Education

Teaching and learning about math, Maple and MapleSim

With this app you will be able to interpret the curvatures generated by two position vectors, either in the plane or in space. Just enter the position vectors and drag the slider to calculate the curvature at different times and you will of course be able to observe its respective graph. At first I show you how it is developed using the natural syntax of Maple and then optimize our
 app with the use of buttons. App made in Maple for engineering students. In spanish.

Plot_of_Curvature.mw

Videotutorial:

https://www.youtube.com/watch?v=SbXFgr_5JDE

Lenin Araujo Castillo

Ambassador of Maple

With this application you will learn the beginning of the study of the vectors. Graphing it in a vector space from the plane to the space. You can calculate its fundamental characteristics as triangle laws, projections and strength. App made entirely in Maple for engineering students so they can develop their exercises and save time. It is recommended to first use the native syntax then the embedded components. In Spanish.

 

Vector_space_with_projections_and_forces_UPDATED_2018.mw

Vector_space_with_projections_and_forces_UPDATED.mw

Movie #01

https://www.youtube.com/watch?v=VAukLwx_FwY

Movie #02

https://www.youtube.com/watch?v=sIxBm_GN_h0

Movie #03

https://www.youtube.com/watch?v=LOZNaPN5TG8

Lenin Araujo Castillo

Ambassador of Maple

I'd like to present the following bugs in the IntTutor command.

1. Initialize

Student[Calculus1]:-IntTutor((1+cos(3*x))^(3/2), x);

then press the All Steps button. The command produces the answer (see Bug1_in_IntTutor.mw)

(4/9)*sqrt(2)*sin((3/2)*x)^3-(4/3)*sqrt(2)*sin((3/2)*x)

which is not correct in view of

plot(diff((4/9)*sqrt(2)*sin((3/2)*x)^3-(4/3)*sqrt(2)*sin((3/2)*x), x)-(1+cos(3*x))^(3/2), x = 0 .. .2);

One may compare it with the Mathematica result Step-by-step2.pdf.

2. Initialize

Student[Calculus1]:-IntTutor(cos(x)^2/(1+tan(x)), x);

In the window press the Next Step button. This crashes (The kernel connection has been lost) my comp in approximately an half of hour (see screen2.docx). One may compare it with the Mathematica result Step-by-step.pdf .

Indeed,  "We wanted the best, but it turned out like always" .

I was asked if I would put together a list of top resources to help students who are using Maple for the first time.  An awful lot of students will be cracking Maple open in the next few weeks (the ones who are keeping up with their assignments, at least – for others, it sometimes takes little longer :-), so it seemed like a good idea.

So then I had to decide what to do. I know Top N lists are very popular (Ten Things that Will Shock You about Your Math Software!), and there are tons of Maple training resources available to fill such a list without any difficulties.  But personally, I don’t always like Top N lists. What are the chances that there are exactly N things you need to know, for nice values of N? And how often you are really interested in all N items? I just want to get straight to the points I care about.

I decided I’d try a matrix. So here you go: a mini “choose your own adventure” guide for getting to know Maple.  Pick the row that corresponds to what you want to do, and the column for how you want to do it.  All on a single, page, and ad-free!

And best of luck for the new school year.

 

 

I like words

I like videos

Just let me try it

Product Overview

Inside Maple, from the Help menu, select Take a Tour of Maple then click on the Ten Minute Tour button.

 

(Okay, even though I like words, too, you might also want to watch the video in the next column. The whole “picture is worth a thousand words” does have some truth to it, much as I don’t always like to admit it. J)

Watch Clickable Math

 

Keep in mind that if you prefer to use commands instead of these Clickable Math tools, you can do that too.  Personally, I mix and match.

You’ll figure it out.

Getting Started Info

Read the Maple Quick Start Tutorial Guide, as a PDF, or from the Help system. To access this guide from within Maple, start Maple, click on the Getting Started icon the left, then select the Quick Start Guide (first icon in the second row).

Watch the Maple Quick Start Tutorial Video.

The most important things to remember are

  1. Right click on your math expression to bring up a menu of things you can do, like plotting or integrating or solving your expression
  2. If you have just entered an exponent or the denominator of a fraction, use the right arrow key to get out of it.

How do I? Essentials

Look at the “How do I” section of the Maple Portal (Start Maple, click on the Getting Started icon, click on the Maple Portal icon; or search for “MaplePortal” in the help system).  Also look at the Maple Portal for Students, using the button from the Maple Portal.

Check out the dozens of videos in the Maple Training Video collection.

