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Abstract

We have all seen many of the beautiful patterns obtained by tiling

the hyperbolic plane H by repeated reflection in the sides of a "kalei-

doscopic" polygon. Though there are such patterns on the sphere and

the euclidean plane, these positively curved and fiat geometries lack

the richness we see in the hyperbolic plane. Many of these patterns

have been popularized by the beautiful art of M.C. Escher. For a list

of references and a more complete discussion on the construction of

artistic tilings see [6].
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1 Kaleidoscopic polygons

We have all seen many of the beautiful patterns obtained by tiling the hy-

perbolic plane H by repeated reflection in the sides of a “kaleidoscopic”

polygon. Though there are such patterns on the sphere and the Euclidean
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plane, these positively curved and flat geometries lack the richness we see in

the hyperbolic plane. Many of these patterns have been popularized by the

beautiful art of M.C. Escher. For a list of references and a more complete

discussion on the construction of artistic tilings see [6].

Here is one way to construct a tiling. Select an -gon ∆ = 12 · · ·
in the hyperbolic plane such that the measure of its interior angle at the

vertex  equals  where  is an integer. The polygon ∆ is called a

kaleidoscopic polygon or an (12    )-polygon. Now create a layer of

polygons or tiles surrounding our first polygon by hyperbolically reflecting

the first polygon in its edges. Then create a second layer by hyperbolically

reflecting in the edges of the second layer and continue on in this manner to

construct countably many layers. An example of a tiling constructed from

a (3 3 4)-triangle is given in Figure 1. Let Λ∗ be the group generated by
the reflections in the sides of a single tile ∆ The Poincaré Polygon Theorem

[1, p. 249] ensures that Λ∗ is a Fuchsian group, i.e., a discrete group of
isometries of H and ∆ is a fundamental region for Λ∗

A tiling of the plane by (3 2 2 3)-quadrilaterals is given in Figure 2. Also

note that Figure 1 gives us another example of a quadrilateral tiling. The

twelve triangles surrounding the origin make up a kaleidoscopic (4 4 4 4)-

quadrilateral. Observe that the tiling by (4 4 4 4)-quadrilaterals is subdi-

vided by the triangle tiling. We say that the quadrilateral tiling is divisible.

In fact, the problem of classifying divisible quadrilateral tilings motivated

our development of the construction methods given in this paper. See [2]

and [3] for more detail on divisible tilings.
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Fig. 1: (3 3 4)-triangle tiling of the hyperbolic plane

Let Ω ⊂ Λ∗ be a subgroup of finite index. The primary example is the
subgroup Λ (of index 2) consisting of orientation preserving transformations

in Λ∗ A fundamental region  for Ω may be constructed from a finite union
of tiles. For Λ any two adjacent tiles will do. Now deform this fundamental

region into another fundamental region  that is artistically pleasing, and,

if desired, paint a pattern on the fundamental region. The Ω-translates

of the painted pattern
S
∈Ω  form an artistically pleasing pattern that

covers the plane without gaps or overlaps. The creation of the images 

 ∈ Ω is easily automated by a computer once a set of generators of Ω as
transformations of H is known.

Remark 1.1 For any discrete group of isometries of H a convex polygonal
fundamental region exists, which may be constructed from a Dirichlet polygon

[1, p. 226]. Thus the program we have been describing can be carried out for

any discrete group. For a group generated by reflections in a kaleidoscopic

polygon, the Dirichlet polygon must be a tile. For subgroups one may either
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select a collection of tiles or a Dirichlet polygon.

Fig. 2: A (3,2,2,3)-quadrilateral tiling

The group Λ∗ and hence Ω is easy to work with both algebraically
and analytically. From the algebraic point of view, consider the triangle

in Figure 1 with a vertex at the origin and whose bottom edge lies on the

-axis. Let   and  denote the reflections in the sides of this triangle.

Specifically,  is the reflection across the diameter in the first quadrant,  is

the reflection across the -axis, and  is the hyperbolic reflection in the third

circular side. The products   and  are hyperbolic rotations centered

at the vertices of the triangle through angles 4 3 and 3 respectively,

and these rotations have finite orders 4 3 and 3 respectively. These are the

only relations among the reflections, and we obtain a presentation

Λ∗ =
D
   : 2 = 2 = 2 = ()4 = ()3 = ()3

E
 (1)

Generators for Ω may then be found from   and ; for example Λ =

h  i  From the analytic point of view the formulas for the reflections
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are easily written down once the sides of the polygon are known. Specifically,

suppose that side of a polygon is a portion of the hyperbolic line  defined

as the Euclidean circle centered at 0 and perpendicular to the (dotted)

boundary circle. Now, for a matrix

 =

∙
 

 

¸
with det = 1 let  denote the linear fractional transformation defined

by () = ( + )( + ) Then, the reflection in  is given by

 → () =
 + 

 + 
 where  =

√
00 − 1

∙
0 −1
1 −0

¸
 (2)

If the line is a diameter then 0 is at infinity and

 =

∙
 0

0 −

¸


where  is the angle that the diameter makes with the -axis. The com-

position of two reflections with matrices  and  is the linear fractional

transformation  in which  is obtained by conjugating the entries of

 The generators of Ω are words in   and  as dictated by the geometry

of the tiling and the presentation (1). The explicit formulas can then be

easily calculated from the basic reflections using the formulas (2). Similar

remarks apply to all kaleidoscopic tilings.

Given the situation, it is very useful to find an explicit way to find

the sides and vertices of the polygon. Given an -tuple (1 2     ) of

angles satisfying 0   ≤ 2 and the hyperbolic condition 1+2+ · · ·+
  ( − 2) we would like to find an analytic method for determining
all polygons ∆ = 12 · · · in the hyperbolic plane such that the interior
angle at  is  Theorem 7.16.2 of [1] shows how to construct at least one,

but it is not enough. In this paper we describe a uniform method to solve

this problem for triangles and quadrilaterals; our method is easily extended

to higher polygons. The key ingredient in our solution to this problem is

the notion of an angle pencil or -pencil, the set of all lines meeting a given

line at an angle of measure . These angle pencils are parametrized by

hyperbolas in the plane, and the polygons may be constructed by finding

the intersections of the hyperbolas.

