of longitudinal wave
propagation of elastic rods and is governed by [1,2]

utt − δuttxx − ( f (u))xx = 0, ( fuu �= 0) (1)

where δ is a nonzero constant and f (u) is an arbitrary function. It plays an important
role in nonlinear lattice waves, iron sound waves and vibrations in a nonlinear string. The
arbitrary functions arise in differential equations can be obtained from physical laws or
experiments but in some cases they cannot be deduced. The method of group classification
can be used to determine the forms of functions in those cases. The GMB equation has been
studied extensively using numerical and analytical approaches. Bogolubsky [3] derived
exact solitary wave solutions of GMB equation for f (u) = b1u + b2u p+1 + b3u2p+1
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2 Z. Ali et al.

when p = 2, 3, 5. The explicit solitary wave solutions of GMB equation for f (u) =
b1u + b2u3 + b3u5 and f (u) = b1u + b2u2 + b3u3 using the method of solving algebraic
equations were derived by Li and Zhang [4], Zhang and Ma [5]. In [1], the homotopy
perturbation method is used to derive the approximate solutions of GMB equation. This
approach involve approximations and solution may not converge. A similar problem arises
in numerical schemes as well. The Lie classical and nonclassical methods are used to derive
some exact solutions of different classes of Boussinesq equations, for good account of these
see e.g. [6–8] and references therein.

In this manuscript, we give symmetry classification, optimal system, and exact solutions
of GMB equation. The symmetry group method is one of the most efficient instrument for
solving linear and nonlinear partial differential equations. We utilize the group classification
method to determine the four functional form of f (u). We show that when f (u) is arbitrary
then GMB equation possesses two-dimensional algebra. For other forms of f (u), the Lie
algebra of GMB equation is extended to three-dimensional. We construct the optimal system
[9,10] for each form of f (u) and also derive the independent exact solutions.

2. Symmetry classification and exact solutions of generalized modified Boussinesq
equation

In this section, we provide complete classification for classical Lie symmetries and exact
solutions of Equation (1). The vector field of the Lie point symmetries is

X = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ φ(t, x, u)

∂

∂u
. (2)

The Lie point symmetry generators of Equation (1) are found by applying the invariance
condition [10–12]

X [4][utt − δuttxx − ( f (u))xx ] |(1)= 0, (3)

where

X [4] = X + ζt
∂

∂ut
+ ζx

∂

∂ux
+ ζt t

∂

∂utt
+ ζt x

∂

∂utx
+ ζxx

∂

∂uxx
+ ζt t t

∂

∂uttt

+ ζt t x
∂

∂uttx
+ ζt xx

∂

∂utxx
+ ζxxx

∂

∂uxxx
+ ζt t t t

∂

∂uttt t
+ ζt t t x

∂

∂uttt x

+ ζt t xx
∂

∂uttxx
+ ζt xxx

∂

∂utxxx
+ ζxxxx

∂

∂uxxxx
. (4)

In Equation (4 ) ζ s are given by

ζi = Di (φ) − u j Di (ξ
j ),

ζi j = D j (ζi ) − uil D j (ξ
l),

ζi jk = Dk(ζi j ) − ui j l Dk(ξ
l),

ζi jkm = Dm(ζi jk) − ui jkl Dm(ξ l), i, j, k, l = t, x, (5)

where Dm is the total derivative operator. Equation (3) after expansion and then separation
with respect to the powers of different derivatives of u yields following over determined
system in unknown coefficients ξ1, ξ2 and φ:
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Applicable Analysis 3

ξ1
u = 0, ξ1

x = 0, ξ2
u = 0, ξ2

t = 0, (6)

ξ2
xx = 0, ξ1

t t − 2φtu = 0, (7)

φuu = 0, φt t = 0, φx = 0, (8)

2(δ − 1)ξ1
t + (1 − δ)φu + 2δξ2

x = 0, (9)

2(1 − δ)ξ2
x fu + (δ − 1)φu fu − φ fuu − 2δξ1

t fu = 0, (10)

2(1 − δ)ξ2
x fuu + (δ − 2)φu fuu − φ fuuu − 2δξ1

t fuu = 0. (11)

If f (u) is arbitrary in u then Equation (1) admits

X1 = ∂

∂t
, X2 = ∂

∂x
,

that forms two-dimensional principle algebra. Now we investigate all the possibilities of
f (u) for which extension of the principle algebra is possible.

Substituting 2δξ1
t + 2δξ2

x = (δ − 1)φu + 2ξ1
t from Equation (9) in Equations (10) and

(11), we obtain

2 fu(ξ2
x − ξ1

t ) − φ fuu = 0, (12)

2 fuu(ξ2
x − ξ1

t ) − φ fuuu − φu fuu = 0. (13)

After simplification of Equations (12) and (13), we have

φ f 2
uu − φ fu fuuu + φu fu fuu = 0. (14)

Differentiating Equation (14) and subsequent elimination of φ gives

fu fuu fuuuu + f 2
uu fuuu − 2 fu f 2

uuu = 0. (15)

Replacing g = fu in Equation (15) transforms to

guuu

guu
+ gu

g
− 2

guu

gu
= 0. (16)

Solving Equation (16) for g and then using relation g = fu lead to the following four forms
of f (u) (see [13])

(a) f (u) = αeβu + γ, (17)

(b) f (u) = αu2 + βu + γ, (18)

(c) f (u) = ln(αu + β)

α
+ γ, (19)

(d) f (u) = (αu + β)n + γ, n �= 0, 1, 2, (20)

where α, β and γ are arbitrary constants.
Now we find the symmetry algebras for each form of f (u) in the following cases.

