## Units Converter

by: Maple

Ibragimova Evelina, the 6th form

school # 57, Kazan, Russia

The Units Converter

restart:
`Conversion formula`;
d:=l=n*m:
d;

Conversion formula
l = n m

m - shows how many minor units in one major one (coefficient)
`Coefficient`;
m:=1000;
Coefficient
m:=1000

n - the number of major units
n:=7/3;
n := 7/3

l - the number of minor units
l:=;

The result (the desired value)
solve(d);
7000/3
evalf(solve(d));
2333.333333

That is : there are 2333.3 (or 7000/3 ) minor units in 7/3 major units .

Other example

m - shows how many minor units in one major one (coefficient)
`Coefficient`;
m:=4200;
Coefficient
m:=4200

n - the number of major units
n:=;

l - the number of minor units
l:=100;

l:=100

The result (the desired value)
solve(d);
1/42
evalf(solve(d));
0.02380952381

That is : there are 0.02 (or 1/42) major units in 100 minor units .

Another example

m - shows how many minor units in one major one (coefficient)
`Coefficient`;
m:=;
Coefficient

n - the number of major units
n:=2;

n := 2

l - the number of minor units
l:=200;

l:=200

The result (the desired value)
solve(d);
100
evalf(solve(d));
100

That is : Coefficient is 100 .

## Geometry of triangle

by: Maple

The geometry of the triangle
Romanova Elena,  8 class,  school 57, Kazan, Russia

Construction of triangle and calculation its angles

Construction of  bisectors

Construction of medians

Construction of altitudes

> restart:with(geometry):

The setting of the height of the triandle and let's call it "Т"
> triangle(T,[point(A,4,6),point(B,-3,-5),point(C,-4,8)]);

T

Construction of the triangle
> draw(T,axes=normal,view=[-8..8,-8..8]);

Construction of the triangle АВС

> draw({T(color=gold,thickness=3)},printtext=true,axes=NONE);
Calculation of the distance between heights А and В - the length of a side АВ

> d1:=distance(A,B);

d1 := sqrt(170)

Calculation of the distance between heights В and С - the length of a side ВС
> d2:=distance(B,C);

d2 := sqrt(170)

The setting of line which passes through two points А and В
> line(l1,[A,B]);

l1

Display the equation of line l1
> Equation(l1);
> x;
> y;

-2 + 11 x - 7 y = 0

The setting of line which passes through two points А and С
> line(l2,[A,C]);

l2

Display the equation of line l2
> Equation(l2);
> x;
> y;

56 - 2 x - 8 y = 0

The setting of line which passes through two points В and С
> line(l3,[B,C]);

l3

Display the equation of line l3
> Equation(l3);
> x;
> y;

-44 - 13 x - y = 0

Check the point А lies on line l1
> IsOnLine(A,l1);

true

Check the point А lies on line l1
> IsOnLine(B,l1);

true

Calculation of the andle between lines l1 and l2
> FindAngle(l1,l2);

arctan(3)

The conversion of result to degrees
> b1:=convert(arctan(97/14),degrees);

97
arctan(--) degrees
14
b1 := 180 ------------------
Pi

Calculation of decimal value of this angle
> b2:=evalf(b1);

b2 := 81.78721981 degrees

Calculation of the andle between lines l1 and l3
> FindAngle(l1,l3);

arctan(3/4)

The conversion of result to degrees
> b3:=convert(arctan(97/99),degrees);

97
arctan(--) degrees
99
b3 := 180 ------------------
Pi

Calculation of decimal value of this angle
> b4:=evalf(b3);

b4 := 44.41536947 degrees

Calculation of the angle between lines l2 and l3
> FindAngle(l2,l3);

arctan(3)

The conversion of  result to degrees
> b5:=convert(arctan(97/71),degrees);

97
arctan(--) degrees
71
b5 := 180 ------------------
Pi

Calculation of decimal value of  this angle
> b6:=evalf(b5);

b6 := 53.79741070 degrees

Check the sum of all the angles of the triangle
> b2+b4+b6;