You can do a lot with the context menus and the various tools you’ll find on the Tools menu. But when in doubt, look at the list of “How do I” tasks from the Maple Portal described in the “words” column and pull out what you need from there.

What now?

The help system is your friend. Not only does it have help pages for every feature and every command, but it includes both the Maple User Manual and the Maple Programming Guide (also available as PDFs).

Check out the collection of videos on the Maplesoft YouTube channel.  (And the help system is your friend, too. We can’t make videos to cover every last thing, and if we did, you wouldn’t have time to watch them all!)

Maple comes with many examples and applications you can look at and modify.  You can browse through the Start page resources, or search for “examples,index” in the help system to see the full list.

 

And yes, the help system is your friend, too.  But don’t worry, no one is going to make you read the manual.

 

 

 

Download New_ReportGeneration_with_ExcelData.mw

Dear Users,

I have received a congratulations from a Mapleprime user for my post (on Finite Element Analysis - Basics) posted two years earlier. I  did not touch that subject for two years for obvious reasons. Now that a motivation has come, I have decided to post my second application using embedded components. This I was working for the past two years and with the support from Maplesoft technical support team and Dr.RobertLopez. I thank them here for this workbook has come out well to my satisfaction and has given me confidence to post it public.

About the workbook

I have tried to improve the performance of a 2-Stroke gasoline engine to match that of a four stroke engine by using exhaust gas recirculation. Orifice concept is new and by changing the orifice diameter and varying the % of EGR, performance was monitored and data stored in Excel workbook. These data can be imported to Maple workbook by you as you want for each performance characteristic. The data are only my experimental and not authentic for any commercial use.

This Maple workbook generates curves from data for various experiments conducted by modifying the field variables namely Orifice diameter, % Exhaust gas Recirculation and Heat Exchanger Cooling. Hence optimum design selection is possible for best performance.

Thanks for commenting, congratulating or critisising!! All for my learning and improving my Maple understanding!! 

In this app you can use from the creation of curve, birth of the position vector and finally applied to the displacement and the distance traveled. All this application revolves around the creation of a path and the path of a particle over this generated by vectors. You will only have to insert the vector components and the times to evaluate. Designed for engineering students guided through Maple. In Spanish.

Displacement_and_distance_traveled_with_vectors.mw Updated

Displacement_and_distance_traveled_with_vectors_updated_2020.mw 

Video

https://www.youtube.com/watch?v=jOcKYZ5EEM0

Lenin Araujo C

Ambassador of Maple

Here in this video you can observe the correct insertion of vectors; Making use of the keyboard, ascii code and tool palette of our Maple program. As our worksheet is very large, I made the explanation in two parts; I recommend that you observe this first part of performing any execution on your Maple worksheet. You can contrast your results with the apps also made in this software. In Spanish.

Shortcut_in_Vectors_for_Engineering.mw

Movie # 01

https://www.youtube.com/watch?v=EJtAli54q_A

Movie # 02

https://www.youtube.com/watch?v=m-JUmhkbWI8

Lenin Araujo Castillo

Ambassador of Maple

Hi MaplePrimes,

another_recursive_sequence.mw

another_recursive_sequence.pdf

These two files have the same content.  One is a .pdf and the other is a Maple Worksheet.  I explore integer sequences of the form - 

a(r) = c*a(r-1)+d*a(r-2) with a(1) and a(2) given.

Some of these sequences are in (the Online Encyclopedia of Integer Sequences) OEIS.org and some are not.  If we restrict c to 1 and assume that a(1)=1 and a(2) = 2 we have the parameter d remaining.  See additional webpage - 

https://sites.google.com/site/recrusivefunction/

Let me know if you like the code.

Regards,

Matt

 

As you can see this app performs the trace of a given path r (t), then locate the position vector in a specific time. It also graphs the velocity vector, acceleration, Tangential and Normal unit vectors, along with the Binormal. Very good app developed entirely in Maple for our engineering students.

Plot_of_Position_Vector_UPDATED.mw

https://youtu.be/OzAwShHHXq8

Lenin Araujo Castillo

Ambassador of Maple

I'm back from presenting work in the "23rd Conference on Applications of Computer Algebra -2017" . It was a very interesting event. This fifth presentation, about "The Appell doubly hypergeometric functions", describes a very recent project I've been working at Maple, i.e. the very first complete computational implementation of the Appell doubly hypergeometric functions. This work appeared in Maple 2017. These functions have a tremendous potential in that, at the same time, they have a myriad of properties, and include as particular cases most of the existing mathematical language, and so they have obvious applications in integration, differential equations, and applied mathematics all around. I think these will be the functions of this XXI century, analogously to what happened with hypergeometric functions in the previous century.

