Education

Teaching and learning about math, Maple and MapleSim

In this application you can visualize the impulse generated by a constant and variable force for the interaction of a particle with an object in a state of rest or movement. It is also the calculation of the momentum-momentum equation by entering the mass of the particle to solve initial and final velocities respectively according to the case study. Engineering students can quickly display the calculations and then their interpretation. In spanish.

Plot_of_equation_impulse-momentum.mw

Exercises_of_Momentum-Impulse_Linear.mw

Lenin Araujo Castillo

Ambassador of Maple

While many of us in North America were getting re-acquainted with the Fall routine, Maplesoft was involved in a major event, the Maple T.A. and Möbius User Summit. In the past, the Summit has alternated locations between Europe and North America, but following the success of last year’s Summit in Vienna, Austria, we recently broke new ground and expanded the reach of the event to include more countries around the world in order to localize the themes and to meet the growing demand from educators to take learning online.

The first event, organized by Cybernet, took place in China. The second of five events on the calendar took place in London, England. Held from September 7-8, this installment was a major stop in the tour, drawing many residents of the UK to hear talks from some of our strongest proponents of Möbius in Europe. The London Summit drew several delegates from the UK alone, many of whom were completely new contacts for us! Other attendees came from as far away as Russia, Pakistan, Sri Lanka, and Australia, as well as some from Sweden, Denmark, Italy and the Netherlands. The turnout was brilliant!

Make progress or make excuses

The bulk of the London Summit was divided into three driving themes: Showcasing the Successful Delivery of Online Education; Best Practices for Digital Testing and Assessment; and Creating Engaging and Interactive Online STEM Content. Each theme consisted of 3 user presentations delivered by representatives from renowned institutions like University of Manchester, University of Birmingham, London Imperial College, University of Waterloo, Chalmers University of Technology, and more.

Maplesoft Application Engineer Surak Perera may have inadvertently set the tone for the day when he kicked off theme 1 with a quote from Tony Robbins: Make progress, or make excuses. One thing’s for sure – excuses were nowhere to be found at One Moorgate Place. The audience was captivated and engaged, and wasted no time bouncing questions and ideas off of our presenters. In fact, they were so eager to learn from our Maple T.A. and Möbius users that Jonny Zivku, Maple T.A. Product Manager, had to interject several times in order to keep the schedule moving! Each presentation reinforced the ability of Maple T.A. and Möbius to be used for diverse purposes such as distance education or analyzing incoming students, and in a range of subjects including multidisciplinary engineering cohorts, or simply core mathematics. Each presenter demonstrated that these tools can take you as far as the user’s mind is willing to be stretched.




 

Evening Reception

As heads were getting full and bellies were getting empty, the group left the luxuries of modern day and stepped back into what must have felt like a scene from Downton Abbey in the Main Reception Room of the venue. On the menu was the most culturally appropriate dish: fish and chips! Oh, and don’t forget the tea and wine!

There was no better way to wrap up the Summit than with Steve Furino’s interactive presentation and open discussion “Collecting Data about Collecting Data.” Small group discussion enabled the attendees to reconcile their inspiration from Day 1 with the practicality of putting it into practice once they return to their schools.

Overall, the London Summit was a smashing hit. The centralized location drew attendees who had a lot of common experiences which made for optimal discussion. The final question posted was the most revealing of everyone’s experience: where will the Summit be next year?

While that’s not yet decided, the Toronto Summit – the next stop in the Summit Series – is just a fortnight away (November 2-3). So for now, we’re saying “Cheers” to jolly good times in London, and “Can I get a double-double, eh” to Toronto!

Until then, you can experience the London Summit as if you were there with the full presentation proceedings and videos. They’re now available on our website!

 I accidentally stumbled on this problem in the list of tasks for mathematical olympiads. I quote its text in Russian-English translation:

"The floor in the drawing room of Baron Munchausen is paved with the identical square stone plates.
 Baron claims that his new carpet (made of one piece of a material ) covers exactly 24 plates and
 at the same time each vertical and each horizontal row of plates in the living room contains 
exactly 4 plates covered with carpet. Is not the Baron deceiving?"