180.0000000 degrees

Analytical information about the point А
> detail(A);
name of the object: A
form of the object: point2d
coordinates of the point: [4, 6]
Analytical information about the point В
> detail(B);
name of the object: B
form of the object: point2d
coordinates of the point: [-3, -5]
Analytical information about the point С
> detail(C);
name of the object: C
form of the object: point2d
coordinates of the point: [-4, 8]

The setting of heights of the triangle points A,B,C and let's call it "Т"

with(geometry):
> triangle(ABC, [point(A,7,8), point(B,6,-7), point(C,-6,7)]):
The setting of the bisector of angle А in triandle АВС
> bisector(bA, A, ABC);

bA

Analytical information about the bisector of angle А in the triandle
> detail(bA);
name of the object: bA
form of the object: line2d
assume that the name of the horizonal and vertical                    axis are _x and _y
equation of the line: (15*170^(1/2)+226^(1/2))*_x+(-13*226^(1/2)-170^(1/2))*_y+97*226^(1/2)-97*170^(1/2) = 0

Construction of the triangle
> draw(ABC,axes=normal,view=[-8..8,-8..8]);

Construction of the triangle ABC

> draw({ABC(color=gold,thickness=3)},printtext=true,axes=NONE);

Construction of the bisector of angle А

> draw({ABC(color=gold,thickness=3),bA(color=green,thickness=3)},printtext=true,axes=NONE);

The setting of the bisector of angle В in the triangle АВС

> bisector(bB, B, ABC);

bB

Analytical information about the bisector of angle B in the triandle
> detail(bB);
name of the object: bB
form of the object: line2d
assume that the name of the horizonal and vertical                    axis are _x and _y
equation of the line: (-15*340^(1/2)-14*226^(1/2))*_x+(-12*226^(1/2)+340^(1/2))*_y+97*340^(1/2) = 0

Construction of the bisector of angle В
>draw({ABC(color=gold,thickness=3),bA(color=green,thickness=3),bB(color=red,thickness=3)},printtext=true,axes=NONE);

The setting of the bisector of angle С in the triangle АВС

> bisector(bC, C, ABC);

bC

Analytical information about the bisector of angle С in the triangle
> detail(bC);
name of the object: bC
form of the object: line2d
assume that the name of the horizonal and vertical                    axis are _x and _y
equation of the line: (14*170^(1/2)-340^(1/2))*_x+(13*340^(1/2)+12*170^(1/2))*_y-97*340^(1/2) = 0

Construction of the bisector of angle С
>draw({ABC(color=gold,thickness=3),bA(color=green,thickness=3),bB(color=red,thickness=3),bC(color=blue,thickness=3)},printtext=true,axes=NONE);

Calculation of the point of intersection of the bisectors and let's call it "О"

> intersection(O,bA,bB,bC);coordinates(O);

O

7 sqrt(85) - 3 sqrt(2) sqrt(113) + 3 sqrt(85) sqrt(2)
[2 -----------------------------------------------------,
sqrt(85) sqrt(2) + sqrt(2) sqrt(113) + 2 sqrt(85)

-16 sqrt(85) - 7 sqrt(2) sqrt(113) + 7 sqrt(85) sqrt(2)
- -------------------------------------------------------]
sqrt(85) sqrt(2) + sqrt(2) sqrt(113) + 2 sqrt(85)

Construction of the bisectors and  marking of the point of intersection  "О" in the triandle
>draw({ABC(color=gold,thickness=3),bA(color=green,thickness=3),bB(color=red,thickness=3),bC(color=blue,thickness=3),O},printtext=true,axes=NONE);
> restart:
> with(geometry):
The setting of the heights of the triangle points A,B,C and let's call it "Т"
> point(A,7,8),point(B,6,-7),point(C,-6,7);

A, B, C

Let's call "Т1"
> triangle(T1,[A,B,C]);

T1

Construction of "Т1"
> draw(T1(color=gold,thickness=3),axes=NONE,printtext=true);
The setting of the median from the point В in the trianglemedian(mB,B,T1,B1);
> median(mb,B,T1);

mB

mb

Construction of the median from the point В
> draw({T1(color=gold,thickness=3),mB(color=green,thickness=3),mb},printtext=true,axes=NONE);