In Section 2, we quickly review some facts from hyperbolic geometry,

then briefly discuss convex polygons and some alternate constructions of

convex polygons, and then the introduce the space of geodesics. We develop
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the basic properties of angle pencils in Section 3 and then apply the ideas

to the construction of triangles in Section 4 and quadrilaterals in Section 5.

The main results are Theorems 4.5 and 5.1, and Propositions 4.3 and 5.2.

In Section 6 we pose some homework for the interested reader and some

unsolved questions suitable for further research.

For the author, it is a source of satisfaction that most of the conceptual

and computational parts of the paper use little more than analytic geometry,

calculus, and solving systems of linear and quadratic equations. For the

proofs the only boosts required from hyperbolic geometry are angle sum

inequalities, and, at one point, the second law of cosines.

The figures in this paper were produced using Maple worksheets and

Matlab m-files, which may be found at [7]. Three additional websites that

contain material on tilings and geometric constructions are [8], [9], and [10].

The first gives a Java script enabled visualization of the genus 2 Teichmüller

space by showing octagons that generate a Fucshian group corresponding to

a genus 2 surface. The second allows basic hyperbolic geometric construc-

tions and reflections, i.e., a Java script geometric sketchpad. The third site

has downloadable software that is a hyperbolic geometric sketchpad.

2 Hyperbolic geometry

Our basic reference for hyperbolic geometry is [1]. We use the disc model

for the hyperbolic plane H in which the points are in the interior of the
unit disc in the complex plane, the lines are the unit disc portions of circles

and lines perpendicular to the boundary of the unit disc, and reflections are

inversions in the circles defining the lines. In the figures in this paper the

boundary of the unit disc is always drawn with a dotted circle. We recall

a few facts about distance, angles, and lines in the hyperbolic geometry of

the disc that we shall use frequently.

1. For   ∈ H the hyperbolic distance from  to  is denoted by ( )

All we need to know is that for  ∈ H,

( 0) = 2 tanh−1(||) (3)

Alternatively, if a point is at a hyperbolic distance  from the origin

then it lies on the circle with Euclidean radius

 = tanh(2) (4)

centred at the origin.
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2. For intersecting lines, the angle between the lines at the point of in-

tersection is the Euclidean angle between the curves. Remark 3.5

discusses how to compute this angle.

3. The sum of the interior angles in an -gon satisfies

1 + 2 + · · ·+   (− 2)
This includes the case where vertices are on the boundary and the

corresponding angles have measure 0

4. The second law of cosines states that if the measures of the angles of

a non-degenerate triangle are   and  and the side opposite the

angle with measure  has length  then

cosh  =
cos cos + cos 

sin sin
 (5)

The vertex corresponding to  may be on the boundary, in which case

 = 0

5. A non-diameter hyperbolic line is the intersection with H and a circle
of radius  and center 0 =  +  meeting the unit circle at a right

angle. The equation of the hyperbolic line is given by | − 0|2 = 2

Since the circle is orthogonal to the unit circle,

|0|2 = 2 + 2 = 1 + 2 (6)

Therefore, the circle equation may be rewritten as

2+ 2 = 1 + 2 + 2 (7)

We call the point 0 and radius  the Euclidean center and Euclidean

radius of the line, respectively.

6. Rewrite 2+ 2 = 1 + 2 + 2 as




+




 =

1 + 2 + 2

2
 (8)

If we let 0 →∞, the limiting equation gives us a diameter line
∞+ ∞ = 0 (9)

where ∞ = lim0→∞  and ∞ = lim0→∞  Note that

2∞ + 2∞ = 1 (10)
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7. The endpoints of the line determined by (7) lie on the unit circle

2 + 2 = 1 By replacing 2 + 2 by 1 in (7) we get equations for the

end points:

2 + 2 = 1 +  = 1 (11)

in the generic case and

2 + 2 = 1 ∞+ ∞ = 0 (12)

in the diameter case.

8. Following the terminology of [1] we call two lines that meet in the

interior of the hyperbolic plane intersecting lines, two lines that meet

on the boundary of H parallel lines, and two lines that have no inter-
section at all disjoint lines.

Convex polygons. A convex hyperbolic polygon with interior angles (1

2     ) exists if and only 1+2+ · · ·+  (− 2) and    [1,

Theorem 7.16.2]. We are interested only in the case in which all angles are

acute or right angles, i.e.,  ≤ 2 since we are really interested in integer

submultiples of  Though we have limited the scope of our work to convex

polygons with acute or right angles, the methods could also be applied to

determining all convex polygons.

The set of congruence classes of convex polygons with prescribed angles

has several degrees of freedom. Using the implicit function theorem and

the fact that there is at least one such polygon, it is not hard to show that

the number of degrees of freedom is at least − 3 However, we discuss the
exact structure of this set only for  ≤ 4 The  congruence theorem

for hyperbolic geometry shows that there is a single congruence class for

triangles. For convex quadrilaterals with acute or right angles it follows

from our theorem that the set of congruence classes corresponds to a semi-

infinite open interval.

It would be interesting and convenient to be able to build our quadri-

laterals from simply constructed subpolygons. In [1, Chapter 7], Beardon

illustrates some of these constructions as he discusses triangles, quadrilat-

erals, pentagons, and hexagons. In particular, he shows in the proof of

his Theorem 7.16.2, how one may build a convex polygon with prescribed

angles 1      out of right angled triangles. Unfortunately, his method

produces only a single congruence class of such polygons, whereas the set of

congruence classes of convex polygons with prescribed angles can be shown
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to have at least  − 3 degrees of freedom. Beardon’s method allows us to
construct all triangles, but not all quadrilaterals.