Case I: Lie Symmetries, optimal systems and exact solutions of (1) for f (u) = αeβu +γ

If f (u) = αeβu + γ , then Equation (1) becomes

utt − δuttxx − αβ2eβuu2
x − αβeβuuxx = 0. (21)
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4 Z. Ali et al.

Table 1. Commutator table of the Lie algebra of Equation (21).

[Yi , Y j ] Y1 Y2 Y3

Y1 0 0 β X1
Y2 0 0 0
Y3 −β X1 0 0

Table 2. Adjoint representation of Lie algebra of Equation (21).

A d Y1 Y2 Y3

X1 X1 X2 X3 − βγ X1
X2 X1 X2 X3
X3 eβγ X1 X2 X3

Solving the determining Equations (6)–(11) with f (u) = αeβu + γ lead to the following
three Lie point symmetries:

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = βt

∂

∂t
− 2

∂

∂u
. (22)

In this case, the principle algebra is extended to three-dimensional. Now we find the optimal
systems of these operators.[9,10] The commutation relation between these operators is given
in Table 1.

The adjoint representation of the Lie algebra of Equation (21) is defined as

Ad(exp(γ Xi )X j ) = X j − γ [Xi , X j ] + 1

2
γ 2[Xi , [Xi , X j ]] − .... (23)

Using Equation (23) we find the all adjoint representation of Lie algebra of Equation (21)
listed in Table 2.

The optimal system of one-dimensional subalgebra admitted by Equation (21) are [9,10]

X1, X3, cX1 + X2, X2 + cX3, c �= 0. (24)

Next we use this optimal system to find the exact solutions of Equation (21).
Solution of (21) using X1: The characteristic equation corresponding to X1 is

dt

1
= dx

0
= du

0
, (25)

which turns into

r = x, s = t, v(r) = u(t, x). (26)

Equation (21) with the use of (26) reduces to

βv2
r + vrr = 0. (27)
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Applicable Analysis 5

The solution of Equation (27) is

v(r) = ln(βcr + βd)

β
. (28)

Thus

u(t, x) = ln(βcx + βd)

β
(29)

is a solution of Equation (21) invariant under X1.
Solution of (21) using X3: Using X3 = βt ∂

∂t − 2 ∂
∂u we obtain

r = x, s = ln(t)

β
, v(r) = 2 ln(t) + βu(t, x)

β
. (30)

Equation (21) in terms of new coordinates gives rise to

2 − αβ3eβvv2
r − αβ2eβvvrr = 0, (31)

which can be integrated to obtain exact solution of Equation (21) as

u(t, x) = 1

β
ln

(
x2 − αβ2cx + αβ2d

αβt2

)
. (32)

Solution of (21) using X = cX1 + X2: The similarity variables for operator X = c∂/∂t +
∂/∂x are

r = cx − t

c
, s = t

c
, v(r) = u(t, x), (33)

which gives the following version of Equation (21)

vrr − δvrrrr − αβ2c2eβvv2
r − αβc2eβvvrr = 0. (34)

This implies
v(r) − δvrr − αc2eβv = 0 (35)

and the solution is given by the following integral equation

±
∫

βδ√
δβ2v2 − 2αβδc2eβv + β2δ2c1

dv − r − c2 = 0, (36)

where r = cx−t
c and v(r) = u(t, x).

Solution of (21) using X = X2 + cX3: The similarity variables for operator X = ∂/∂x +
c(βt ∂

∂t − 2 ∂
∂u ) are

r = − ln(t) + cβx

cβ
, s = ln(t)

cβ
, v(r) = 2 ln(t) + βu(t, x)

β
, (37)

which gives the following version of Equation (21)

(1 − cβδ)vrr − δvrrrr − αβ4c2eβvv2
r − αβ3c2eβvvr + cβvr = 0. (38)

This implies
(1 − cβδ)vr − δvrrr − αβ3c2eβvvr + cβv = 0. (39)

The Lie symmetries, optimal system, reduced form, and exact solutions for other cases for
f (u) of modified Boussinesq equation are presented in Table 3.
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6 Z. Ali et al.

Table 3. Lie symmetries, optimal system, reduced form, and exact solutions for different form of
f (u) of modified Boussinesq equation.