At the end, there is a link to the presentation worksheet, with which one could open the sections and reproduce the presentation examples.
 

The four double-hypergeometric Appell functions,

a complete implementation in a computer algebra system

 

Edgardo S. Cheb-Terrab

Physics, Differential Equations and Mathematical Functions, Maplesoft

 

Abstract:
The four multi-parameter Appell functions, AppellF1 , AppellF2 , AppellF3  and AppellF4  are doubly hypergeometric functions that include as particular cases the 2F1 hypergeometric  and some cases of the MeijerG  function, and with them most of the known functions of mathematical physics. Appell functions have been popping up with increasing frequency in applications in quantum mechanics, molecular physics, and general relativity. In this talk, a full implementation of these functions in the Maple computer algebra system, including, for the first time, their numerical evaluation over the whole complex plane, is presented, with details about the symbolic and numerical strategies used.

Appell Functions (symbolic)

 

 

The main references:

• 

P. Appel, J.Kamke de Feriet, "Fonctions hypergeometriques et Hyperspheriques", 1926

• 

H. Srivastava, P.W. Karlsson, "Multiple Gaussian Hypergeometric Series", 1985

• 

24 papers in the literature, ranging from 1882 to 2015

 

Definition and Symmetries

   

Polynomial and Singular Cases

   

Single Power Series with Hypergeometric Coefficients

   

Analytic Extension from the Appell Series to the Appell Functions

   

Euler-Type and Contiguity Identities

   

Appell Differential Equations

   

Putting all together

   

Problem: some formulas in the literature are wrong or miss the conditions indicating when are they valid (exchange with the Mathematics director of the DLMF - NIST)

   

Appell Functions (numeric)

 

 

Goals

 

• 

Compute these Appell functions over the whole complex plane

• 

Considering that this is a research problem, implement different methods and flexible optional arguments to allow for:

a) comparison between methods (both performance and correctness),

b) investigation of a single method in different circumstances.

• 

Develop a computational structure that can be reused with other special functions (abstract code and provide the main options), and that could also be translated to C (so: only one numerical implementation, not 100 special function numerical implementations)

Limitation: the Maple original evalf command does not accept optional arguments

 

The cost of numerically evaluating an Appell function

 

• 

If it is a special hypergeometric case, then between 1 to 2 hypergeometric functions

• 

Next simplest case (series/recurrence below) 3 to 4 hypergeometric functions plus adding somewhat large formulas that involve only arithmetic operations up to 20,000 times (frequently less than 100 times)

• 

Next simplest case: the formulas themselves are power series with hypergeometric function coefficients; these cases frequently converge rapidly but may involve the numerical evaluation of up to hundreds of hypergeometric functions to get the value of a single Appell function.

 

Strategy for the numerical evaluation of Appell functions (or other functions ...)

 

 

The numerical evaluation flows orderly according to:

1) check whether it is a singular case

2) check whether it is a special value

3) compute the value using a series derived from a recurrence related to the underlying ODE

4) perform an sum using an infinite sum formula, checking for convergence

5) perform the numerical integration of the ODE underlying the given Appell function

6) perform a sequence of concatenated Taylor series expansions

Examples

   

Series/recurrence

   

Numerical integration of an underlying differential equation (ODEs and dsolve/numeric)

   

Concatenated Taylor series expansions covering the whole complex plane

   

Subproducts

 

Improvements in the numerical evaluation of hypergeometric functions

   

Evalf: an organized structure to implement the numerical evaluation of special functions in general

   

To be done

   


 

Download Appell_Functions.mw   
Download Appell_Functions.pdf

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

I'm back from presenting work in the "23rd Conference on Applications of Computer Algebra -2017" . It was a very interesting event. This third presentation, about "Computer Algebra in Theoretical Physics", describes the Physics project at Maplesoft, also my first research project at University, that evolved into the now well-known Maple Physics package. This is a unique piece of software and perhaps the project I most enjoy working.

At the end, there is a link to the presentation worksheet, with which one could open the sections and reproduce the presentation examples.
 

