Maplesoft Blogger Profile: Samir Khan

Technical professional in industry or government

My role is to help customers better exploit our tools. I’ve worked in selling, supporting and marketing maths and simulation software for all my professional career.

I’m fascinated by the full breadth and range of application of Maple. From financial mathematics and engineering to probability and calculus, I’m always impressed by what our users do with our tools.

However much I strenuously deny it, I’m a geek at heart. My first encounter with Maple was as an undergraduate when I used it to symbolically solve the differential equations that described the heat transfer in a series of stirred tanks. My colleagues brute-forced the problem with a numerical solution in Fortran (but they got the marks because that was the point of the course). I’ve since dramatized the process in a worksheet, and never fail to bore people with the story behind it.

I was born, raised and spent my formative years in England’s second city, Birmingham. I graduated with a degree in Chemical Engineering from The University of Nottingham, and after completing a PhD in Fluid Dynamics at Herriot-Watt University in Edinburgh, I started working for Adept Scientific – Maplesoft’s partner in the UK.

Posts by Samir Khan

While googling around for Season 8 spoilers, I found data sets that can be used to create a character interaction network for the books in the A Song of Ice and Fire series, and the TV show they inspired, Game of Thrones.

The data sets are the work of Dr Andrew Beveridge, an associate professor at Macalaster College (check out his Network of Thrones blog).

You can create an undirected, weighted graph using this data and Maple's GraphTheory package.

Then, you can ask yourself really pressing questions like

  • Who is the most influential person in Westeros? How has their influence changed over each season (or indeed, book)?
  • How are Eddard Stark and Randyll Tarly connected?
  • What do eigenvectors have to do with the battle for the Iron Throne, anyway?

These two applications (one for the TV show, and another for the novels) have the answers, and more.

The graphs for the books tend to be more interesting than those for the TV show, simply because of the far broader range of characters and the intricacy of the interweaving plot lines.

Let’s look at some of the results.

This a small section of the character interaction network for the first book in the A Song of Ice and Fire series (this is the entire visualization - it's big, simply because of the shear number of characters)

The graph was generated by GraphTheory:-DrawGraph (with method = spring, which models the graph as a system of protons repelling each other, connected by springs).

The highlighted vertices are the most influential characters, as determined by their Eigenvector centrality (more on this later).

 

The importance of a vertex can be described by its centrality, of which there are several variants.

Eigenvector centrality, for example, is the dominant eigenvector of the adjacency matrix, and uses the number and importance of neighboring vertices to quantify influence.

This plot shows the 15 most influential characters in Season 7 of the TV show Game of Thrones. Jon Snow is the clear leader.

Here’s how the Eigenvector centrality of several characters change over the books in the A Song of Ice and Fire series.

A clique is a group of vertices that are all connected to every other vertex in the group. Here’s the largest clique in Season 7 of the TV show.

Game of Thrones has certainly motivated me to learn more about graph theory (yes, seriously, it has). It's such a wide, open field with many interesting real-world applications.

Enjoy tinkering!

Last year, I read a fascinating paper that presented evidence of an exoplanet, inferred through the “wobble” (or radial velocity) of the star it orbits, HD 3651. A periodogram of the radial velocity revealed the orbital period of the exoplanet – about 62.2 days.

I found the experimental data and attempted to reproduce the periodogram. However, the data was irregularly sampled, as is most astronomical data. This meant I couldn’t use the standard Fourier-based tools from the signal processing package.

I started hunting for the techniques used in the spectral analysis of irregularly sampled data, and found that the Lomb Scargle approach was often used for astronomical data. I threw together some simple prototype code and successfully reproduced the periodogram in the paper.

 

After some (not so) gentle prodding, Erik Postma’s team wrote their own, far faster and far more robust, implementation.

This new functionality makes its debut in Maple 2019 (and the final worksheet is here.)

From a simple germ of an idea, to a finished, robust, fully documented product that we can put in front of our users – that, for me, is incredibly satisfying.

That’s a minor story about a niche I’m interested in, but these stories are repeated time and time again.  Ideas spring from users and from those that work at Maplesoft. They’re filtered to a manageable set that we can work on. Some projects reach completion in under a year, while other, more ambitious, projects take longer.

The result is software developed by passionate people invested in their work, and used by passionate people in universities, industry and at home.