We might also construct the polygons by putting together four Lam-

bert quadrilaterals. A Lambert quadrilateral has three right angles and a

fourth acute angle, say  There are two degrees of freedom in prescribing

the sidelengths of Lambert quadrilaterals and there are nice trigonometric

formulas relating the sides [1, p. 157]. If we take four of these quadrilat-

erals (with sidelengths chosen appropriately) and join all four together at

the right angle opposite the acute angle then we get a quadrilateral with

angles 1     4. It turns out that with the angles fixed, a one parameter

the family of quadrilaterals can be constructed. However, by repeated use

of the formulas [1, Theorem 7.17.1] we discover that the angles must satisfy

the equation cos1 cos3 = cos2 cos4 Because of this constraint, not all

required quadrilaterals can be obtained by putting together four Lambert

quadrilaterals.

The space of geodesics. We have parametrized the set of non-diameter

lines by their Euclidean centers and have separately parametrized the di-

ameter lines by the unit circle (antipodal points identified). Though these

parametrizations are best for computations and for our results on angle

pencils, a simultaneous parametrization for all lines would be useful, espe-

cially when dealing with continuity issues. We use (8) to construct one. For

0 ∈  = { ∈ C : ||  1} define

0 =
0


=

0q
|0|2 − 1



Note that

0 =
0q

|0|2 − 1
and  =

1q
|0|2 − 1



Using the parameter 0 = +  ∈  = { ∈ C : || ≥ 1} and the function
 =

³
|0|2 − 1

´12
we may rewrite (8) as

+  =


2
(1 + 2 + 2) (13)

Since  = 0 for a diameter line, (13) gives a continuous parametrization of

all lines at once, but it is not as convenient as our standard parametrization.

If we identify antipodal points on the circle, the resulting space U = v is
a line bundle over the circle giving us a one-to-one parametrization of the
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lines in H by a manifold. In particular, if we have a 1-parameter family of

lines in H then a curve on U is determined.
Though we do not make use of the fact in this paper, it is worth noting

that U is homeomorphic to M the Moebius band without boundary, pic-

tured in Figure 3. The curves and lines pictured onM are called latitudes

and meridians. We may think ofM as being constructed from a short, wide,

Mercator map twisted and pasted together along the international date line.

Latitude lines on the map become the curves onM, and meridians (longi-

tude lines) become the straight lines. To show the homeomorphism let  =

R× (−1 1) and  = R× [0 1) ⊂  There is a map  : −→  defined by

 : ( ) −→ 

1− 
=  (14)

and a map  :  −→M ⊂ R3 given by

 : ( ) −→ (cos(2)
−→
i +sin(2)

−→
j ) (15)

+
³
sin (cos(2)

−→
i +sin(2)

−→
j )+ cos 

−→
k
´


where  and  are constants selected to eliminate self-intersections in R3
Both  and  are universal covering space projections, and have the cover-

ing transformation properties (+ ) = ( ) and (+ ) = (−)
Even though −1() = ( ( − 1)) is an ambiguous multi-valued map
the composition  ◦ −1 :  −→M is a well-defined continuous map and a

homeomorphism when restricted to  Since ( +  0) = ( 0) it follows

easily that the induced quotient map  ◦ −1 : U = v −→M is a home-

omorphism. When we set  = 0 we trace out the central latitude on the

Moebius band and the quotient boundary () v of the boundary of  ;

these points correspond to the set of diameter lines, i.e., the elliptic pencil

of lines that pass through the origin. A non-zero value of  corresponds to

all lines that have a given Euclidean radius, i.e., the pencil of lines tangent

to a hyperbolic circle centered at the origin. The corresponding latitude

seems to wrap around the band twice. Meridians on the band correspond

to the hyperbolic lines, whose centres all lie on a diameter line through the

origin, but are exterior to the unit disc, i.e., the hyperbolic pencil of lines

perpendicular to a diameter line. The points on the boundary of the band

correspond to points on the boundary of the hyperbolic disc.
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Fig. 3: The space of geodesics U as a Moebious band

3 Angle pencils

Let  and 0 be two lines meeting at the point  in the unit disc. The two

counter-clockwise angles from  to 0 at  are equal to each other because

of the opposite angle theorem. Thus we may speak unambiguously of the

measure of the counter-clockwise angle from  to 0 A clockwise angle is

defined similarly. For two lines tangent at the boundary, clockwise and

counter-clockwise angles still make sense, though they must be 0 or 

Definition 3.1 For 0   ≤ 2 the counter-clockwise angle pencil or

-pencil with base 0 P+(0 ) is the set of all lines  forming a counter-
clockwise angle from  to 0 of measure . The clockwise angle pencil or

-pencil, P−(0 ) is defined analogously.

A picture of some of the lines of the pencil P+(0 4) is given in Figure
11, when 0 is a line nearly equal to the -axis. If  = 2 we get the

standard notion of a hyperbolic pencil [1, p. 170] and the clockwise and

counter-clockwise pencils are the same.
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Fig. 4: Locus of Euclidean centers of lines cutting at 45◦

Now let 0 be a fixed non-diameter line, let  ∈ P+(0 ) be arbitrary,
and let + and +   be the Euclidean centers and radii of 0 and
 respectively. The values   and  satisfy the pencil equation

(+− 1)2 = (2 +2 − 1)(2 + 2 − 1) cos2  (16)

as we show in Proposition 3.3. Now replace 2 +2 − 1 by 2 and divide

both sides of (16) to get

(



+




− 1


)2 = (2 + 2 − 1) cos2  (17)

Pick a sequence of hyperbolic lines converging to a diameter line 0 with
equation ∞+∞ = 0. Then (17) becomes

(∞+∞)2 = (2 + 2 − 1) cos2  (18)

The same equations hold for  ∈ P−(0 )
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Remark 3.2 Analogous equations may be derived for other types of pencils.