The setting of the median from the point А in the trianglemedian(mA,A,T1,A1);
> median(ma,A,T1);

mA

ma

Construction of the median from the point А
>draw({T1(color=gold,thickness=3),mB(color=green,thickness=3),mA(color=magenta,thickness=3),ma},printtext=true,axes=NONE);
The setting of the median from the point С in the trianglemedian(mC,C,T1,C1);
> median(mc,C,T1);

mC

mc

Costruction of the median from the point С
>draw({T1(color=gold,thickness=3),mB(color=green,thickness=3),mA(color=magenta,thickness=3),mA,mC(color=maroon,thickness=3)},printtext=true,axes=NONE);

Calculation of the point of  intersection of the median and let's call it "О"

>intersection(O,ma,mb,mC);coordinates(O);

O

[7/3, 8/3]

Construction of medians and marking of the point of  intersection "О" in the triangle
>draw({T1(color=gold,thickness=3),mB(color=green,thickness=3),mA(color=magenta,thickness=3),mA,mC(color=violet,thickness=3),O},printtext=true,axes=NONE);
> restart:with(geometry):
> _EnvHorizontalName:=x:_EnvVerticalName=y:       The setting of the heights of the triangle points A, B, C  and let's call it "Т"
> triangle(T,[point(A,7,8),point(B,6,-7),point(C,-6,7)]);

T

Construction of the triangle
> draw(T,axes=normal,view=[-8..8,-8..8]);

The setting of the altitude in the triangle from the point Сaltitude(hC1,C,T,C1);
> altitude(hC,C,T);

hC1

hC

Analytical information about the altitude hC from the point С in the triangle
> detail(hC);
name of the object: hC
form of the object: line2d
assume that the name of the horizonal and vertical                    axis are _x and _y
equation of the line: -99+_x+15*_y = 0

Construction of the altitude from the point С
> draw({T(color=gold,thickness=3),hC1(color=green,thickness=3),hC},printtext=true,axes=NONE);

The setting of the altitude in the triangle from the point Аaltitude(hA1,A,T,A1);
> altitude(hA,A,T);

hA1

hA

Analytical information about the altitude hA from the point А in the triangle
> detail(hA);
name of the object: hA
form of the object: line2d
assume that the name of the horizonal and vertical                    axis are _x and _y
equation of the line: -28-12*_x+14*_y = 0

Construction of the altitude from the point А
>draw({T(color=gold,thickness=3),hC1(color=green,thickness=3),hA1(color=red,thickness=3),hA1},printtext=true,axes=NONE);       The setting of the altitude from the point В

> altitude(hB1,B,T,B1);
> altitude(hB,B,T);

hB1

hB

Analytical information about the altitude hB from the point В in the triangle
> detail(hB);
name of the object: hB
form of the object: line2d
assume that the name of the horizonal and vertical                    axis are _x and _y
equation of the line: -71+13*_x+_y = 0

Consruction of the altitude from the point В
>draw({T(color=gold,thickness=3),hC1(color=green,thickness=3),hA1(color=red,thickness=3),hB1(color=blue,thickness=3),hB1},printtext=true,axes=NONE);
Calculation of the point of intersection of altitudes and let's call it "О"

>intersection(O,hB,hA,hC);coordinates(O);

O

483  608
[---, ---]
97   97

Construction of altitudes and marking of the point of intersection "О" in the triangle
>draw({T(color=gold,thickness=3),hC1(color=green,thickness=3),hA1(color=red,thickness=3),hB1(color=blue,thickness=3),hB1,O},printtext=true,axes=NONE);

## New release of Placement Test Suite

by:

Maple T.A. MAA Placement Test Suite  2016 is now available. It leverages all the improvements found in Maple T.A. 2016, including:

• A redesigned authoring workflow that makes it faster and easier to create and modify questions and assignments
• A new content repository that makes it substantially easier to manage and search for content
• New built-in connectivity options for integration with course management systems

To learn more, visit What’s New in Maple T.A. MAA Placement Test Suite 2016.