We always pack a lot into each release. Maple 2019 contains improvements for the most commonly used Maple functions that nearly everyone uses – such as solve, simplify and int – as well features that target specific groups (such as those that share my interest in signal processing!)

I’d like to to highlight a few new of the new features that I find particularly impressive, or have just caught my eye because they’re cool.

Of course, this is only a small selection of the shiny new stuff – everything is described in detail on the Maplesoft website.

Edgardo, research fellow at Maplesoft, recently sent me a recent independent comparison of Maple’s PDE solver versus those in Mathematica (in case you’re not aware, he’s the senior developer for that function). He was excited – this test suite demonstrated that Maple was far ahead of its closest competitor, both in the number of PDEs solved, and the time taken to return those solutions.

He’s spent another release cycle working on pdsolve – it’s now more powerful than before. Here’s a PDE that Maple now successfully solves.

Maplesoft tracks visits to our online help pages - simplify is well-inside the top-ten most visited pages. It’s one of those core functions that nearly everyone uses.

For this release, R&D has made many improvements to simplify. For example, Maple 2019 better simplifies expressions that contain powers, exponentials and trig functions.

Everyone who touches Maple uses the same programming language. You could be an engineer that’s batch processing some data, or a mathematical researcher prototyping a new algorithm – everyone codes in the same language.

Maple now supports C-style increment, decrement, and assignment operators, giving you more concise code.

We’ve made a number of improvements to the interface, including a redesigned start page. My favorite is the display of large data structures (or rtables).

You now see the header (that is, the top-left) of the data structure.

For an audio file, you see useful information about its contents.

I enjoy creating new and different types of visualizations using Maple's sandbox of flexible plots and plotting primitives.

Here’s a new feature that I’ll use regularly: given a name (and optionally a modifier), polygonbyname draws a variety of shapes.

In other breaking news, I now know what a Reuleaux hexagon looks like.

Since I can’t resist talking about another signal processing feature, FindPeakPoints locates the local peaks or valleys of a 1D data set. Several options let you filter out spurious peaks or valleys

I’ve used this new function to find the fundamental frequencies and harmonics of a violin note from its periodogram.

Speaking of passionate developers who are devoted to their work, Edgardo has written a new e-book that teaches you how to use tensor computations using Physics. You get this e-book when you install Maple 2019.

The new LeastTrimmedSquares command fits data to an equation while not being signficantly influenced by outliers.

In this example, we:

  • Artifically generate a noisy data set with a few outliers, but with the underlying trend Y =5 X + 50
  • Fit straight lines using CurveFitting:-LeastSquares and Statistics:-LeastTrimmedSquares

LeastTrimmedSquares function correctly predicts the underlying trend.

We try to make every release faster and more efficient. We sometimes target key changes in the core infrastructure that benefit all users (such as the parallel garbage collector in Maple 17). Other times, we focus on specific functions.

For this release, I’m particularly impressed by this improved benchmark for factor, in which we’re factoring a sparse multivariate polynomial.

On my laptop, Maple 2018 takes 4.2 seconds to compute and consumes 0.92 GiB of memory.

Maple 2019 takes a mere 0.27 seconds, and only needs 45 MiB of memory!

I’m a visualization nut, and I always get a vicarious thrill when I see a shiny new plot, or a well-presented application.

I was immediately drawn to this new Maple 2019 app – it illustrates the transition between day and night on a world map. You can even change the projection used to generate the map. Shiny!

 

So that’s my pick of the top new features in Maple 2019. Everyone here at Maplesoft would love to hear your comments!

You might recall this image being shared on social media some time ago.

Source: http://cvcl.mit.edu/hybrid_gallery/monroe_einstein.html

Look closely and you see Albert Einstein. However, if you move further away (or make the image smaller), you see Marilyn Monroe.

To create the image, the high spatial frequency data from an image of Albert Einstein was added to the low spatial frequency data from an image of Marilyn Monroe. This approach was pioneered by Oliva et al. (2006) and is influenced by the multiscale processing of human vision.

  • When we view objects near us, we see fine detail (that is, higher spatial frequencies dominate).

  • However, when we view objects at a distance, the broad outline has greater influence (that is, lower spatial frequencies dominate).