Some examples are posed as homework in Section 6.

Either of the equations (16) or (18) defines a conic section in the plane

(in fact a hyperbola), which we denote by (0 ) To show the relation

of the hyperbola to other geometric objects associated to the angle pencil

we have drawn the following in Figure 4: the dotted boundary circle, the

base line of the angle pencil 0 with Euclidean centre  +  = 3
2
− 1

2


the hyperbola for  = 3 and the asymptotes of the hyperbola. The two

points at infinity on the hyperbola correspond to the two diameter lines in

the angle pencil that cross 0 at angle  We have also drawn these lines in
Figure 4, where we note that (0 ) is tangent to the boundary circle at
the endpoints of 0 Each asymptote in Figure 4 meets, at a right angle, the
diameter line in one of angle pencils.

Let us formalize the previous discussion into two propositions.

Proposition 3.3 Let 0 be a hyperbolic line, let 0   ≤ 2 and let

P+(0 ) and P−(0 ) be their angle pencils. Then

i) The hyperbolic plane H is a disjoint union of the lines in P+(0 ) In
fact, any two distinct 1 2 ∈ P+(0 ) are disjoint lines. The map
 →  ∩ 0 is a one-to-one correspondence between P+(0 ) and the
points of the 0 Similar statements hold for P−(0 ).

ii) If 0 has Euclidean center  +  and  ∈ P+(0 ) ∪ P−(0 ) has
Euclidean center  +  then (16) holds. Thus, the hyperbola defined

by (16) (and the points at infinity) corresponds to the union P+(0 )∪
P−(0 ) of both the clockwise and counter-clockwise pencils.

iii) If 0 is a diameter with equation ∞+∞ = 0 where 2∞+2∞ = 1

and if  ∈ P+(0 ) ∪ P−(0 ) has Euclidean center +  then (18)

holds.

iv) For  ∈ 0 let +() be the line  in P+(0 ) such that ∩ 0 = {}
Then → +() maps 0 to a curve L in U , diffeomorphic to R

Proposition 3.4 Let (0 ) be the conic section defined by either (16) or
(18). First assume that 0   ≤ 2 Then the following hold.

i) The conic section (0 ) is a hyperbola tangent to the unit circle at
the endpoints of 0

13



ii) Each of P+(0 ) and P−(0 ) has one diameter line, and these two
diameter lines correspond to the points at infinity of (0 )

iii) The asymptotes of (0 ) are perpendicular to the diameters in the
pencils P+(0 ) and P−(0 )

If  = 2 then

iv) (0 ) is a degenerate hyperbola. It consists of the points that lie on
the Euclidean line passing through the endpoints of 0 but are exterior
to the unit disc.

Proof of Proposition 3.3. Let  be any point not on 0 and suppose
 ∈ 0 As  travels from one end of 0 to the other, the counter-clockwise
angle between the geodesic ←→ and 0 varies from 0 to  or vice versa. Thus

 lies on at least one line in the pencil. Suppose that two distinct lines in the

pencil are not disjoint. Then we have a triangle with interior angles  and

 −  and hence the sum of the angles is greater than  a contradiction.

The rest of ) is straightforward.

Previous discussion showed how (18) follows from (16), hence ) follows

from ) In turn, (16) may be derived simply from the Euclidean law of

cosines. As shown in Figure 5 draw the unit circle and the two circles

corresponding to the line 0 with Euclidean center 0 = + and a line 

with Euclidean center 1 = + Let  and  be their respective Euclidean

radii. Let  be the point of intersection of the two lines. The Euclidean

triangle ∆01 has either angle  or angle  −  at  since the hyperbolic

lines  and 0 meet at angle  Thus cos(∠01) = ± cos  Apply the law
of cosines to get

|0 − 1|2 = |0 − |2 + |1 − |2 − 2 |0 − | |1 − | cos(∠01)

or

(− )2 + ( − )2 = 2 + 2 ± 2 cos 
Substitute 2 = (2+2−1) and 2 = (2+2−1) expand, and simplify to
get 1−− = ± cos ; square both sides and make the substitutions
again to arrive at (16). The proof of ) is not difficult and is left to the

reader.
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Fig. 5: Law of cosines configuration

Remark 3.5 The proof of Proposition 3.3 also shows that either angle be-

tween  and 0 satisfies

cos2  =
(+− 1)2

(2 +2 − 1)(2 + 2 − 1)  (19)

Let  = (2 + 2 − 1)−12  = (2 + 2 − 1)−12  +  = (+ ) and

 + = (+) Then, (19) can be converted to an equation uniformly

valid on  :

cos  = |+− |  (20)

Remark 3.6 Unfortunately, the determination of cos  does not tell us how

to compute clockwise and counter-clockwise angles. We may do this in two

steps. First compute  the intersection point of the two lines. There are

two solutions or no solutions to the system of circle equations defining the

line. The one we seek is the only one inside the unit circle. Now the tangent

line directions to the hyperbolic lines are ±( − 0) and ±( − 1) If we
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write these numbers in polar form we can easily compute the clockwise and

counter-clockwise angles.

Proof of Proposition 3.4. The conic section (0 ) is a hyperbola if the
discriminant

 =
2

2
2

2
−
µ

2



¶2
is negative, where ( ) = (+−1)2−(2+2−1)(2+2−1) cos2 
in the generic case or ( ) = (∞+∞)2 − (2 + 2 − 1) cos2  in the
case of a diameter. After differentiating, expanding, factoring, and using

the trigonometric substitution cos2  = 1− sin2  we get

 = −4(cos2 )(2 +2 − 1)((2 +2) sin2  + 1)

in the generic case or

 = −4(cos2 )(sin2 )
in the diameter case. These are both negative.

