MaplePrimes Questions

Search Questions:

Hello, would you please help with this problem

 I need to solve the system using polynomial coefficients

thank you 


 

restart

``

eq1 := diff(A(r), r, r)+(diff(A(r), r))/r+A(r)/r^2-a*r*A(r)+b*r^2*f*B(r)

diff(diff(A(r), r), r)+(diff(A(r), r))/r+A(r)/r^2-a*r*A(r)+b*r^2*f*B(r)

(1)

eq2 := diff(B(r), r, r)+(diff(B(r), r))/r+B(r)/r^2-c*r*A(r)+d*r^2*B(r)

diff(diff(B(r), r), r)+(diff(B(r), r))/r+B(r)/r^2-c*r*A(r)+d*r^2*B(r)

(2)

``

``

dsolve({eq1, eq2}, {A(r), B(r)});

{A(r) = DESol({-(-b*c*f*r^7+a*d*r^7-d*r^4+2*a*r^3-17)*_Y(r)/r^4-(-d*r^5-a*r^4-3*r)*(diff(_Y(r), r))/r^4-(-d*r^6+a*r^5-r^2)*(diff(diff(_Y(r), r), r))/r^4-2*(diff(diff(diff(_Y(r), r), r), r))/r+diff(diff(diff(diff(_Y(r), r), r), r), r)}, {_Y(r)}), B(r) = (a*r^3*A(r)-(diff(diff(A(r), r), r))*r^2-(diff(A(r), r))*r-A(r))/(b*f*r^4)}

(3)

dsolve({eq1, eq2}, {A(r), B(r)}, 'formal_series', 'coeffs' = 'polynomial')

Error, (in dsolve/FORMALSERIES) the first argument must be a homogeneous linear ode with polynomial coefficients

 

``

``

``


 

Download dsolve.mwdsolve.mw


 

``

restart;

N := 2

2

(1)

H1 := B*H(Zeta)/A+C*H(Zeta)/A+E/A

B*H(Zeta)/A+C*H(Zeta)/A+E/A

(2)

expand(subs(diff(H(Zeta), Zeta) = B*H(Zeta)/A+C*H(Zeta)/A+E/A, diff(H1, Zeta)))

B^2*H(Zeta)/A^2+2*B*C*H(Zeta)/A^2+B*E/A^2+C^2*H(Zeta)/A^2+C*E/A^2

(3)

s := sum(alpha[i]*(d+H(Zeta))^i, i = -N .. N)+sum(beta[i]*(d+H(Zeta))^(-i), i = 1 .. N)

alpha[-2]/(d+H(Zeta))^2+alpha[-1]/(d+H(Zeta))+alpha[0]+alpha[1]*(d+H(Zeta))+alpha[2]*(d+H(Zeta))^2+beta[1]/(d+H(Zeta))+beta[2]/(d+H(Zeta))^2

(4)

``

s1 := expand(subs(diff(H(Zeta), Zeta) = B*H(Zeta)/A+C*H(Zeta)/A+E/A, diff(s, Zeta)))

-2*alpha[-2]*B*H(Zeta)/((d+H(Zeta))^3*A)-2*alpha[-2]*C*H(Zeta)/((d+H(Zeta))^3*A)-2*alpha[-2]*E/((d+H(Zeta))^3*A)-alpha[-1]*B*H(Zeta)/((d+H(Zeta))^2*A)-alpha[-1]*C*H(Zeta)/((d+H(Zeta))^2*A)-alpha[-1]*E/((d+H(Zeta))^2*A)+alpha[1]*B*H(Zeta)/A+alpha[1]*C*H(Zeta)/A+alpha[1]*E/A+2*alpha[2]*d*B*H(Zeta)/A+2*alpha[2]*d*C*H(Zeta)/A+2*alpha[2]*d*E/A+2*alpha[2]*B*H(Zeta)^2/A+2*alpha[2]*C*H(Zeta)^2/A+2*alpha[2]*H(Zeta)*E/A-beta[1]*B*H(Zeta)/((d+H(Zeta))^2*A)-beta[1]*C*H(Zeta)/((d+H(Zeta))^2*A)-beta[1]*E/((d+H(Zeta))^2*A)-2*beta[2]*B*H(Zeta)/((d+H(Zeta))^3*A)-2*beta[2]*C*H(Zeta)/((d+H(Zeta))^3*A)-2*beta[2]*E/((d+H(Zeta))^3*A)