I thought I'd try to create a similar image in Maple (get the complete application here).

Here's an overview of the approach (as outlined in Oliva et al., 2006). I used different source images of Einstein and Monroe.

Let's start by loading some packages and defining a few procedures.

restart:
with(ImageTools):
with(SignalProcessing):

fft_shift := proc(M)
   local nRows, nCols, quad_1, quad_2, quad_3, quad_4, cRows, cCols;
   nRows, nCols := LinearAlgebra:-Dimensions(M):
   cRows, cCols := ceil(nRows/2), ceil(nCols/2):
   quad_1 := M[1..cRows,      1..cCols]:
   quad_2 := M[1..cRows,      cCols + 1..-1]:  
   quad_3 := M[cRows + 1..-1, cCols + 1..-1]:
   quad_4 := M[cRows + 1..-1, 1..cCols]:
   return <<quad_3, quad_2 |quad_4, quad_1>>:
end proc:

PowerSpectrum2D := proc(M)
   return sqrt~(abs~(M))
end proc:

gaussian_filter := (a, b, sigma) -> Matrix(2 * a, 2 * b, (i, j) -> evalf(exp(-((i - a)^2 + (j - b)^2) / (2 * sigma^2))), datatype = float[8]):

fft_shift() swaps quadrants of a 2D Fourier transform around so that the zero frequency components are in the center.

PowerSpectrum2D() returns the spectra of a 2D Fourier transform

gaussian_filter() will be used to apply a high or low-pass filter in the frequency domain (a and b are the number of rows and columns in the 2D Fourier transform, and sigma is the cut-off frequency.

Now let's import and display the original Einstein and Monroe images (both are the same size).

einstein_img := Read("einstein.png")[..,..,1]:
Embed(einstein_img)

marilyn_img  := Read("monroe.png")[..,..,1]:
Embed(monroe_img)

Let's convert both images to the spatial frequency domain (not many people know that SignalProcessing:-FFT can calculate the Fourier transform of matrices).

einstein_fourier := fft_shift(FFT(einstein_img)):
monroe_fourier   := fft_shift(FFT(monroe_img)):

Visualizing the power spectra of the unfiltered and filtered images isn't necessary, but helps illustrate what we're doing in the frequency domain.

First the spectra of the Einstein image. Lower frequency data is near the center, while higher frequency data is further away from the center.

Embed(Create(PowerSpectrum2D(einstein_fourier)))

Now the spectra of the Monroe image.

Embed(Create(PowerSpectrum2D(monroe_fourier)))

Now we need to filter the frequency content of both images.

First, define the cutoff frequencies for the high and low pass Gaussian filters.

sigma_einstein := 25:
sigma_monroe   := 10:

In the frequency domain, apply a high pass filter to the Einstein image, and a low pass filter to the Monroe image.

nRows, nCols := LinearAlgebra:-Dimension(einstein_img):

einstein_fourier_high_pass := einstein_fourier *~ (1 -~ gaussian_filter(nRows/2, nCols/2, sigma_einstein)):
monroe_fourier_low_pass    := monroe_fourier   *~ gaussian_filter(nRows/2, nCols/2, sigma_monroe):

Here's the spectra of the Einstein and Monroe images after the filtering (compare these to the pre-filtered spectra above).

Embed(Create(PowerSpectrum2D(einstein_fourier_high_pass)))

Embed(Create(PowerSpectrum2D(monroe_fourier_low_pass)))

Before combining both images in the Fourier domain, let's look the individual filtered images.

einstein_high_pass_img := Re~(InverseFFT(fft_shift(einstein_fourier_high_pass))):
monroe_low_pass_img    := Re~(InverseFFT(fft_shift(monroe_fourier_low_pass))):

We're left with sharp detail in the Einstein image.

Embed(FitIntensity(Create(einstein_high_pass_img)))

But the Monroe image is blurry, with only lower spatial frequency data.

Embed(FitIntensity(Create(monroe_low_pass_img)))

For the final image, we're simply going to add the Fourier transforms of both filtered images, and invert to the spatial domain.

hybrid_image := Create(Re~(InverseFFT(fft_shift(monroe_fourier_low_pass + einstein_fourier_high_pass)))):
Embed(hybrid_image)

So that's our final image, and has a similar property to the hybrid image at the top of this post.