At first glance this seems impossible, but in fact the Baron is right. Several examples can be obtained simply by hand, for example

                                        or        

 

The problem is to find all solutions. This post is dedicated to this problem.

We put in correspondence to each such carpet a matrix of zeros and ones, such that in each row and in each column there are exactly 2 zeros and 4 ones. The problem to generate all such the matrices was already discussed here and Carl found a very effective solution. I propose another solution (based on the method of branches and boundaries), it is less effective, but more universal. I've used this method several times, for example here and here.
There will be a lot of such matrices (total 67950), so we will impose natural limitations. We require that the carpet be a simply connected set that has as its boundary a simple polygon (non-self-intersecting).

Below we give a complete solution to the problem.


restart;
R:=combinat:-permute([0,0,1,1,1,1]);
# All lists of two zeros and four units

# In the procedure OneStep, the matrices are presented as lists of lists. The procedure adds one row to each matrix so that in each column there are no more than 2 zeros and not more than 4 ones

OneStep:=proc(L::listlist)
local m, k, l, r, a, L1;
m:=nops(L[1]); k:=0;
for l in L do
for r in R do
a:=[op(l),r];
if `and`(seq(add(a[..,j])<=4, j=1..6)) and `and`(seq(m-add(a[..,j])<=2, j=1..6)) then k:=k+1; L1[k]:=a fi;
od; od;
convert(L1, list);
end proc:

# M is a list of all matrices, each of which has exactly 2 zeros and 4 units in each row and column

L:=map(t->[t], R):
M:=(OneStep@@5)(L):
nops(M);

                                            67950

M1:=map(Matrix, M):

# From the list of M1 we delete those matrices that contain <1,0;0,1> and <0,1;1,0> submatrices. This means that the boundaries of the corresponding carpets will be simple non-self-intersecting curves

k:=0:
for m in M1 do
s:=1;
for i from 2 to 6 do
for j from 2 to 6 do
if (m[i,j]=0 and m[i-1,j-1]=0 and m[i,j-1]=1 and m[i-1,j]=1) or (m[i,j]=1 and m[i-1,j-1]=1 and m[i,j-1]=0 and m[i-1,j]=0) then s:=0; break fi;
od: if s=0 then break fi; od:
if s=1 then k:=k+1; M2[k]:=m fi;
od:
M2:=convert(M2, list):
nops(M2);

                                             394

# We find the list T of all segments from which the boundary consists

T:='T':
n:=0:
for m in M2 do
k:=0: S:='S':
for i from 1 to 6 do
for j from 1 to 6 do
if m[i,j]=1 then
if j=1 or (j>1 and m[i,j-1]=0) then k:=k+1; S[k]:={[j-1/2,7-i-1/2],[j-1/2,7-i+1/2]} fi;
if i=1 or (i>1 and m[i-1,j]=0) then k:=k+1; S[k]:={[j-1/2,7-i+1/2],[j+1/2,7-i+1/2]} fi;
if j=6 or (j<6 and m[i,j+1]=0) then k:=k+1; S[k]:={[j+1/2,7-i+1/2],[j+1/2,7-i-1/2]} fi;
if i=6 or (i<6 and m[i+1,j]=0) then k:=k+1; S[k]:={[j+1/2,7-i-1/2],[j-1/2,7-i-1/2]} fi; 
fi;
od: od:
n:=n+1; T[n]:=[m,convert(S,set)];
od:
T:=convert(T, list):

# Choose carpets with a connected border

C:='C': k:=0:
for t in T do
a:=t[2]; v:=op~(a);
G:=GraphTheory:-Graph([$1..nops(v)], subs([seq(v[i]=i,i=1..nops(v))],a));
if GraphTheory:-IsConnected(G) then k:=k+1; C[k]:=t fi;
od:
C:=convert(C,list):
nops(C);
                                             