(5)

s2 := expand(subs(diff(H(Zeta), Zeta) = B*H(Zeta)/A+C*H(Zeta)/A+E/A, diff(s1, Zeta)))

alpha[1]*B^2*H(Zeta)/A^2+alpha[1]*B*E/A^2+alpha[1]*C^2*H(Zeta)/A^2+alpha[1]*C*E/A^2+6*alpha[-2]*E^2/((d+H(Zeta))^4*A^2)+2*alpha[-1]*E^2/((d+H(Zeta))^3*A^2)+4*alpha[2]*B^2*H(Zeta)^2/A^2+4*alpha[2]*C^2*H(Zeta)^2/A^2+2*beta[1]*E^2/((d+H(Zeta))^3*A^2)+6*beta[2]*E^2/((d+H(Zeta))^4*A^2)+2*alpha[2]*E^2/A^2+6*alpha[2]*E*B*H(Zeta)/A^2+6*alpha[2]*E*C*H(Zeta)/A^2-2*alpha[-2]*B^2*H(Zeta)/((d+H(Zeta))^3*A^2)-2*alpha[-2]*B*E/((d+H(Zeta))^3*A^2)-2*alpha[-2]*C^2*H(Zeta)/((d+H(Zeta))^3*A^2)-2*alpha[-2]*C*E/((d+H(Zeta))^3*A^2)-alpha[-1]*B^2*H(Zeta)/((d+H(Zeta))^2*A^2)-alpha[-1]*B*E/((d+H(Zeta))^2*A^2)-alpha[-1]*C^2*H(Zeta)/((d+H(Zeta))^2*A^2)-alpha[-1]*C*E/((d+H(Zeta))^2*A^2)+2*alpha[2]*d*B^2*H(Zeta)/A^2+2*alpha[2]*d*B*E/A^2+2*alpha[2]*d*C^2*H(Zeta)/A^2+2*alpha[2]*d*C*E/A^2+8*alpha[2]*B*H(Zeta)^2*C/A^2-beta[1]*B^2*H(Zeta)/((d+H(Zeta))^2*A^2)-beta[1]*B*E/((d+H(Zeta))^2*A^2)-beta[1]*C^2*H(Zeta)/((d+H(Zeta))^2*A^2)-beta[1]*C*E/((d+H(Zeta))^2*A^2)-2*beta[2]*B^2*H(Zeta)/((d+H(Zeta))^3*A^2)-2*beta[2]*B*E/((d+H(Zeta))^3*A^2)-2*beta[2]*C^2*H(Zeta)/((d+H(Zeta))^3*A^2)-2*beta[2]*C*E/((d+H(Zeta))^3*A^2)+6*alpha[-2]*B^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)+6*alpha[-2]*C^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)+2*alpha[-1]*B^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)+2*alpha[-1]*C^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)+2*beta[1]*B^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)+2*beta[1]*C^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)+6*beta[2]*B^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)+6*beta[2]*C^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)+2*alpha[1]*B*C*H(Zeta)/A^2+4*alpha[-1]*B*H(Zeta)^2*C/((d+H(Zeta))^3*A^2)+4*beta[1]*B*H(Zeta)^2*C/((d+H(Zeta))^3*A^2)+12*beta[2]*B*H(Zeta)^2*C/((d+H(Zeta))^4*A^2)-4*alpha[-2]*B*C*H(Zeta)/((d+H(Zeta))^3*A^2)+12*alpha[-2]*E*B*H(Zeta)/((d+H(Zeta))^4*A^2)+12*alpha[-2]*E*C*H(Zeta)/((d+H(Zeta))^4*A^2)-2*alpha[-1]*B*C*H(Zeta)/((d+H(Zeta))^2*A^2)+4*alpha[-1]*E*B*H(Zeta)/((d+H(Zeta))^3*A^2)+4*alpha[-1]*E*C*H(Zeta)/((d+H(Zeta))^3*A^2)+4*alpha[2]*d*B*C*H(Zeta)/A^2-2*beta[1]*B*C*H(Zeta)/((d+H(Zeta))^2*A^2)+4*beta[1]*E*B*H(Zeta)/((d+H(Zeta))^3*A^2)+4*beta[1]*E*C*H(Zeta)/((d+H(Zeta))^3*A^2)-4*beta[2]*B*C*H(Zeta)/((d+H(Zeta))^3*A^2)+12*beta[2]*E*B*H(Zeta)/((d+H(Zeta))^4*A^2)+12*beta[2]*E*C*H(Zeta)/((d+H(Zeta))^4*A^2)+12*alpha[-2]*B*H(Zeta)^2*C/((d+H(Zeta))^4*A^2)