  • Move close to the computer monitor and you see Albert Einstein.
  • Move to the other side of the room, and Marilyn Monroe swims into vision (if you're myopic, just take off your glasses and don't move back as much).

To simulate this, here, I've successively reduced the size of the hybrid image

And just because I can, here's a hybrid image of a cat and a dog, generated by the same worksheet.

To demonstrate Maple 2018’s new Python connectivity, we wanted to integrate a large Python library. The result is the DeepLearning package - this offers an interface to a subset of the Tensorflow framework for machine learning.

I thought I’d share an application that demonstrates how the DeepLearning package can be used to recognize the numbers in images of handwritten digits.

The application employs a very small subset of the MNIST database of handwritten digits. Here’s a sample image for the digit 0.

This image can be represented as a matrix of pixel intensities.        

The application generates weights for each digit by training a two-layer neural network using multinomial logistic regression. When visualized, the weights for each digit might look like this.

Let’s say that we’re comparing an image of a handwritten digit to the weights for the digit 0. If a pixel with a high intensity lands in

  • an intensely red area, the evidence is high that the number in the image is 0
  • an intensely blue area, the evidence is low that the number in the image is 0

While this explanation is technically simplistic, the application offers more detail.

Get the application here

As a momentary diversion, I threw together a package that downloads map images into Maple using the Google Static Maps API.

If you have Maple 2017, you can install the package using the MapleCloud Package Manager or by executing PackageTools:-Install("5769608062566400").

This worksheet has several examples, but I thought I'd share a few below .

Here's the Maplesoft office

 

Let's view a roadmap of Waterloo, Ontario.

 

The package features over 80 styles for roadmaps. These are examples of two styles (the second is inspired by the art of Piet Mondrian and the De Stijl movement)

 

You can also find the longitude and latitude of a location (courtesy of Google's Geocoding API). Maple returns a nested list if it finds multiple locations.

 

The geocoding feature can also be used to add points to Maple 2017's built-in world maps.

 

Let me know what you think!

With Maple, you can create amazing visualizations that go far beyond the standard mathematical plots that you might typically expect (I wince every time I see yet another sine curve).

At your fingertips, you have

  • plotting primitives that can be assembled in new and novel ways
  • precise control over coloring (yay for ColorTools) and placement
  • an interactive coding environment with inline plots, giving you quick visual feedback over aesthetic changes
  • and a comprehensive mathematical programming language to glue everything together

Here, I thought I'd share a few of the visualizations I've really enjoyed creating over the last few years (and I'd like to emphasize 'enjoy' - doing this stuff is fun!)

Let me know if you want any of the worksheets.

 

Psychrometric chart with historical weather data for Waterloo, Ontario.

 

Ternary plot of the color of gold-silver-copper alloys

 

Spectrogram of a violin note played with vibrato

 

Colored zoom of the Mandelbrot set

 

Reporting dashboard for an Organic Rankine Cycle

 

Temperature-entropy plot of an ideal Rankine Cycle

 

Quaternion fractal

 

Historical sunpot data

 

Earthquake data

 

African literacy rates

Maple 2017 has launched!

Maple 2017 is the result of hard work by an enthusiastic team of developers and mathematicians.

As ever, we’re guided by you, our users. Many of the new features are of a result of your feedback, while others are passion projects that we feel you will find value in.

Here’s a few of my favourite enhancements. There’s far more that’s new - see What’s New in Maple 2017 to learn more.

 

MapleCloud Package Manager

Since it was first introduced in Maple 14, the MapleCloud has made thousands of Maple documents and interactive applications available through a web interface.

Maple 2017 completely refreshes the MapleCloud experience. Allied with a new, crisp, interface, you can now download and install user-created packages.

Simply open the MapleCloud interface from within Maple, and a mouse click later, you see a list of user-created packages, continuously updated via the Internet. Two clicks later, you’ve downloaded and installed a package.

This completely bypasses the traditional process of searching for and downloading a package, copying to the right folder, and then modifying libname in Maple. That was a laborious process, and, unless I was motivated, stopped me from installing packages.

The MapleCloud hosts a growing number of packages.

Many regular visitors to MaplePrimes are already familiar with Sergey Moiseev’s DirectSearch package for optimization, equation solving and curve fitting.