Jonny
Maplesoft Product Manager, Online Education Products

## Researching turkish song

by: Maple

Elena, Liya

"Researching turkish song: the selection of the main element and its graphic transformations",

Russia, Kazan, school #57

The setting and visualization of the melodic line of the song
> restart:
> with(plots):with(plottools):
> p0:=plot([[0.5,9],[1,7],[2,9],[4,11],[6,9],[7,11],[8,7],[10,9],[12,9],[14,9],[16,7],[16.5,9],[17,7],[18,9]],color=magenta):p1:=plot([[18,9],[20,11],[22,9],[23,11],[24,9],[26,11],[28,11],[29.5,8],[30,11],[32,9],[33.5,8],[34,9],[36,7],[37.5,5],[38,9],[40,7],[42,5],[44,5],[46,4],[47,5],[48,2],[50,4],[51,5],[51.5,4],[52,2],[54,4],[56,4],[56.5,5],[57,4],[58,5],[60,7],[62,5],[64,7],[66,5]],color=cyan):
> p2:=plot([[66,5],[68,5],[69,5],[70,4],[71,5],[71.5,4],[72,2],[73,4],[74,5],[75,7],[76,5],[78,4],[78.5,7],[80,5],[82.5,4],[83.5,4],[84,2],[86,4],[88,4],[90.5,4],[91.5,4]],color=red):
> p3:=plot([[91.5,4],[92,2],[94,4],[96,4],[96.5,9],[97,7],[98,9],[100,11],[100.5,9],[101,11],[102,9],[104,11],[106,9],[108,9],[109,9],[109.5,9],[110,7],[111,9],[112,7],[113,7],[114,9],[116,11],[116.5,9],[117,11],[118,9],[119.5,11],[120,9],[122.5,9],[124,9],[124.5,9],[125,11],[125.5,9],[126,11],[128,9],[129,7],[130,9],[132,11],[132.5,9],[133,11],[134,9],[136,11],[136.5,9],[138.5,9],[140,9],[140.5,9],[141,11],[141.5,9],[142,11],[143,7],[143.5,7],[144,9],[144.5,9],[145,7],[146,9],[148,11],[148.5,9],[149,11],[150,9],[151.5,11],[152,9],[154.5,9],[156,9],[156.5,9],[157,11],[157.5,9],[158,11],[160,9],[161,7],[162,9],[164,11],[164.5,9],[165,11],[166,9],[168,11],[168.5,9],[171.5,9],[172,9],[172.5,9],[173.5,11],[174,9],[174.5,11],[175,7],[175.5,7],[176,9],[176.5,9],[177,7],[178,9],[180,11],[180.5,9],[181,11],[182,9],[183.5,11],[184,9],[186.5,9],[188,9],[188.5,9],[189,11],[189.5,9],[190,11],[192,9],[192.5,9],[193,7],[194,9],[196,11],[196.5,9],[197,11],[198,9],[200,11],[201.5,9],[202,11],[203,9],[203.5,8],[204,9],[205,7],[205.5,9],[206,11],[207,9],[208,7],[209,8],[209.5,7],[210,9],[211,7],[212,5],[213,5],[213.5,5],[214,9],[215,7],[216,5],[217,5],[217.5,5],[218,7],[219,5],[220,4],[221,4],[221.5,4],[222,7],[223,5],[224,4],[225,4],[227,4],[227.5,4],[228,2],[230,4]],color=blue):
> p4:=plot([[230,4],[232,4],[232.5,5],[233,4],[234,5],[236,7],[236.5,5],[237,5],[238,9],[240,7],[242.5,5],[244,5],[245,5],[246,4],[246.5,5],[247,4],[248,2],[250,4],[250.5,7],[251,5],[252,4],[254,4],[254.5,7],[255,5],[256,4],[258,4]],color=brown):
> p5:=plot([[258,4],[259,4],[260,2]],color=green):
> plots[display](p0,p1,p2,p3,p4,p5,thickness=2);