(6)

s22 := expand(subs(diff(H(Zeta), Zeta) = B*H(Zeta)/A+C*H(Zeta)/A+E/A, s^2))

2*alpha[-2]*alpha[1]*d/(d+H(Zeta))^2+2*alpha[-2]*alpha[1]*H(Zeta)/(d+H(Zeta))^2+2*alpha[-2]*alpha[2]*d^2/(d+H(Zeta))^2+2*alpha[-2]*alpha[2]*H(Zeta)^2/(d+H(Zeta))^2+2*alpha[-1]*alpha[1]*d/(d+H(Zeta))+2*alpha[-1]*alpha[1]*H(Zeta)/(d+H(Zeta))+2*alpha[-1]*alpha[2]*d^2/(d+H(Zeta))+2*alpha[-1]*alpha[2]*H(Zeta)^2/(d+H(Zeta))+4*alpha[0]*alpha[2]*d*H(Zeta)+6*alpha[1]*d^2*alpha[2]*H(Zeta)+6*alpha[1]*d*alpha[2]*H(Zeta)^2+2*alpha[1]*d*beta[1]/(d+H(Zeta))+2*alpha[1]*d*beta[2]/(d+H(Zeta))^2+2*alpha[1]*H(Zeta)*beta[1]/(d+H(Zeta))+2*alpha[1]*H(Zeta)*beta[2]/(d+H(Zeta))^2+2*alpha[2]*d^2*beta[1]/(d+H(Zeta))+2*alpha[2]*d^2*beta[2]/(d+H(Zeta))^2+2*alpha[2]*H(Zeta)^2*beta[1]/(d+H(Zeta))+2*alpha[2]*H(Zeta)^2*beta[2]/(d+H(Zeta))^2+alpha[-2]^2/(d+H(Zeta))^4+alpha[-1]^2/(d+H(Zeta))^2+alpha[0]^2+alpha[1]^2*d^2+alpha[1]^2*H(Zeta)^2+alpha[2]^2*d^4+alpha[2]^2*H(Zeta)^4+beta[1]^2/(d+H(Zeta))^2+beta[2]^2/(d+H(Zeta))^4+4*alpha[2]^2*d^3*H(Zeta)+2*alpha[0]*alpha[1]*d+2*alpha[-1]*beta[2]/(d+H(Zeta))^3+4*alpha[2]^2*d*H(Zeta)^3+2*alpha[0]*alpha[2]*d^2+2*alpha[-1]*alpha[0]/(d+H(Zeta))+2*alpha[0]*beta[1]/(d+H(Zeta))+2*alpha[-2]*alpha[-1]/(d+H(Zeta))^3+2*beta[1]*beta[2]/(d+H(Zeta))^3+2*alpha[-2]*beta[2]/(d+H(Zeta))^4+2*alpha[-2]*alpha[0]/(d+H(Zeta))^2+2*alpha[0]*beta[2]/(d+H(Zeta))^2+2*alpha[0]*alpha[2]*H(Zeta)^2+2*alpha[-1]*beta[1]/(d+H(Zeta))^2+2*alpha[0]*alpha[1]*H(Zeta)+2*alpha[1]^2*d*H(Zeta)+2*alpha[1]*d^3*alpha[2]+2*alpha[1]*H(Zeta)^3*alpha[2]+6*alpha[2]^2*d^2*H(Zeta)^2+2*alpha[-2]*beta[1]/(d+H(Zeta))^3+4*alpha[-2]*alpha[2]*d*H(Zeta)/(d+H(Zeta))^2+4*alpha[-1]*alpha[2]*d*H(Zeta)/(d+H(Zeta))+4*alpha[2]*d*H(Zeta)*beta[1]/(d+H(Zeta))+4*alpha[2]*d*H(Zeta)*beta[2]/(d+H(Zeta))^2