My fellow product manager, @DSkoog has written a package for grouping data into similar clusters (called ClusterAnalysis on the Package Manager)

Here’s a sample from a package I hacked together for downloading maps images using the Google Maps API (it’s called Google Maps and Geocoding on the Package Manager).

You’ll also find user-developed packages for exploring AES-based encryption, orthogonal series expansions, building Maple shell scripts and more.

Simply by making the process of finding and installing packages trivially easy, we’ve opened up a new world of functionality to users.

Maple 2017 also offers a simple method for package authors to upload workbook-based packages to the MapleCloud.

We’re engaging with many package authors to add to the growing list of packages on the MapleCloud. We’d be interested in seeing your packages, too!

 

Advanced Math

We’re committed to continually improving the core symbolic math routines. Here area few examples of what to expect in Maple 2017.

Resulting from enhancements to the Risch algorithm, Maple 2017 now computes symbolic integrals that were previously intractable

Groeber:-Basis uses a new implementation of the FGLM algorithm. The example below runs about 200 times faster in Maple 2017.

gcdex now uses a sparse primitive polynomial remainder sequence together.  For sparse structured problems the new routine is orders of magnitude faster. The example below was previously intractable.

The asympt and limit commands can now handle asymptotic cases of the incomplete Γ function where both arguments tend to infinity and their quotient remains finite.

Among several improvements in mathematical functions, you can now calculate and manipulate the four multi-parameter Appell functions.

 

Appel functions are of increasing importance in quantum mechanics, molecular physics, and general relativity.

pdsolve has seen many enhancements. For example, you can tell Maple that a dependent variable is bounded. This has the potential of simplifying the form of a solution.

 

Plot Builder

Plotting is probably the most common application of Maple, and for many years, you’ve been able to create these plots without using commands, if you want to.  Now, the re-designed interactive Plot Builder makes this process easier and better.

When invoked by a context menu or command on an expression or function, a panel slides out from the right-hand side of the interface.

 

Generating and customizing plots takes a single mouse click. You alter plot types, change formatting options on the fly and more.

To help you better learn Maple syntax, you can also display the actual plot command.

Password Protected Content

You can distribute password-protected executable content. This feature uses the workbook file format introduced with Maple 2016.

You can lock down any worksheet in a Workbook. But from any other worksheet, you can send (author-specified) parameters into the locked worksheet, and extract (author-specified) results.

 

Plot Annotations

You can now get information to pop up when you hover over a point or a curve on a plot.

In this application, you see the location and magnitude of an earthquake when you hover over a point

Here’s a ternary diagram of the color of gold-silver-copper alloys. If you let your mouse hover over the points, you see the composition of the points

Plot annotations may seem like a small feature, but they add an extra layer of depth to your visualizations. I’ve started using them all the time!

 

Engineering Portal

In my experience, if you ask an engineer how they prefer to learn, the vast majority of them will say “show me an example”. The significantly updated Maple Portal for Engineers does just that, incorporating many more examples and sample applications.  In fact, it has a whole new Application Gallery containing dozens of applications that solve concrete problems from different branches of engineering while illustrating important Maple techniques.

Designed as a starting point for engineers using Maple, the Portal also includes information on math and programming, interface features for managing your projects, data analysis and visualization tools, working with physical and scientific data, and a variety of specialized topics.

 

Geographic Data

You can now generate and customize world maps. This for example, is a choropleth of European fertility rates (lighter colors indicate lower fertility rates)

You can plot great circles that show the shortest path between two locations, show varying levels of detail on the map, and even experiment with map projections.

A new geographic database contains over one million locations, cross-referenced with their longitude, latitude, political designation and population.

The database is tightly linked to the mapping tools. Here, we ask Maple to plot the location of country capitals with a population of greater than 8 million and a longitude lower than 30.

 

There’s much more to Maple 2017. It’s a deep, rich release that has something for everyone.

Visit What’s New in Maple 2017 to learn more.

We've added a collection of thermal engineering applications to the Application Center. You could think of it as an e-book.

This collection has a few features that I think are pretty neat

  • The applications are collected together in a Workbook; a single file gives you access to 30 applications
  • You can navigate the contents using the Navigator or a hyperlinked table of contents
  • You can change working fluids and operating conditions, while still using accurate thermophysical data

If you don't have Maple 2016, you can view and navigate the applications (and interactive with a few) using the free Player.