 

 

Computer Algebra in Theoretical Physics

 

Edgardo S. Cheb-Terrab

Physics, Differential Equations and Mathematical Functions, Maplesoft

 

Abstract:

 

Generally speaking, physicists still experience that computing with paper and pencil is in most cases simpler than computing on a Computer Algebra worksheet. On the other hand, recent developments in the Maple system have implemented most of the mathematical objects and mathematics used in theoretical physics computations, and have dramatically approximated the notation used in the computer to the one used with paper and pencil, diminishing the learning gap and computer-syntax distraction to a strict minimum.

 

In this talk, the Physics project at Maplesoft is presented and the resulting Physics package is illustrated by tackling problems in classical and quantum mechanics, using tensor and Dirac's Bra-Ket notation, general relativity, including the equivalence problem, and classical field theory, deriving field equations using variational principles.

 

 

 

 

... and why computer algebra?

 

We can concentrate more on the ideas instead of on the algebraic manipulations

 

We can extend results with ease

 

We can explore the mathematics surrounding a problem

 

We can share results in a reproducible way

 

Representation issues that were preventing the use of computer algebra in Physics

   

Classical Mechanics

 

*Inertia tensor for a triatomic molecule

   

Quantum mechanics

 

*The quantum operator components of  `#mover(mi("L",mathcolor = "olive"),mo("→",fontstyle = "italic"))` satisfy "[L[j],L[k]][-]=i `ε`[j,k,m] L[m]"

   

*Unitary Operators in Quantum Mechanics

 

*Eigenvalues of an unitary operator and exponential of Hermitian operators

   

*Properties of unitary operators

 

 

Consider two set of kets " | a[n] >" and "| b[n] >", each of them constituting a complete orthonormal basis of the same space.

*Verify that "U=(&sum;) | b[k] >< a[k] |" , maps one basis to the other, i.e.: "| b[n] >=U | a[n] >"

   

*Show that "U=(&sum;) | b[k] > < a[k] | "is unitary

   

*Show that the matrix elements of U in the "| a[n] >" and  "| b[n] >" basis are equal

   

Show that A and `&Ascr;` = U*A*`#msup(mi("U"),mo("&dagger;"))`have the same spectrum (eigenvalues)

   

Schrödinger equation and unitary transform

   

Translation operators using Dirac notation

   

*Quantization of the energy of a particle in a magnetic field

   

Classical Field Theory

 

The field equations for the lambda*Phi^4 model

   

*Maxwell equations departing from the 4-dimensional Action for Electrodynamics

   

*The Gross-Pitaevskii field equations for a quantum system of identical particles

   

General Relativity

 

Exact Solutions to Einstein's Equations  Lambda*g[mu, nu]+G[mu, nu] = 8*Pi*T[mu, nu]

   

*"Physical Review D" 87, 044053 (2013)

   

The Equivalence problem between two metrics

   

*On the 3+1 split of the 4D Einstein equations

   

Tetrads and Weyl scalars in canonical form

   

 

 


 

Download Physics.mw

Download Physics.pdf

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

I'm back from presenting work in the "23rd Conference on Applications of Computer Algebra - 2017" . It was a very interesting event. This second presentation, about "Differential algebra with mathematical functions, symbolic powers and anticommutative variables", describes a project I started working in 1997 and that is at the root of Maple's dsolve and pdsolve performance with systems of equations. It is a unique approach. Not yet emulated in any other computer algebra system.

At the end, there is a link to the presentation worksheet, with which one could open the sections and reproduce the presentation examples.
 

Differential algebra with mathematical functions,

symbolic powers and anticommutative variables

 

Edgardo S. Cheb-Terrab

Physics, Differential Equations and Mathematical Functions, Maplesoft

 

Abstract:
Computer algebra implementations of Differential Algebra typically require that the systems of equations to be tackled be rational in the independent and dependent variables and their partial derivatives, and of course that A*B = A*B, everything is commutative.

 

It is possible, however, to extend this computational domain and apply Differential Algebra techniques to systems of equations that involve arbitrary compositions of mathematical functions (elementary or special), fractional and symbolic powers, as well as anticommutative variables and functions. This is the subject of this presentation, with examples of the implementation of these ideas in the Maple computer algebra system and its ODE and PDE solvers.