 208

# Sort the list of border segments so that they go one by one and form a polygon

k:=0: P:='P':
for c in C do
a:=c[2]: v:=op~(a);
G1:=GraphTheory:-Graph([$1..nops(v)], subs([seq(v[i]=i,i=1..nops(v))],a));
GraphTheory:-IsEulerian(G1,'U');
U; s:=[op(U)];
k:=k+1; P[k]:=[seq(v[i],i=s[1..-2])];
od:
P:=convert(P, list):

# We apply AreIsometric procedure from here to remove solutions that coincide under a rotation or reflection

P1:=[ListTools:-Categorize( AreIsometric, P)]:
nops(P1);

                                                 28


We get 28 unique solutions to this problem.

Visualization of all these solutions:

interface(rtablesize=100):
E1:=seq(plottools:-line([1/2,i],[13/2,i], color=red),i=1/2..13/2,1):
E2:=seq(plottools:-line([i,1/2],[i,13/2], color=red),i=1/2..13/2,1):
F:=plottools:-polygon([[1/2,1/2],[1/2,13/2],[13/2,13/2],[13/2,1/2]], color=yellow):
plots:-display(Matrix(4,7,[seq(plots:-display(plottools:-polygon(p,color=red),F, E1,E2), p=[seq(i[1],i=P1)])]), scaling=constrained, axes=none, size=[800,700]);

 

 

Carpet1.mw

The code was edited.

 

 

Using the syntax in Maple we develop the energy with conservation equations here we are applying the commands int, factor, solve among others. We also integrate vector functions through the scalar product and finally we calculate conservative fields applying the rotational to a field of force. Exclusive for engineering students. In spanish.

Work_of_a_Force.mw

Lenin Araujo castillo

Ambassafor of Maple

And the Nobel prize in physics 2017 went for work in General Relativity ! Actually, experimental work involving sophisticated detectors and Numerical Relativity, one of the branches of GR. The prize was awarded to Rainer Weiss (85 years old, 1/2 of the prize), Barry Barish (81 years old, 1/4 of the prize) and Kip Thorne (77 years old, 1/4 of the prize) who have "shaken the world again" with their work on Ligo experiment, which was able to detect ripples in the fabric of spacetime.

General Relativity continues to be at the center of work in theoretical and experimental physics. I take this opportunity to note that, in Maple 2017, among the several improvements in the Physics package regarding General Relativity, there is a new package, Physics:-ThreePlusOne, all dedicated to the symbolic manipulations necessary to formulate problems in Numerical Relativity.

The GR functionality implemented in Physics, Physics:-Tetrads and Physics:-ThreePlusOne is unique in computer algebra systems and reflects the Maplesoft intention, for several years now, to provide the very best possible computer algebra environment for Physics, regarding current research activity as well as related education in advanced mathematical-physics methods.

For what is going on in theoretical physics nowadays and its connection with General Relativity, in very short: the unification of gravity with the other forces, check for instance this map from Aug/2015 (by the way a very nice summary for whoever is interested):

It is also interesting the article behind this map of topics as well as this brilliant and accessible presentation by Nima Arkani-Hamed (Princeton):  Quantum Mechanics and Spacetime in the 21st Century, given in the Perimeter Institute for Theoretical Physics (Waterloo), November 2014. 

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

Group of exercises solved using Maple scientific software, with the necessary considerations of some basic commands: evalf and convert that will show the solutions with the user-defined digits and the angular measurement in sexagesimal degrees. Important use of the law of the triangle through of vector position applied to vectors in vector spaces, vector force and vector moment for engineering students. In spanish.

Exercises_of_vectors_forces_and_moment_with_Maple.mw

Videotutorial:

https://www.youtube.com/watch?v=DxpO0gc5GCA

Lenin Araujo Castillo

Ambassador of Maple

# Riemann hypothesis is false! (simple proof)
 

restart;
assume( s>0, s<1/2, t>0 );
coulditbe(abs(Zeta(s+I*t))=0);

                              true

# Q.E.D.

Unfortunately coulditbe(Zeta(s+I*t)=0) returns FAIL, but our assertion is already demonstrated!