The collection includes these applications.

  • Psychrometric Modeling
    • Swamp Cooler
    • Adiabatic Mixing of Air
    • Human Comfort Zone
    • Dew Point and Wet Bulb Temperature
    • Interactive Psychrometric Chart
  • Thermodynamic Cycles
    • Ideal Brayton Cycle
    • Optimize a Rankine Cycle
    • Efficiency of a Rankine Cycle
    • Turbine Analysis
    • Organic Rankine Cycle
    • Isothermal Compression of Methane
    • Adiabatic Compression of Methane
  • Refrigeration
    • COP of a Refrigeration Cycle
    • Flow Through an Expansion Valve
    • Food Refrigeration
    • Rate of Refrigerant Boiling
    • Refrigeration Cycle Analysis 1
    • Refrigeration Cycle Analysis 2
  • Miscellaneous
    • Measurement Error in a Manometer
    • Particle Falling Through Air
    • Saturation Temperature of Fluids
    • Water Fountain
    • Water in Piston
  • Heat Transfer
    • Dittus-Boelter Correlation
    • Double Pipe Heat Exchanger
    • Energy Needed to Vaporize Ethanol
    • Heat Transfer Coefficient Across a Flat Plate
  • Vapor-Liquid Equilibria
    • Water-Ethanol

I have a few ideas for more themed Maple application collections. Data analysis, anyone?

A few people have asked me how I created the sections in the Maple application in this video: https://youtu.be/voohdmfTRn0?t=572

Here's the worksheet (Maple 2016 only). As you can see, the “sections” look different what you would normally expect (I often like to experiment with small changes in presentation!)

These aren't, however, sections in the traditional Maple sense; they're a demonstration of Maple 2016's new tools for programmatically changing the properties of a table (including the visibility of its rows and columns). @dskoog gets the credit for showing me the technique.

Each "section" consists of a table with two rows.

  • The table has a name, specified in its properties.
  • The first row (colored blue) contains (1) a toggle button and (2) the title of each section (with the text in white)
  • The second row (colored white) is visible or invisible based upon the state of the toggle button, and contains the content of my section.

Each toggle button has

  • a name, specified in its properties
  • + and - images associated with its on and off states (with the image background color matching the color of the first table row)
  • Click action code that enables or disables the visibility of the second row

The Click action code for the toggle button in the "Pure Fluid Properties" section is, for example,

tableName:="PureFluidProperties_tb":
buttonName:="PureFluidProperties_tbt":
if DocumentTools:-GetProperty(buttonName, 'value') = "false" then   
     DocumentTools:-SetProperty([tableName, 'visible[2..]', true]);
else
     DocumentTools:-SetProperty([tableName, 'visible[2..]', false]);
end if;

As I said at the start, I often try to make worksheets look different to the out-of-the-box defaults. Programmatic table properties have simply given me one more option to play about with.

When Maple 2016 hit the road, I finally relegated my printed Mollier charts and steam tables to a filing cabinet, and moved my carefully-curated spreadsheets of refrigerant properties to a distant part of my hard drive. The new thermophysical data engine rendered those obsolete.

Other than making my desk tidier, what I find exciting is that I can compute with fluid properties in a tool that has numerical integrators, ODE solvers, optimizers, programmatic visualisation and more.

Here are several small examples that demonstrate how you can use fluid properties with Maple’s math and visualization tools (this worksheet contains the complete examples).

Work Done in Compressing a Gas

The work done (per unit mass) in compressing a fluid at constant temperature is

where V1 and V2 are specific volumes and p is pressure.

You need a relationship between pressure and specific volume (either theoretical or experimental) to calculate the work done.

Assuming the ideal gas law, the work done becomes

where R is the ideal gas constant, T is the temperature (in K) and M is the molecular mass (in kg mol-1), and V is the volume.

 Ideal gas constant

Molecular mass of propane

Hence the work done predicted by the Ideal Gas Law is

Let’s now use real fluid properties instead and numerical integrators to compute the work done.

Here, the work done predicted with the Ideal Gas Law and real fluid properties is similar. This isn’t, however, always the case for all gases (try experimenting with ammonia – its strong intermolecular forces result in non-ideal behavior).