From (16) or (18) we see that 2 + 2 − 1 is non-negative and hence
(0 ) does not enter the interior of the unit disc. If ( ) lies on the
unit disc and the hyperbola, then, from (16) or (18), we see that  +

 = 1 or that ∞ + ∞ = 0 It follows from (11) or (12) that ( )

is an endpoint of 0 Also, it follows from the geometric discussion that the

unit circle and (0 ) are tangent where they meet. Alternatively, we can
verify tangency algebraically by checking collinearity of the gradients of the

defining equations of (0 ) and the unit circle, at the endpoints of 0 The
gradients are collinear if and only if the quantity  −  = 0

Now  −  simplifies to 4( − )( +  − 1) or 4(∞ −
∞)(∞+∞) These are zero at the endpoints of 0 by equations (11)
or (12). This proves )

To prove ) consider a variable diameter . As the diameter  moves

through all positions the angle of the clockwise intersection with 0 varies
from 0 to  or vice versa. By continuity there is at least one point where the

intersection angle has measure  There cannot be more than one because

all the members of the pencil P+(0 ) are disjoint. Now let  +  be a

variable point on the hyperbola. Let  +  go to infinity along one of the

four branches of the hyperbola and let

+  = lim
+→∞

+ √
2 + 2 − 1 
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By continuity in U the limiting line has equation  +  = 0 according

to (13). Also by continuity the angle of intersection is  Thus this limit

corresponds to the unique diameter in the pencil. Since  +  is one of

the unit directions of the corresponding asymptote of the hyperbola, the

equation +  = 0 immediately implies that the asymptote is perpendic-

ular to the corresponding diameter. Note that the two points of intersection

of the hyperbola with the unit circle splits the hyperbola into four parts,

two of which are associated with each asymptote. The points of the hyper-

bola corresponding to a given pencil, (either P+(0 ) or P−(0 )) are the
following: the two parts whose asymptote meets the diameter line of the

pencil at right angles, and the point at infinity where the two parts meet

the asymptote.

When  = 2 the hyperbola must be degenerate since the discriminant

is zero. Equation (16) becomes  +  − 1 = 0 However this is just the
equation of the line determining the endpoints of 0 (see (11) or (12)).

Remark 3.7 Determining the curves traced out in U by angle pencils may
add some geometric insight, even though it may not help us computationally.

See Section 6 for a problem statement.

4 Triangle construction

We are now ready to construct triangles with prescribed angles   and

 satisfying  +  +    and    ≤ 2 There are two possible

methods of construction, one by direct geometric methods using the second

law of cosines and the other using angle pencils. The first method is more

direct but the pencil method gives more information. By using a hyperbolic

isometry we may assume that our triangle is congruent to the candidate

triangle ∆ in Figure 6. We assume that the vertex with angle  is at

the origin  that 0 =
←→
 is the -axis and that the line 00 =

←→
 forms

a second side lying in the first quadrant. We want to place  and  so

that  =
←→
 that meets 0 in a counter-clockwise angle of measure  and

meets 00 in a clockwise angle of measure  with both intersections in the
first quadrant.
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Direct Method. The second law of cosines says that the lengths of seg-

ments  and  are given by

cosh() =
cos cos + cos 

sin sin


cosh() =
cos cos  + cos

sin sin 


From (4) we see that the Euclidean distances from the origin are given by

 = tanh

µ
1

2
cosh−1

µ
cos cos + cos 

sin sin

¶¶
 (21)

 = tanh

µ
1

2
cosh−1

µ
cos cos  + cos

sin sin 

¶¶


Thus  =   = 
 According to (7), the Euclidean center 0 = + 

of
←→
 is found by solving the two linear equations

2 = 1 + 2 2 cos+ 2 sin = 1 + 2  (22)

C

BA

Fig. 6: Standard triangle and pencil hyperbolas
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Remark 4.1 Though it is not immediately obvious, the centre 0 depends

algebraically on the trigonometric values of   and  We have seen that

the group Λ = h  i is generated by three linear fractional transforma-
tions

 −→
∙
 0

0 −

¸ ∙
1 0

0 1

¸
=

∙
 0

0 −

¸

 −→
∙
1 0

0 1

¸µ
√

00 − 1

∙
0 −1
1 −0

¸¶
=

−√
00 − 1

∙
0 −1
1 −0

¸

 −→
µ

√
00 − 1

∙
0 −1
1 −0

¸¶ ∙
 0

0 −

¸
=

√
00 − 1

∙
0

− −
− −0

¸


It then follows that all entries are algebraic numbers and hence that Λ ⊂
2() for some number field  that contains .

Remark 4.2 Even though we have solved the triangle construction problems

very simply, we explore the pencil method for the following reasons:

• It is the first step of a uniform method to construct all convex polygons.
• The solution requires an analysis of the common lines of two angle
pencils with intersecting base lines. The case for disjoint base lines is

required for the case of convex quadrilaterals with acute angles. The

combination of these two cases is used to determine all higher polygons

and convex polygons with obtuse angles.

• Finding 0 exactly as an algebraic number is simpler, since one solves
the equations (23). The algebraic relations can also be found from (21)

and (22), though the method does not extend to quadrilaterals.

Pencil Method In our standard configuration the line  lies in P+(0 )∩
P−(00 ) and, in turn,  corresponds to one of the four possible intersec-
tion points of (0 ) ∩(00 ). The following proposition formalizes the
relation between intersections of angle pencils and the intersections of the

hyperbolas. We defer the proof of the proposition to the end of the section.

Proposition 4.3 Let 0 and 00 be two intersecting lines in the hyperbolic
plane. Assume that the lines have been labelled so that counter-clockwise

angle  from 0 to 00 satisfies  ≤ 2 Also assume that  and  sat-

isfy 0    ≤ 2 and  +  +    Then under various condi-

tions on   and  certain of the angle pencil intersections P+(0 ) ∩

19



P+(00 )    P−(0 ) ∩P−(00 ) are non-empty. The number of lines in
the non-empty intersections and the corresponding conditions on   and 

are shown in Table 1. The intersections not shown contain only redundan-

cies arising from identifications P+(0 2) = P−(0 2). In particular:

i) If an intersection is non-empty then it contains two lines.

ii) The intersection P+(0 ) ∩ P−(00 ) always contains exactly two
lines.

iii) The Euclidean centers of the lines in the intersections correspond to

points in the intersection (0 )∩(00 )) (diameter lines in P+(0 )∩
P−(00 ) correspond to intersection at infinity in (0 )∩(00 )).