 

 

restartwith(PDEtools); interface(imaginaryunit = i)

sys := [diff(xi(x, y), y, y) = 0, -6*(diff(xi(x, y), y))*y+diff(eta(x, y), y, y)-2*(diff(xi(x, y), x, y)) = 0, -12*(diff(xi(x, y), y))*a^2*y-9*(diff(xi(x, y), y))*a*y^2-3*(diff(xi(x, y), y))*b-3*(diff(xi(x, y), x))*y-3*eta(x, y)+2*(diff(eta(x, y), x, y))-(diff(xi(x, y), x, x)) = 0, -8*(diff(xi(x, y), x))*a^2*y-6*(diff(xi(x, y), x))*a*y^2+4*(diff(eta(x, y), y))*a^2*y+3*(diff(eta(x, y), y))*a*y^2-4*eta(x, y)*a^2-6*eta(x, y)*a*y-2*(diff(xi(x, y), x))*b+(diff(eta(x, y), y))*b-3*(diff(eta(x, y), x))*y+diff(eta(x, y), x, x) = 0]

 

declare((xi, eta)(x, y))

xi(x, y)*`will now be displayed as`*xi

 

eta(x, y)*`will now be displayed as`*eta

(1)

for eq in sys do eq end do

diff(diff(xi(x, y), y), y) = 0

 

-6*(diff(xi(x, y), y))*y+diff(diff(eta(x, y), y), y)-2*(diff(diff(xi(x, y), x), y)) = 0

 

-12*(diff(xi(x, y), y))*a^2*y-9*(diff(xi(x, y), y))*a*y^2-3*(diff(xi(x, y), y))*b-3*(diff(xi(x, y), x))*y-3*eta(x, y)+2*(diff(diff(eta(x, y), x), y))-(diff(diff(xi(x, y), x), x)) = 0

 

-8*(diff(xi(x, y), x))*a^2*y-6*(diff(xi(x, y), x))*a*y^2+4*(diff(eta(x, y), y))*a^2*y+3*(diff(eta(x, y), y))*a*y^2-4*eta(x, y)*a^2-6*eta(x, y)*a*y-2*(diff(xi(x, y), x))*b+(diff(eta(x, y), y))*b-3*(diff(eta(x, y), x))*y+diff(diff(eta(x, y), x), x) = 0

(2)

casesplit(sys)

`casesplit/ans`([eta(x, y) = 0, diff(xi(x, y), x) = 0, diff(xi(x, y), y) = 0], [])

(3)

NULL

Differential polynomial forms for mathematical functions (basic)

   

Differential polynomial forms for compositions of mathematical functions

   

Generalization to many variables

   

Arbitrary functions of algebraic expressions

   

Examples of the use of this extension to include mathematical functions

   

Differential Algebra with anticommutative variables

   


 

Download DifferentialAlgebra.mw

Download DifferentialAlgebra.pdf

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

 

I'm back from presenting work in the "23rd Conference on Applications of Computer Algebra - 2017" . It was a very interesting event. This first presentation, about "Active Learning in High-School Mathematics using Interactive Interfaces", describes a project I started working 23 years ago, which I believe will be part of the future in one or another form. This is work actually not related to my work at Maplesoft.

At the end, there is a link to the presentation worksheet, with which one could open the sections and reproduce the presentation examples.
 

 

Active learning in High-School mathematics using Interactive Interfaces

 

Edgardo S. Cheb-Terrab

Physics, Differential Equations and Mathematical Functions, Maplesoft

 

Abstract:


The key idea in this project is to learn through exploration using a web of user-friendly Highly Interactive Graphical Interfaces (HIGI). The HIGIs, structured as trees of interlinked windows, present concepts using a minimal amount of text while maximizing the possibility of visual and analytic exploration. These interfaces run computer algebra software in the background. Assessment tools are integrated into the learning experience within the general conceptual map, the Navigator. This Navigator offers students self-assessment tools and full access to the logical sequencing of course concepts, helping them to identify any gaps in their knowledge and to launch the corresponding learning interfaces. An interactive online set of HIGIS of this kind can be used at school, at home, in distance education, and both individually and in a group.

 

 

Computer algebra interfaces for High-School students of "Colegio de Aplicação"  (UERJ/1994)

   

Motivation

 

 

When we are the average high-school student facing mathematics, we tend to feel

 

• 

Bored, fragmentarily taking notes, listening to a teacher for 50 or more minutes

• 

Anguished because we do not understand some math topics (too many gaps accumulated)

• 

Powerless because we don't know what to do to understand (don't have any instant-tutor to ask questions and without being judged for having accumulated gaps)

• 

Stressed by the upcoming exams where the lack of understanding may become evident

 

Computer algebra environments can help in addressing these issues.

 

 

• 

Be as active as it can get while learning at our own pace.

• 

Explore at high speed and without feeling judged. There is space for curiosity with no computational cost.

• 

Feel empowered by success. That leads to understanding.

• 

Possibility for making of learning a social experience.