Minimum Specific Heat Capacity of Water

The specific heat capacity of water varies with temperature like so.

Let's find the temperature at which the specific heat capacity of water is the lowest.

The lowest specific heat capacity occurs at 309.4 K; this is the temperature at which water requires the least energy to raise or lower its temperature.

Incidentally, this isn’t that far from the standard human body temperature of 310.1 K (given that the human body is largely water, one might hazard a guess why we have evolved to maintain this temperature).

Temperature-Entropy Plot for Water

Maple 2016 generates pressure-enthalpy-temperature charts and psychrometric charts out of the box. However, you can create your own customized thermodynamic visualizations.

This, for example, is a temperature-entropy chart for water, together with the two-phase vapor dome (the worksheet contains the code to generate this plot).

I'm also working on a lumped-parameter heat exchanger model with fluid properties (and hence heat transfer coefficients) that change with temperature. That'll be more complex than these simple examples, and will use Maple's numeric ODE solver.

You, I, and others like us, are the beneficiaries of decades of software evolution.

From its genesis as a research project at the University of Waterloo in the early 80s, Maple has continually evolved to meet the challenges of technical computing.

This is a post that I wrote for the Altair Innovation Intelligence blog.

I have a grudging respect for Victorian engineers. Isambard Kingdom Brunel, for example, designed bridges, steam ships and railway stations with nothing but intellectual flair, hand-calculations and painstakingly crafted schematics. His notebooks are digitally preserved, and make for fascinating reading for anyone with an interest in the history of engineering.

His notebooks have several characteristics.

  • Equations are written in natural math notation
  • Text and diagrams are freely mixed with calculations
  • Calculation flow is clear and well-structured

Hand calculations mix equations, text and diagrams.

 

Engineers still use paper for quick calculations and analyses, but how would Brunel have calculated the shape of the Clifton Suspension Bridge or the dimensions of its chain links if he worked today?

If computational support is needed, engineers often choose spreadsheets. They’re ubiquitous, and the barrier to entry is low. It’s just too easy to fire-up a spreadsheet and do a few simple design calculations.

 Spreadsheets are difficult to debug, validate and extend.

 

Spreadsheets are great at manipulating tabular data. I use them for tracking expenses and budgeting.

However, the very design of spreadsheets encourages the propagation of errors in equation-oriented engineering calculations

  • Results are difficult to validate because equations are hidden and written in programming notation
  • You’re often jumping about from one cell to another in a different part of the worksheet, with no clear visual roadmap to signpost the flow of a calculation

For these limitations alone, I doubt if Brunel would have used a spreadsheet.

Technology has now evolved to the point where an engineer can reproduce the design metaphor of Brunel’s paper notebooks in software – a freeform mix of calculations, text, drawings and equations in an electronic notebook. A number of these tools are available (including Maple, available via the APA website).

 Modern calculation tools reproduce the design metaphor of hand calculations.

 

Additionally, these modern software tools can do math that is improbably difficult to do by hand (for example, FFTs, matrix computation and optimization) and connect to CAD packages.

For example, Brunel could have designed the chain links on the Clifton Suspension Bridge, and updated the dimensions of a CAD diagram, while still maintaining the readability of hand calculations, all from the same electronic notebook.

That seems like a smarter choice.

Would I go back to the physical notebooks that Brunel diligently filled with hand calculations? Given the scrawl that I call my handwriting, probably not.

1 Introduction

Three tanks are connected with two pipes. Each tank is initially filled to a different level. A valve in each pipe opens, and the liquid levels gradually reach equilibrium. Here, we model the system in MapleSim (including the influence of flow inertia), and also derive and solve the analytical equations in Maple.

Liquid flowing in a pipeline has inertia.  If a valve at the end of the pipeline suddenly closes, a pressure surge hits the valve, and travels through the pipeline at the speed of sound. The damping effect of fluid friction gradually attenuates the pressure wave.

This phenomenon is called water hammer and can cause damage significant damage, sometimes even rupturing the pipeline.

The pressure wave often produces audible sound. If you’ve ever heard...

I recently stumbled upon a hypnotic video of 15 out-of-phase pendulums from a physics experiment at Harvard University.

The...

1 2 3 Page 1 of 3