Case Conditions and intersections

i)  ≤  +   ≤ +   ≤ +  |P+(0 ) ∩ P−(00 )| = 2
ii) +    |P+(0 ) ∩ P+(00 )| = |P+(0 ) ∩ P−(00 )| = 2
iii) +    |P−(0 ) ∩ P−(00 )| = |P+(0 ) ∩ P−(00 )| = 2
iv)  +    |P−(0 ) ∩ P+(00 )| = |P+(0 ) ∩ P−(00 )| = 2

Table 1. Pencil Intersections

Figures 7, 8, 9, and 10 illustrate the four cases in Proposition 4.3. In

Figure 7,  = 3  = 4 and  = 5; in Figure 8,  = 7  = 12

and  = 3 Figure 9 is the same as Figure 8 with  and  reversed, and

in Figure 10,  = 3  = 6 and  = 12 The lines 0 and 00 are the
lines connecting the two points of tangency of the hyperbolas. In Figure 7 it

appears that there may be two additional solutions to the equations outside

the plotting window. However if the window is enlarged the hyperbolas are

observed to curve away from each other instead of meeting. Unfortunately

making the window large enough to see this renders the detail in the unit

circle too small for a good view. Furthermore, in constructing the pencil in-

tersections, two real and two complex points were found as the intersection

of the two hyperbolas, confirming that there are two points of intersection.

Analogous remarks apply to Figure 10 except that there are four real solu-

tions and one intersection outside the viewing window. In Figures 8 and 9

the four intersection points are all visible.
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Fig 7:  ≤ +   ≤ +   ≤ + Fig. 8: +   

Fig. 9: +    Fig. 10:  +   

Remark 4.4 The fact that each non-empty intersection of pencils has two

elements has a simple geometric explanation. A 180◦ hyperbolic rotation
about the point of intersection of 0 and 00 interchanges the lines in the
pencil intersections.
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Proposition 4.3 allow us to complete the discussion of our standard first

quadrant construction of a triangle, illustrated in Figure 6. According to the

proposition there is exactly one line of the desired type whose intersections

with 0 and 00 lie in the first quadrant. The Euclidean center of this line
must lie in the first quadrant outside the unit circle. In our pencil equations

(18) we may take ∞ + ∞ =  for 0 and ∞ + ∞ = − sin +  cos

for 00 Our two pencil equations become

(2 + 2 − 1) cos2  = 2 (23)

(2 + 2 − 1) cos2  = (− sin+  cos)2

These equations are easily solved numerically for  and  by a standard

package such as Maple. It is also possible to solve the equations by elimina-

tion using at most the quadratic formula and the extraction of square roots.

Let us formalize the construction in the following theorem.

Theorem 4.5 Let   and  satisfy  +  +    and    ≤ 2

Then there is a unique triangle  such that

∠ =  ∠ =  ∠ = 

 is the origin,  lies on the real axis, and  lies on first quadrant radial

line meeting the -axis in the angle  The third side is the hyperbolic line

whose Euclidean center  +  is the only solution to (23) that lies in the

Euclidean sector determined by the rays
−−→
 and

−→


Remark 4.6 The location condition on  +  provides a simple criterion

to select from multiple solutions returned from a numerical or other solution

procedure of (23). Figure 6 illustrates the location condition and how the

extraneous solutions to (23) correspond to other pencil intersections.

Proof of Theorem 4.5. The only part of the theorem that does not

immediately follow from the previous discussion is the location of  + 

in the sector determined by
−−→
 and

−→
 To prove this, let  and 

denote the branches of the hyperbolas (
←→
 ) and (

←→
 ) that meet

the rays
−−→
 and

−→
; see Figure 6. From our earlier discussion on pencils

the diameter elements of the pencils P+(←→) P−(←→ ) P+(←→ )
and P−(←→ ) all pass through . This means that the lines in P+(←→ )
that meet the ray

−−→
 correspond to the points of  that lie above

−−→


Correspondingly, the elements of P−(←→ ) that meet −→ must correspond
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to the points of  that lie below
−→
 The point +  corresponds to the

unique element of P+(←→ ) ∩ P−(←→ ) that meets both −−→ and
−→


Thus it must lie in between
−−→
 and

−→


Proof of Proposition 4.3. Let 1 and 2 (Figure 11) be the endpoints of

0 on the unit disc and let us determine the common lines in the intersection
of the two pencils P+(0 ) and P−(00 ) Consider a variable line  = ()

in P+(0 ) whose intersection point {} = 0 ∩ () moves from 1 to

2 along 0 This is also pictured in Figure 11 with  = 4 and  = 6

(approximately). Motion along the line 0 induces an orderingÂ of the points
on 0 with  Â  meaning “ is later than ” or “ is to the left of ” in Figure

11. Let 1() and 2() be the two endpoints of () The two points 1()

and 2() sweep out the boundary of the unit disc in opposite directions. Let

us suppose that 1() travels in the counter-clockwise direction and 2()

travels in the clockwise direction. In Figure 11, 1() sweeps across the top

of the circle and 2() sweeps across the bottom. This sweeping occurs in a

strictly increasing fashion. For otherwise, if one endpoint “backs up” then

two distinct lines in the pencil either intersect or meet at the boundary,

contradicting ) of Proposition 3.3. Initially, for points on 0 near 1 the
line  is contained in a small ball around 1 and hence does not meet 