The selection of the main melodic element in graph of whole song. The whole song is divided into separate elements - results of transformationss0:=plot([[7,11],[8,7],[10,9],[12,9],[14,9],[16,7],[16.5,9]],color=blue):
> s1:=plot([[118,9],[119.5,11],[120,9],[122.5,9],[124,9],[124.5,9],[125,11],[125.5,9]],color=blue):
> s2:=plot([[134,9],[136,11],[136.5,9],[138.5,9],[140,9],[140.5,9],[141,11],[141.5,9]],color=blue):
> s3:=plot([[150,9],[151.5,11],[152,9],[154.5,9],[156,9],[156.5,9],[157,11],[157.5,9]],color=blue):
> s4:=plot([[166,9],[168,11],[168.5,9],[171.5,9],[172,9],[172.5,9],[173.5,11],[174,9]],color=blue):
> s5:=plot([[182,9],[183.5,11],[184,9],[186.5,9],[188,9],[188.5,9],[189,11],[189.5,9]],color=blue):
> s6:=plot([[250,4],[250.5,7],[251,5],[252,4],[254,4],[254.5,7],[255,5],[256,4]],color=blue):
> plots[display](s0,s1,s2,s3,s4,s5,s6);
> s:=plots[display](s0,s1,s2,s3,s4,s5,s6):

Animated display of grafical transformation of the basic element (to click on the picture - on the panel of instruments appears player - to play may step by step).m0:=plot([[7,11],[8,7],[10,9],[12,9],[14,9],[16,7],[16.5,9]],color=blue):
> pm:=plot([[118,9],[119.5,11],[120,9],[122.5,9],[124,9],[124.5,9],[125,11],[125.5,9]],color=red,style=line,thickness=4):
> iop:=plots[display](m0,pm,insequence=true):
> plots[display](iop,s0);

> m0_t:=translate(m0,110,0):
> m0_r:=reflect(m0_t,[[0,9],[24,9]]):
> plots[display](m0,m0_r,insequence=true);
> m0r:=plots[display](m0,m0_r,insequence=true):

> pm0:=plots[display](pm,m0):
> plots[display](pm0,m0r);

> m0:=plot([[7,11],[8,7],[10,9],[12,9],[14,9],[16,7],[16.5,9]],color=blue):
> pn:=plot([[134,9],[136,11],[136.5,9],[138.5,9],[140,9],[140.5,9],[141,11],[141.5,9]],color=blue,thickness=3):
> iop:=plots[display](m0,pn,insequence=true):
> plots[display](iop,s0);

> m0_t1:=translate(m0,126,0):
> m0_r1:=reflect(m0_t1,[[0,9],[24,9]]):
>
> plots[display](m0,m0_r1,insequence=true);
> m0r1:=plots[display](m0,m0_r1,insequence=true):

> pm01:=plots[display](pn,m0):
> plots[display](pm01,m0r1);

> pm2:=plots[display](pn,pm,m0):
> plots[display](pm0,m0r,pm01,m0r1);

> pt_i_1:=seq(translate(pm,5*11*i,0),i=0..4):
> plots[display](pt_i_1);

> pm_i:=seq(translate(pm,5*11*i,0),i=0..4):
> plots[display](pm_i);
> iop1:=plots[display](pm_i,insequence=true):
> plots[display](iop1,s0);

> pm_i_0:=seq(translate(m0_r,5*11*i,0),i=0..4):
> plots[display](pm_i_0);
> iop2:=plots[display](pm_i_0,insequence=true):
> plots[display](iop2,s0);

## Some examples of plot translations

by: Maple

Construction of arabesques of melodic line BACH

Elena, Liya "Construction of arabesques of melodic line BACH", Kazan, Russia, school#57

> restart:
> with(plots):with(plottools):

The setting and visualization of line BACH: B - note b-flat, A - note la, C - note do, H - note si.
> p0:=plot([[0,1],[2,0],[4,1.5],[6,1]],thickness=4,color=cyan,scaling=constrained);
>
>   p0 := PLOT(
>
>         CURVES([[0, 1.], [2., 0], [4., 1.500000000000000], [6., 1.]])
>
>         , SCALING(CONSTRAINED), THICKNESS(4), AXESLABELS( ,  ),
>
>         COLOUR(RGB, 0, 1.00000000, 1.00000000),
>
>         VIEW(DEFAULT, DEFAULT))
>
> plots[display](p0);
> r_i:=seq(rotate(p0,i*Pi/4),i=1..8):
> p1:=display(r_i,p0):plots[display](p1,scaling=constrained);