Modified Boussinesq equation: utt − δuttxx − ( f (u))xx = 0

Case II
f (u) αu2 + βu + γ

GMB equation utt − δuttxx − 2αu2
x − (2αu + β)uxx = 0

Lie point symmetries X1 = ∂
∂t , X2 = ∂

∂x , X3 = −αt ∂
∂t + (2αu + β) ∂

∂u

Optimal system X1, X3, cX1 + X2, X2 + cX3, c �= 0

Reduction via X1 2αv2
r + (2αv + β)vrr = 0

Solution via X1 u(t, x) =
√

β2+4αcx+4αd−β
2α

Reduction via X3 6v − (6δ + 2αv)vrr − 2αv2
r = 0

Solution via X3 u(t, x) = α2c2+3δ+2αcx+x2−βt2

2αt2

Reduction via cX1 + X2 (1 − βc2)v − δvrr − αc2v2 = 0

Solution via cX1 + X2 ± ∫ √
3δ√

3δv2−3βδc2v2−2αδc2v3+3δ2c1
dv − r − c2 = 0,

r = cx−t
c , v(r) = u(t, x)

Reduction via X2 + cX3 (1 − 2δα2c2 − 2α3c2v)vrr − δvrrrr + 3δαcvrrr
−3αcvr − 2α3c2v2

r + 2α2c2v = 0

Case III

f (u)
ln(αu+β)

α + γ

GMB equation (αu + β)2utt − δ(αu + β)2uttxx + αu2
x − (αu + β)uxx = 0

Lie point symmetries X1 = ∂
∂t , X2 = ∂

∂x , X3 = αt ∂
∂t + (2αu + 2β) ∂

∂u

Optimal system X1, X3, cX1 + X2, X2 + cX3, c �= 0

Reduction via X1 αv2
r − (αv(r) + β)vrr = 0

Solution via X1 u(t, x) = eαdx+βe−β
α

Reduction via X3 2α2v3 − (2α2δv2 + αv)vrr + αv2
r = 0

Solution via X3

∓ 1
2 αδ ln

[
2α2+4α3δv√

4α3δ
+

√
4α3δv2+4α2v+ 1

c2
1

]√
4

√
α3δ

(Continued)
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Applicable Analysis 7

Table 3. (Continued ).

Modified Boussinesq equation: utt − δuttxx − ( f (u))xx = 0

±c1 ln

[ 2
c2
1
+4α2v+

2
√

4α3δv2+4α2v+ 1
c2
1

c1

v

]
−

r − c2 = 0, r = x, v(r) = αu(t,x)+β

αt2

Reduction via cX1 + X2 v − δvrr − c2 ln(αv+β)
α = 0

Solution via cX1 + X2 ± ∫
αδ√

α2δv2−2αδc2v(ln(αv+β))−2βδc2(ln(αv+β))+2c2δαv+2c2βδ+c1α2δ2
dv

−r − c2 = 0, r = cx−t
c , v(r) = u(t, x)

Reduction via X2 + cX3 2α2c2v3 − 3αcv2vr + αc2v2
r + (v2 + 2α2c2v2 − αc2v)vrr

−3αcv2vrrr − δv2vrrrr = 0

Case IV
f (u) (αu + β)n + γ

GMB equation utt − δuttxx − α2n(n − 1)(αu + β)n−2u2
x

−αn(αu + β)n−1uxx = 0

Lie point symmetries X1 = ∂
∂t , X2 = ∂

∂x , X3 = −α(n − 1)t ∂
∂t + (2αu + 2β) ∂

∂u

Optimal system X1, X3, cX1 + X2, X2 + cX3, c �= 0

Reduction via X1 α(n − 1)v2
r + (αv + β)vrr = 0

Solution via X1 u(t, x) = (αdnx+αen)
1
n −β

α

Reduction via X3 2(n + 1)v − (2δ(n + 1) + nαn(n − 1)2vn−1)vrr
−nαn(n − 1)3vn−2v2

r = 0

Solution via X3, n = 3 u(t, x) = 3d−√
3x−3

√
αβt

3α
3
2 t

Reduction via cX1 + X2 v − δvrr − c2(αv + β)n = 0

Solution via cX1 + X2 ± ∫ αδ(n+1)√
(αδ(n+1))(αnv2+αv2−2c2(αv+β)n−1+αδc1n+αδc

dv

−r − c2 = 0 r = cx−t
c , v(r) = u(t, x)

Reduction via X2 + cX3 (1 + 2α2 − nc2αn+2vn−1)vrr − (2α2c + αc(n + 1))vr
−(2α2c + αc(n + 1))vrrr − δvrrrr + c2αnvn−2v2

r + 2α2cv = 0
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8 Z. Ali et al.

3. Conclusions

In this article, we discussed group classification and exact solutions GMB equation by using
Lie theory. We classified four forms of the function involved in GMB equation. We construct
Lie point symmetries with respect to different forms of f (u). These forms have exponential,
quadratic, logarithmic and power law form. We found four exact solutions with exponential
form, three exact solutions with quadratic form, three exact solutions with logarithmic form,
and three exact solution with power law form of f (u). Most solutions are of explicit form
and one integral form in each case. To the best of our knowledge, the solutions obtained
here are not obtained in literature. The derived solutions cannot be interpreted physically
due to lack of experimental sources, however these solutions will play an essential role for
numerical simulations in applied mathematics.
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