00 As
we move along 0 one of the endpoints 1() or 2() reaches an endpoint
of 00 at  = 1 The moving endpoints 1() and 2() cannot reach the

endpoints of 00 at the same time. For then 00 ∈ P+(0 ) and so  =

−  contradicting our hypothesis +  +    Suppose, for the sake of

argument, that 1(1) is the first point to reach 00 Let us denote by 2 the
value for which 2() meets the endpoint of 

00
For  satisfying 2 º  º 1 () meets 

00 and we denote by () the

clockwise angle from () to 00 We are trying to find out how many ’s

satisfy () =  Obviously (1) = 0 Let  be the intersection point of 
0

and  Then  +  + () =  since these angles form a straight angle at

the intersection point  Now as  moves along the line, the clockwise angle

from () to 00 must strictly increase until we reach . To see this, suppose
that we have intermediate points 3 and 4 satisfying  Â 4 Â 3 Â
1. The four lines 

0 00 (3) and (4) determine a quadrilateral since

the intersection point  is not between 3 and 4 The interior angles of

this quadrilateral are   −   − (4) and (3) as we move clockwise

around the quadrilateral. We must have +−+ − (4)+ (3)  2

or (3)  (4) By monotonicity it follows that for any angle  satisfying

0    () =  −  −  there is exactly one line () with  Â  Â 1
and () ∈ P+(0 ) ∩ P−(00 ) Once we pass  the angle () strictly

23



decreases until () = 0 at  = 2. Therefore, if 0    () =  −
−  then P+(0 ) ∩P−(00 ) has exactly two lines. Now it follows that
P+(0 )∩P−(00 ) always has exactly two lines because of the conditions
0   and  +  +    The remaining cases all follow from a simple

modification of this proof. For example, if +   then −  −−
and hence P+(0 ) ∩ P−(00  − ) = P+(0 ) ∩ P+(00 ) contains two
lines. This is illustrated in Figure 8.

E
2

E
1

Fig. 11: A 
4
-pencil with intersecting line.

5 Quadrilateral construction

In constructing quadrilaterals there is a new wrinkle: we must take side

length into account. We wish to construct a quadrilateral  with pre-

scribed angles at the corners. As in the case of the triangle we construct

a standard quadrilateral from which the general quadrilateral can be con-

structed by a hyperbolic isometry. In our construction, our quadrilateral

lies in the upper half of the disc with the side  resting on the -axis,
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centered at the origin. This quadrilateral is pictured in Figure 12. Suppose

the angle information and the side length of  is

∠ =  ∠ =  ∠ =  ∠ = 

and

() = 

Here are the steps to construct the quadrilateral:

QC.1 Test to see if  is long enough to guarantee that
←→
 and

←→
 are

disjoint, namely

cosh 
cos cos + 1

sin sin


QC.2 Define the points  and  on the -axis by the formulas (see (3))



2
= 2 tanh−1(||) and 

2
= 2 tanh−1(||)

Let  = tanh(4) so that  = − and  = 

QC.3 Find the Euclidean centers of 0 =
←→
 and 00 =

←→
 This is easily

done if we know a point 0+ 0 through which 
0 passes and the slope

 of 0 at 0+ 0 In fact, for the point  we have 0 = 0 0 = 

and  = − tan Similarly for 00 and for  0 = 0 0 =  and

 = tan If  +  is the Euclidean center of 0 or 00 then (7)
gives

20 + 20 = 1 + 20 + 20

2+ 2



= 20 + 20






an easily solved set of linear equations.

QC.4 Find the Euclidean centre of the intersection of pencils P+(0 ) ∩
P−(00 ) by finding the intersection points of the corresponding hy-
perbolas. It turns out that there are four intersections of the hyper-

bolas. Each of these must be tested to find the line
←→
 with a proper

intersection with
←→
 and

←→
 See Remark 3.6.

The hyperbolas, three of the four intersections, and the required line are

shown in Figure 13.
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B

E
B

C
D

Fig. 12: A standard quadrilateral Fig. 13: Quadrilateral and hyperbolas

We formalize our discussion with the following theorem on quadrilateral

construction.

Theorem 5.1 Let    and  be four angles satisfying 0      ≤
2 and +  +  +   2 Then, for every value of  satisfying

cosh 
cos cos + 1

sin sin

there is a quadrilateral  unique up to congruence, such that

∠ =  ∠ =  ∠ =  ∠ = 

and such that the side length of  satisfies

() = 

As in the case of triangles, we need a proposition about pencil inter-

sections for pairs of disjoint lines, in order to prove our quadrilateral con-

struction theorem. This proposition is much simpler than in the case of

intersecting lines. The proof of this proposition is deferred to the end of the

section.
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Proposition 5.2 Let 0 and 00 be two parallel or disjoint lines in the hy-
perbolic plane, and let 0     2. Then each of the four possible pencil

intersections has exactly one point, i.e.,¯̄
P+(0 ) ∩ P+(00 )

¯̄
=
¯̄
P+(0 ) ∩ P−(00 )

¯̄
= 1 (24)¯̄

P−(0 ) ∩ P−(00 )
¯̄
=
¯̄
P−(0 ) ∩ P+(00 )

¯̄
= 1

The Euclidean centers of these lines are in intersections above one-to-one

correspondence with the points of (0 ) ∩(00 )) (including any inter-
sections at infinity that correspond to diameter lines). If exactly one of or

both of  and  equals 2 then the number of distinct sets is two or one,

respectively. The intersections still contain only one line and they are in one-

to-one correspondence to the points of intersection of (0 )∩(00 ) that
lie outside the unit circle.

Figure 14 shows an example of two disjoint lines 0 and 00 the two
hyperbola (0 ) and (00 ) the four points of intersection, and the
four lines in the pencil intersections (24).