> c1:=circle([0,0],6,color=blue,thickness=2):
> plots[display](c1,p1,scaling=constrained);
> p_c:=plots[display](c1,p1,scaling=constrained):

> pt_i_2:=seq(translate(p1,0,2*6*i),i=0..4):
> plots[display](pt_i_2,scaling=constrained);
> pt_i_22:=seq(translate(p1,0,6*i),i=0..4):
> plots[display](pt_i_22,scaling=constrained);
> pt_i_222:=seq(translate(p1,0,1/2*6*i),i=0..4):
> plots[display](pt_i_222,scaling=constrained);

> pr:=rotate(p1,Pi/8):
> plots[display](pr,scaling=constrained);
> plots[display](p1,pr,scaling=constrained);
> pr_i:=seq(rotate(p1,Pi/16*i),i=0..8):
> plots[display](pr_i,scaling=constrained);

> pt_1:=translate(p1,0,2*6):
> pr_1_i:=seq(rotate(pt_1,Pi/3.5*i),i=0..6):
> plots[display](pr_1_i,scaling=constrained);
> pr_11_i:=seq(rotate(pt_1,Pi/5*i),i=0..10):
> plots[display](pr_11_i,scaling=constrained);
> pr_111_i:=seq(rotate(pt_1,Pi/6.5*i),i=0..12):
> plots[display](pr_111_i,scaling=constrained);

## Designing of islamic arabesques

by: Maple

Elena, Liya "Designing of islamic arabesques", Kazan, Russia, school #57

> restart:
At the theorem of cosines  c^2 = a^2+b^2-2*a*b*cos(phi);
In our case  c=a0 ,  a=1 ,  a=b , phi; - acute angle of a rhombus (the tip of the kalam).
s0 calculated at theorem of  Pythagoras.
(а0 - horizontal diagonal of a  rhombus, s0 - vertical diagonal of a  rhombus)
> a:=1:phi:=Pi/4:
> a0:=sqrt(a^2+a^2-2*a^2*cos(phi));

a0 := sqrt(2 - sqrt(2))

> solve((s0^2)/4=a^2-(a0^2)/4,s0);

sqrt(2 + sqrt(2)), -sqrt(2 + sqrt(2))

The setting of initial parameters : the size of the tip of the pen-kalam and  depending on its - the main module size - point
(а0 - horizontal diagonal of a  rhombus, s0 - vertical diagonal of a  rhombus)
> a0:=sqrt(2-sqrt(2)):
> s0:=sqrt(2+sqrt(2)):
Connection the graphical libraries Maple
> with(plots):with(plottools):
Construction of unit of measure (point) - rhombus - the tip of the kalam
> p0:=plot([[0,0],[a0/2,s0/2],[0,s0],[-a0/2,s0/2],[0,0]],scaling=constrained,color=gold,thickness=3):
> plots[display](p0);

The setting and construction of altitude of alif - the basis of the rules compilation of the proportions      Example, on style naskh altitude of alif amount five points
> p_i:=seq(plot([[0,0+s0*i],[a0/2,s0/2+s0*i],[0,s0+s0*i],[-a0/2,s0/2+s0*i],[0,0+s0*i]],scaling=constrained,color=black),i=0..4):
> pi:=display(p_i):
> plots[display](p_i);
The setting of appropriate circle of diameter, amount altitude of alifd0:=s0+s0*i:
> i:=4:
> d0:=d0:
> c0:=circle([0,d0/2],d0/2,color=blue):
> plots[display](p_i,c0);

Construction of flower by turning "point"r_i:=seq(rotate(p0,i*Pi/4),i=1..8):
> p1:=display(r_i,p0):plots[display](p1,scaling=constrained);