(7)

``

eq := expand(K+(1+w)*s-a*s22-b*V*s2)

alpha[-2]/(d+H(Zeta))^2+alpha[-1]/(d+H(Zeta))+beta[1]/(d+H(Zeta))+beta[2]/(d+H(Zeta))^2+alpha[0]+2*w*alpha[2]*d*H(Zeta)-4*a*alpha[2]^2*d^3*H(Zeta)-2*a*alpha[0]*alpha[1]*d-2*a*alpha[-1]*beta[2]/(d+H(Zeta))^3-4*a*alpha[2]^2*d*H(Zeta)^3-2*a*alpha[0]*alpha[2]*d^2-2*a*alpha[-1]*alpha[0]/(d+H(Zeta))-2*a*alpha[0]*beta[1]/(d+H(Zeta))-2*a*alpha[-2]*alpha[-1]/(d+H(Zeta))^3-2*a*beta[1]*beta[2]/(d+H(Zeta))^3-2*a*alpha[-2]*beta[2]/(d+H(Zeta))^4-2*a*alpha[-2]*alpha[0]/(d+H(Zeta))^2-2*a*alpha[0]*beta[2]/(d+H(Zeta))^2-2*a*alpha[0]*alpha[2]*H(Zeta)^2-2*a*alpha[-1]*beta[1]/(d+H(Zeta))^2-2*a*alpha[0]*alpha[1]*H(Zeta)-2*a*alpha[1]^2*d*H(Zeta)-2*a*alpha[1]*d^3*alpha[2]-2*a*alpha[1]*H(Zeta)^3*alpha[2]-6*a*alpha[2]^2*d^2*H(Zeta)^2-2*a*alpha[-2]*beta[1]/(d+H(Zeta))^3-4*b*V*beta[1]*E*B*H(Zeta)/((d+H(Zeta))^3*A^2)-12*b*V*beta[2]*B*H(Zeta)^2*C/((d+H(Zeta))^4*A^2)-12*b*V*alpha[-2]*E*C*H(Zeta)/((d+H(Zeta))^4*A^2)-4*b*V*beta[1]*E*C*H(Zeta)/((d+H(Zeta))^3*A^2)-12*b*V*beta[2]*E*C*H(Zeta)/((d+H(Zeta))^4*A^2)-4*b*V*alpha[-1]*E*C*H(Zeta)/((d+H(Zeta))^3*A^2)-4*b*V*alpha[2]*d*B*C*H(Zeta)/A^2-4*b*V*beta[1]*B*H(Zeta)^2*C/((d+H(Zeta))^3*A^2)-12*b*V*alpha[-2]*E*B*H(Zeta)/((d+H(Zeta))^4*A^2)+4*b*V*alpha[-2]*B*C*H(Zeta)/((d+H(Zeta))^3*A^2)+2*b*V*beta[1]*B*C*H(Zeta)/((d+H(Zeta))^2*A^2)+2*b*V*alpha[-1]*B*C*H(Zeta)/((d+H(Zeta))^2*A^2)-4*b*V*alpha[-1]*B*H(Zeta)^2*C/((d+H(Zeta))^3*A^2)-12*b*V*beta[2]*E*B*H(Zeta)/((d+H(Zeta))^4*A^2)+4*b*V*beta[2]*B*C*H(Zeta)/((d+H(Zeta))^3*A^2)-12*b*V*alpha[-2]*B*H(Zeta)^2*C/((d+H(Zeta))^4*A^2)-4*b*V*alpha[-1]*E*B*H(Zeta)/((d+H(Zeta))^3*A^2)+K+alpha[1]*d+alpha[1]*H(Zeta)+alpha[2]*d^2+alpha[2]*H(Zeta)^2+w*alpha[0]-a*alpha[0]^2-6*b*V*alpha[2]*E*B*H(Zeta)/A^2-6*b*V*alpha[2]*E*C*H(Zeta)/A^2+2*b*V*alpha[-2]*B^2*H(Zeta)/((d+H(Zeta))^3*A^2)+2*b*V*alpha[-2]*B*E/((d+H(Zeta))^3*A^2)+2*b*V*alpha[-2]*C^2*H(Zeta)/((d+H(Zeta))^3*A^2)+2*b*V*alpha[-2]*C*E/((d+H(Zeta))^3*A^2)+b*V*alpha[-1]*B^2*H(Zeta)/((d+H(Zeta))^2*A^2)+b*V*alpha[-1]*B*E/((d+H(Zeta))^2*A^2)+