Proof of Theorem 5.1. To prove the theorem let us follow Steps QC.1-

QC.4. The quadrilateral we are seeking is pictured in Figure 12. Assuming

Step QC.1 has been verified, let 0 be the -axis, pick 0 =  on 0 such that

2 tanh−1(|0|) = 2 and set  = −0 and  = 0 as in Step QC.2. Thus

the hyperbolic length of  is . Now, as in Step QC.3, construct lines 00

and 0 that meet 0 at  and  respectively, and such that the following

angle relations hold. Let  and  be the endpoints of 
00 and 0 on the

upper half of the unit circle. We want ∠ =  and ∠ =  We

are assuming that  has been chosen large enough (Step QC.1) so that 00

and 0 are disjoint lines. Now we seek a fourth side  such that the line

 =
←→
 forms a counter-clockwise angle of measure  with 0 and a clockwise

angle of measure  with 00. That is, we are looking for P+(0 )∩P−(00 )
Proposition 5.2 ensures that there is a unique line in this intersection, which

may be found by Step QC.4. Next let us prove that
←→
 lies in the upper

half plane. If it lies in the lower half plane then the angle sum for 

is  − +  −  +  −  +  −  ≥ 2 since     ≤ 2 But the angle

sum of a quadrilateral is less than 2 yielding a contradiction. If  is in

the upper half plane and  is in the lower half plane then  must cross 0
at some point  on  But then ∆ has angle sum  − +  −  + 

=  + (2 − )+ (2 − ) +  where  is the measure of ∠ But

now this angle sum exceeds  a contradiction. Similarly, we cannot have 
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in the upper half plane and  in the lower half plane. Similar arguments

eliminate the possibility that  or  lie on  Thus both  and  and

consequently  lie in the upper half plane.

Fig. 14: Intersecting hyperbolas and pencils

Now let us suppose that 0 and 00 are not disjoint and meet in point 
possibly on the boundary. By angle sum arguments this point must lie in

the upper half plane. Now suppose it were possible for us to construct the

required quadrilateral. Then  must lie in the interior of  and  must lie

in the interior of  But then ∆ has angle sum −+−+ where
 is the measure of ∠ But then this angle exceeds  a contradiction.

Thus it is required to have 0 and 00 disjoint. If 0 and 00 do meet in  then

the second law of cosines (5) gives us

cosh =
cos cos + cos 

sin sin


Since  and  are fixed the largest possible value of the right-hand side

occurs when  = 0 i.e.,  is on the boundary of the disc. For values of 
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larger than

cosh−1
µ
cos cos + 1

sin sin

¶
the lines must be disjoint.

Proof of Theorem 5.2. The proof of this proposition is similar to that of

Proposition 4.3. Thus we adopt the notation of that proof, except that 2
is defined to be the value of  such that 1() = 2. The relevant picture

in this case is Figure 15. We consider only the case P+(0 ) ∩ P−(00 )
as all other cases are similar. Let () be the counter-clockwise angle from

 = () to 00 Depending on which side of 0 the line 00 is on, we either
have () monotonically increasing from 0 at  = 1 to  at  = 2 or ()

monotonically decreasing from  at  = 1 to 0 at  = 2 In either case there

is exactly one  with 2 Â  Â 1 and () =  Thus P+(0 )∩P−(00 )
contains exactly one line. The centers of these lines must then be in one-to-

one correspondence with the four points of intersection of (0 )∩(00 )

2
E

1
E

Fig. 15: A pencil and disjoint lines.
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Remark 5.3 If we are looking only for convex polygons we need to consider

the case where
←−→
 and

←−→
 intersect in the upper half plane and

←→


meets these two lines below the intersection. In this case we need to use

Proposition 4.3.

6 Further questions

Here are some interesting questions suitable for homework or further re-

search.

Homework

1. In (16) what happens when cos2  is replaced by a number greater

than 1? Following the proof of Proposition 3.3, it is easy to prove that

the curve is an ellipse, tangent to the boundary circle at the endpoints

of the line 0 However, does the pencil have an interesting geometric
interpretation?

2. Let C be a circle of radius  and center 0 anywhere in the complex

plane. What is the equation of the locus of hyperbolic lines tangent to

C if tangencies outside of the unit disc are allowed? Note that if  is a
line with Euclidean radius  and centre 0 then  and C are tangent
if and only if |0 − 0| = +  The equation can be manipulated in a

fashion similar to the equations in the proof of Proposition 3.2.

3. The same as question 2 except that the hyperbolic line meets C at an
angle  A slight modification of the methods in Proposition 3.2 should

work.

4. Develop the equations for elliptic, hyperbolic, and parabolic pencils

[1, p. 170].

Further Research

5. Find a simple criterion to determine which of the four hyperbola in-

tersections to choose in Step QC.4 of the quadrilateral construction.

6. Because of our parametrization, the clockwise and counter-clockwise

angle pencils could not be cut out as a single algebraic curve. The

hyperbola had to be split at the unit circle to distinguish the pencils,

and the diameter lines were at infinity. In the space of geodesics U
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the pencils are separated. Here is the question: describe the various

types of pencils (elliptic, parabolic, hyperbolic, angle pencils, and the

additional pencils described in the homework section) as geometric

objects on U  It may first be useful to figure out how the group of

isometries of H acts on U 
7. Find a constructive procedure for kaleidoscopic pentagons, hexagons,

etc. For the pentagon case we need all the work for the quadrilateral

case in addition to figuring out when lines from two different angle

pencils intersect and their angle of intersection. The ideas in the proof

of Proposition 3.4 should work here. Two side lengths need to be

specified.

8. Suppose that  =       =  in the construction of a quadri-

lateral. Suppose also that the sidelength  is chosen so that the cor-

responding euclidean value  = tanh(4) is a rational number. Let

Λ be the group of orientation preserving transformations in the reflec-

tion group generated in the sides of the constructed quadrilateral. As

in Remark 4.1 it is easily shown that Λ ⊆ 2() for some num-

ber field  How does  vary with ? The problem first needs to

be stated in an invariant way, e.g., consider the quadrilateral up to

rational congruence in H
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