The moral: the assume facility deserves a much more careful implementation.

The development of the calculation of moments using force vectors is clearly observed by taking a point and also a line. Different exercises are solved with the help of Maple syntax. We can also visualize the vector behavior in the different configurations of the position vector. Applications designed exclusively for engineering students. In Spanish.

Moment_of_a_force_using_vectors_updated.mw

Lenin Araujo Castillo

Ambassador of Maple

With this app you will be able to interpret the curvatures generated by two position vectors, either in the plane or in space. Just enter the position vectors and drag the slider to calculate the curvature at different times and you will of course be able to observe its respective graph. At first I show you how it is developed using the natural syntax of Maple and then optimize our
 app with the use of buttons. App made in Maple for engineering students. In spanish.

Plot_of_Curvature.mw

Videotutorial:

https://www.youtube.com/watch?v=SbXFgr_5JDE

Lenin Araujo Castillo

Ambassador of Maple

With this application you will learn the beginning of the study of the vectors. Graphing it in a vector space from the plane to the space. You can calculate its fundamental characteristics as triangle laws, projections and strength. App made entirely in Maple for engineering students so they can develop their exercises and save time. It is recommended to first use the native syntax then the embedded components. In Spanish.

 

Vector_space_with_projections_and_forces_UPDATED_2018.mw

Vector_space_with_projections_and_forces_UPDATED.mw

Movie #01

https://www.youtube.com/watch?v=VAukLwx_FwY

Movie #02

https://www.youtube.com/watch?v=sIxBm_GN_h0

Movie #03

https://www.youtube.com/watch?v=LOZNaPN5TG8

Lenin Araujo Castillo

Ambassador of Maple

I'd like to present the following bugs in the IntTutor command.

1. Initialize

Student[Calculus1]:-IntTutor((1+cos(3*x))^(3/2), x);

then press the All Steps button. The command produces the answer (see Bug1_in_IntTutor.mw)

(4/9)*sqrt(2)*sin((3/2)*x)^3-(4/3)*sqrt(2)*sin((3/2)*x)

which is not correct in view of

plot(diff((4/9)*sqrt(2)*sin((3/2)*x)^3-(4/3)*sqrt(2)*sin((3/2)*x), x)-(1+cos(3*x))^(3/2), x = 0 .. .2);

One may compare it with the Mathematica result Step-by-step2.pdf.

2. Initialize

Student[Calculus1]:-IntTutor(cos(x)^2/(1+tan(x)), x);

In the window press the Next Step button. This crashes (The kernel connection has been lost) my comp in approximately an half of hour (see screen2.docx). One may compare it with the Mathematica result Step-by-step.pdf .

Indeed,  "We wanted the best, but it turned out like always" .

I was asked if I would put together a list of top resources to help students who are using Maple for the first time.  An awful lot of students will be cracking Maple open in the next few weeks (the ones who are keeping up with their assignments, at least – for others, it sometimes takes little longer :-), so it seemed like a good idea.

So then I had to decide what to do. I know Top N lists are very popular (Ten Things that Will Shock You about Your Math Software!), and there are tons of Maple training resources available to fill such a list without any difficulties.  But personally, I don’t always like Top N lists. What are the chances that there are exactly N things you need to know, for nice values of N? And how often you are really interested in all N items? I just want to get straight to the points I care about.

I decided I’d try a matrix. So here you go: a mini “choose your own adventure” guide for getting to know Maple.  Pick the row that corresponds to what you want to do, and the column for how you want to do it.  All on a single, page, and ad-free!

And best of luck for the new school year.

 

 

I like words

I like videos

Just let me try it

Product Overview

Inside Maple, from the Help menu, select Take a Tour of Maple then click on the Ten Minute Tour button.

 

(Okay, even though I like words, too, you might also want to watch the video in the next column. The whole “picture is worth a thousand words” does have some truth to it, much as I don’t always like to admit it. J)

Watch Clickable Math

 

Keep in mind that if you prefer to use commands instead of these Clickable Math tools, you can do that too.  Personally, I mix and match.