 

Interactive interfaces

 

 

 

Interactive interfaces do not replace the teacher - human learning is an emotional process. A good teacher leading good active learning is a positive experience a student will never forget

 

 

Not every computer interface is a valuable resource, at all. It is the set of pedagogical ideas implemented that makes an interface valuable (the same happens with textbooks)

 

 

A course on high school mathematics using interactive interfaces - the Edukanet project

 

 

– 

Brazilian and Canadian students/programmers were invited to participate - 7 people worked in the project.

 

– 

Some funding provided by the Brazilian Research agency CNPq.

Tasks:

-Develop a framework to develop the interfaces covering the last 3 years of high school mathematics (following the main math textbook used in public schools in Brazil)

- Design documents for the interfaces according to given pedagogical guidelines.

- Create prototypes of Interactive interfaces, running Maple on background, according to design document and specified layout (allow for everybody's input/changes).

 

The pedagogical guidelines for interactive interfaces

   

The Math-contents design documents for each chapter

 

Example: complex numbers

   

Each math topic:  a interactive interrelated interfaces (windows)

 

 

For each topic of high-school mathematics (chapter of a textbook), develop a tree of interactive interfaces (applets) related to the topic (main) and subtopics

 

Example: Functions

 

• 

Main window

 

• 

Analysis window

• 

 

• 

Parity window

• 

Visualization of function's parity

• 

Step-by-Step solution window

The Navigator: a window with a tile per math topic

 

 

 

• 

Click the topic-tile to launch a smaller window, topic-specific, map of interrelated sub-topic tiles, that indicates the logical sequence for the sub-topics, and from where one could launch the corresponding sub-topic interactive interface.

• 

This topic-specific smaller window allows for identifying the pre-requisites and gaps in understanding, launching the corresponding interfaces to fill the gaps, and tracking the level of familiarity with a topic.

 

 

 

 

 

The framework to create the interfaces: a version of NetBeans on steroids ...

   

Complementary classroom activity on a computer algebra worksheet

 

 

This course is organized as a guided experience, 2 hours per day during five days, on learning the basics of the Maple language, and on using it to formulate algebraic computations we do with paper and pencil in high school and 1st year of undergraduate science courses.

 

Explore. Having success doesn't matter, using your curiosity as a compass does - things can be done in so many different ways. Have full permission to fail. Share your insights. All questions are valid even if to the side. Computer algebra can transform the learning of mathematics into interesting understanding, success and fun.

1. Arithmetic operations and elementary functions

   

2. Algebraic Expressions, Equations and Functions

   

3. Limits, Derivatives, Sums, Products, Integrals, Differential Equations

   

4. Algebraic manipulation: simplify, factorize, expand

   

5. Matrices (Linear Algebra)

   

 

Advanced students: guiding them to program mathematical concepts on a computer algebra worksheet

   

Status of the project

 

 

Prototypes of interfaces built cover:

 

• 

Natural numbers

• 

Functions

• 

Integer numbers

• 

Rational numbers

• 

Absolute value

• 

Logarithms

• 

Numerical sequences

• 

Trigonometry

• 

Matrices

• 

Determinants

• 

Linear systems

• 

Limits

• 

Derivatives

• 

Derivative of the inverse function

• 

The point in Cartesian coordinates

• 

The line

• 

The circle

• 

The ellipse

• 

The parabole

• 

The hyperbole

• 

The conics

More recent computer algebra frameworks: Maple Mobius for online courses and automated evaluation

   

 


 

Download Computer_Algebra_in_Education.mw

Download Computer_Algebra_in_Education.pdf

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

The representation of the tangent plane in the form of a square with a given length of the side at any point on the surface.

The equation of the tangent plane to the surface at a given point is obtained from the condition that the tangent plane is perpendicular to the normal vector. With the aid of any auxiliary point not lying on this normal to the surface, we define the direction on the tangent plane. From the given point in this direction, we lay off segments equal to half the length of the side of our square and with the help of these segments we construct the square itself, lying on the tangent plane with the center at a given point.

An examples of constructing tangent planes at points of the same intersection line for two surfaces.
Tangent_plane.mw

This app is used to study the behavior of water in its different properties besides air. Also included is the study of the fluids in the state of rest ie the pressure generated on a flat surface. Integral developed in Maple for the community of users in space to the civil engineers.

App_for_fluids_in_flat_state_of_rest.mw

Lenin Araujo Castillo

Ambassador of Maple

 

First 17 18 19 20 21 22 23 Last Page 19 of 54