The setting of circumscribed circlec1:=circle([0,0],s0,color=blue,thickness=2):
Construction and the setting of flower inscribed in a circle
> plots[display](c1,p1,scaling=constrained);
> p_c:=plots[display](c1,p1,scaling=constrained):

The setting and construction of arabesque by horizontal parallel transport original flower with different stepspt_i_1:=seq(translate(p1,5*a0*i,0),i=0..4):
> plots[display](pt_i_1);
> pt_i_11:=seq(translate(p1,2*a0*i,0),i=0..4):
> plots[display](pt_i_11);
> pt_i_111:=seq(translate(p1,a0*7*i,0),i=0..4):
> plots[display](pt_i_111);

The setting and construction of arabesque by vertical parallel transport original flower with different stepspt_i_2:=seq(translate(p1,0,2*s0*i),i=0..4):
> plots[display](pt_i_2);
> pt_i_22:=seq(translate(p1,0,s0*i),i=0..4):
> plots[display](pt_i_22);
> pt_i_222:=seq(translate(p1,0,1/2*s0*i),i=0..4):
> plots[display](pt_i_222);
Getting arabesques by turning original flower on different anglespr:=rotate(p1,Pi/8):
> plots[display](pr);
> plots[display](p1,pr);

> pr_i:=seq(rotate(p1,Pi/16*i),i=0..8):
> plots[display](pr_i);

> pt_1:=translate(p1,0,2*s0):
> pr_1_i:=seq(rotate(pt_1,Pi/3.5*i),i=0..6):
> plots[display](pr_1_i);
> pr_11_i:=seq(rotate(pt_1,Pi/5*i),i=0..10):
> plots[display](pr_11_i);
> pr_111_i:=seq(rotate(pt_1,Pi/6.5*i),i=0..12):
> plots[display](pr_111_i);

by: Maple

Muchametshina Liya,  8th class,  school № 57, Kazan, Russia

Square

Rectangle

Rhombus

Parallelogram

Trapeze

Construction of square

> restart:
> with(plottools):
Сoordinates (x;y) of the lower left corner of the square and the side "а"
> x:=0;y:=3;a:=6;

x := 0

y := 3

a := 6

Construction of the square
> P1:=plot([[x,y],[x,y+a],[x+a,y+a],[x+a,y],[x,y]],color=green,thickness=4):
> plots[display](P1,scaling=CONSTRAINED);

The setting of the second square wich moved relative to the first on the vector (2;-3) (vector can be changed) and with side "а-1" (the length of a side can be changed)P2:=plot([[x+2,y-3],[x+2,y-3+a-1],[x+2+a-1,y-3+a-1],[x+2+a-1,y-3],[x+2,y-3]],color=black,thickness=4):
> plots[display](P1,P2,scaling=CONSTRAINED);

Construction of rectangle

> restart:
> with(plottools):
Сoordinates (x;y) of the lower left corner of the square and the "а" and "b" sides
> x:=0;y:=2;a:=3;b:=9;
>

x := 0

y := 2

a := 3

b := 9

The rectangle is specified by the sequence of vertices with given the lengths "a" and "b"
> l:=plot([[x,y],[x,y+a],[x+b,y+a],[x+b,y],[x,y]]):
> plots[display](l,scaling=CONSTRAINED,thickness=4);
Construction of rhombus

> restart:
> with(plottools):
The coordinates (x;y) of the initial vertex of the rhombus and the half of the diagonals "a" and "b"
> x:=0;y:=2;a:=3;b:=4;

x := 0

y := 2

a := 3

b := 4

Rhombus is specified by the sequence of vertices with the values "a" and "b"
> ll:=plot([[x,y],[x+a,y+b],[x+a+a,y],[x+a,y-b],[x,y]]):
> plots[display](ll,scaling=CONSTRAINED,thickness=4);

Construction of parallelogram

> restart:
> with(plottools):
(х;у) - the starting point, (i;j) - the displacement vector of starting point, "а" - the base of the parallelogram
> x:=0;y:=0;i:=4;j:=5;a:=10;

x := 0

y := 0

i := 4

j := 5

a := 10

The parallelogram is defined by the sequence of vertices
> P1:=plot([[x,y],[x+i,y+j],[x+i+a,y+j],[x+a,y],[x,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);
If  i= 0  it turns out the rectangleget.
If  j= а  it turns out the  square.
If  a := sqrt(i^2+j^2) it turns out the rhombus. a:=sqrt(i^2+j^2):