You’ll figure it out.

Getting Started Info

Read the Maple Quick Start Tutorial Guide, as a PDF, or from the Help system. To access this guide from within Maple, start Maple, click on the Getting Started icon the left, then select the Quick Start Guide (first icon in the second row).

Watch the Maple Quick Start Tutorial Video.

The most important things to remember are

  1. Right click on your math expression to bring up a menu of things you can do, like plotting or integrating or solving your expression
  2. If you have just entered an exponent or the denominator of a fraction, use the right arrow key to get out of it.

How do I? Essentials

Look at the “How do I” section of the Maple Portal (Start Maple, click on the Getting Started icon, click on the Maple Portal icon; or search for “MaplePortal” in the help system).  Also look at the Maple Portal for Students, using the button from the Maple Portal.

Check out the dozens of videos in the Maple Training Video collection.

You can do a lot with the context menus and the various tools you’ll find on the Tools menu. But when in doubt, look at the list of “How do I” tasks from the Maple Portal described in the “words” column and pull out what you need from there.

What now?

The help system is your friend. Not only does it have help pages for every feature and every command, but it includes both the Maple User Manual and the Maple Programming Guide (also available as PDFs).

Check out the collection of videos on the Maplesoft YouTube channel.  (And the help system is your friend, too. We can’t make videos to cover every last thing, and if we did, you wouldn’t have time to watch them all!)

Maple comes with many examples and applications you can look at and modify.  You can browse through the Start page resources, or search for “examples,index” in the help system to see the full list.

 

And yes, the help system is your friend, too.  But don’t worry, no one is going to make you read the manual.

 

 

 

Download New_ReportGeneration_with_ExcelData.mw

Dear Users,

I have received a congratulations from a Mapleprime user for my post (on Finite Element Analysis - Basics) posted two years earlier. I  did not touch that subject for two years for obvious reasons. Now that a motivation has come, I have decided to post my second application using embedded components. This I was working for the past two years and with the support from Maplesoft technical support team and Dr.RobertLopez. I thank them here for this workbook has come out well to my satisfaction and has given me confidence to post it public.

About the workbook

I have tried to improve the performance of a 2-Stroke gasoline engine to match that of a four stroke engine by using exhaust gas recirculation. Orifice concept is new and by changing the orifice diameter and varying the % of EGR, performance was monitored and data stored in Excel workbook. These data can be imported to Maple workbook by you as you want for each performance characteristic. The data are only my experimental and not authentic for any commercial use.

This Maple workbook generates curves from data for various experiments conducted by modifying the field variables namely Orifice diameter, % Exhaust gas Recirculation and Heat Exchanger Cooling. Hence optimum design selection is possible for best performance.

Thanks for commenting, congratulating or critisising!! All for my learning and improving my Maple understanding!! 

In this app you can use from the creation of curve, birth of the position vector and finally applied to the displacement and the distance traveled. All this application revolves around the creation of a path and the path of a particle over this generated by vectors. You will only have to insert the vector components and the times to evaluate. Designed for engineering students guided through Maple. In Spanish.

Displacement_and_distance_traveled_with_vectors.mw Updated

Displacement_and_distance_traveled_with_vectors_updated_2020.mw 

Video

https://www.youtube.com/watch?v=jOcKYZ5EEM0

Lenin Araujo C

Ambassador of Maple

Here in this video you can observe the correct insertion of vectors; Making use of the keyboard, ascii code and tool palette of our Maple program. As our worksheet is very large, I made the explanation in two parts; I recommend that you observe this first part of performing any execution on your Maple worksheet. You can contrast your results with the apps also made in this software. In Spanish.

Shortcut_in_Vectors_for_Engineering.mw

Movie # 01

https://www.youtube.com/watch?v=EJtAli54q_A

Movie # 02

https://www.youtube.com/watch?v=m-JUmhkbWI8

Lenin Araujo Castillo

Ambassador of Maple

First 19 20 21 22 23 24 25 Last Page 21 of 57