Construction of trapeze

Trapeze general form
> restart:
> with(plottools):
>
(х;у) - the starting point, (i;j) - the displacement vector of starting point, а - the larger base of the trapezoid
> x:=0;y:=2;i:=1;j:=5;a:=11;

x := 0

y := 2

i := 1

j := 5

a := 11

The trapez is defined by the sequence of vertices
> P1:=plot([[x,y],[x+i,y+j],[x+i+j,y+j],[x+i+a,y],[x,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);
Rectangular trapezoid
> restsrt:
> with(plottools):
> x:=0;y:=2;i:=0;j:=6;a:=11;

x := 0

y := 2

i := 0

j := 6

a := 11

> P1:=plot([[x,y],[x,y+j],[x+j,y+j],[x+a,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);
Isosceles trapezoid
> restart:
> with(plottools):
> x:=0;y:=2;i:=4;j:=6;a:=15;

x := 0

y := 2

i := 4

j := 6

a := 15

> P1:=plot([[x,y],[x+i,y+j],[x+j+i,y+j],[x+a,y],[x,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);

## Eurocup simulation in Maple

Anyone interested in modifying and expanding the Maple FIFA simulation for the Eurocup to include the knockout round?  Any interest?

## Gialid_Plots_transformation

by: Maple , MaplePrimes

> restart;
> a := -10; b := 10; ps := seq(plot([i, t, t = -20 .. 20], x = -10 .. 10, y = -20 .. 20, color = red, style = point), i = a .. b);

plots[display](ps, insequence = true); p := plots[display](ps, insequence = true);

restart:
with(plots):
y=sin(x);
p:=implicitplot(y=sin(x),x=-10..10,y=-2..2,thickness=4,color=red,scaling=constrained,numpoints=1000):
plots[display](p);

y=sin(3*x);
p0:=implicitplot(y=sin(x),x=-10..10,y=-5..5,thickness=3,color=red,scaling=constrained,numpoints=1000,linestyle=2,style=POINT,symbol=CROSS):
p1:=implicitplot(y=sin(3*x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p1);
y=sin(1/3*x);
p11:=implicitplot(y=sin(1/3*x),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p11);

y=2*sin(x);
p2:=implicitplot(y=2*sin(x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p2);
y=1/2*sin(x);
p22:=implicitplot(y=1/2*sin(x),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p22);

y=2+sin(x);
p3:=implicitplot(y=2+sin(x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p3);
y=sin(x)-2;
p33:=implicitplot(y=sin(x)-2,x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p33);

y=sin(x+2);
p4:=implicitplot(y=sin(x+2),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p4);
y=sin(x-2);
p44:=implicitplot(y=sin(x-2),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p44);

y=-sin(x);
p7:=implicitplot(y=-sin(x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p7);
y=sin(-x);
p77:=implicitplot(y=sin(-x),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p77);

y=abs(sin(x));
p00:=implicitplot(y=sin(x),x=-10..10,y=-5..5,thickness=3,color=red,scaling=constrained,numpoints=1000,linestyle=2,style=POINT,symbol=BOX):
p5:=implicitplot(y=abs(sin(x)),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p00,p5);
plots[display](p5,scaling=constrained);

y=sin(abs(x));
p00:=implicitplot(y=sin(x),x=-10..10,y=-5..5,thickness=3,color=red,scaling=constrained,numpoints=1000,linestyle=2,style=POINT,symbol=BOX):
p6:=implicitplot(y=sin(abs(x)),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p00,p6);
plots[display](p6,scaling=constrained);

## Russian secondary school Maple project

by: Maple

Post gialid_GEODROMchik - what is this?

Pilot project of Secondary school # 57 of Kazan, Russia

Use of Maple

in Mathematics Education by mathematics teacher Alsu Gibadullina

and in scientific work of schoolchildren