b*V*alpha[-1]*C^2*H(Zeta)/((d+H(Zeta))^2*A^2)+b*V*alpha[-1]*C*E/((d+H(Zeta))^2*A^2)-2*b*V*alpha[2]*d*B^2*H(Zeta)/A^2-2*b*V*alpha[2]*d*B*E/A^2-2*b*V*alpha[2]*d*C^2*H(Zeta)/A^2-2*b*V*alpha[2]*d*C*E/A^2-8*b*V*alpha[2]*B*H(Zeta)^2*C/A^2+b*V*beta[1]*B^2*H(Zeta)/((d+H(Zeta))^2*A^2)+b*V*beta[1]*B*E/((d+H(Zeta))^2*A^2)+b*V*beta[1]*C^2*H(Zeta)/((d+H(Zeta))^2*A^2)+b*V*beta[1]*C*E/((d+H(Zeta))^2*A^2)+2*b*V*beta[2]*B^2*H(Zeta)/((d+H(Zeta))^3*A^2)+2*b*V*beta[2]*B*E/((d+H(Zeta))^3*A^2)+2*b*V*beta[2]*C^2*H(Zeta)/((d+H(Zeta))^3*A^2)+2*b*V*beta[2]*C*E/((d+H(Zeta))^3*A^2)-6*b*V*alpha[-2]*B^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)-6*b*V*alpha[-2]*C^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)-2*b*V*alpha[-1]*B^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)-2*b*V*alpha[-1]*C^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)-2*b*V*beta[1]*B^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)-2*b*V*beta[1]*C^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)-6*b*V*beta[2]*B^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)-6*b*V*beta[2]*C^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)-2*b*V*alpha[1]*B*C*H(Zeta)/A^2-a*alpha[1]^2*H(Zeta)^2-a*alpha[1]^2*d^2-a*beta[1]^2/(d+H(Zeta))^2+w*alpha[-1]/(d+H(Zeta))-a*alpha[-2]^2/(d+H(Zeta))^4-a*beta[2]^2/(d+H(Zeta))^4+w*beta[1]/(d+H(Zeta))+w*alpha[1]*d-a*alpha[2]^2*H(Zeta)^4-a*alpha[2]^2*d^4+w*alpha[2]*d^2-a*alpha[-1]^2/(d+H(Zeta))^2+w*alpha[2]*H(Zeta)^2+w*alpha[1]*H(Zeta)+w*beta[2]/(d+H(Zeta))^2+w*alpha[-2]/(d+H(Zeta))^2+2*alpha[2]*d*H(Zeta)-2*a*alpha[-2]*alpha[1]*d/(d+H(Zeta))^2-2*a*alpha[-2]*alpha[1]*H(Zeta)/(d+H(Zeta))^2-2*a*alpha[-2]*alpha[2]*d^2/(d+H(Zeta))^2-2*a*alpha[-2]*alpha[2]*H(Zeta)^2/(d+H(Zeta))^2-2*a*alpha[-1]*alpha[1]*d/(d+H(Zeta))-2*a*alpha[-1]*alpha[1]*H(Zeta)/(d+H(Zeta))-2*a*alpha[-1]*alpha[2]*d^2/(d+H(Zeta))-2*a*alpha[-1]*alpha[2]*H(Zeta)^2/(d+H(Zeta))-4*a*alpha[0]*alpha[2]*d*H(Zeta)-6*a*alpha[1]*d^2*alpha[2]*H(Zeta)-6*a*alpha[1]*d*alpha[2]*H(Zeta)^2-2*a*alpha[1]*d*beta[1]/(d+H(Zeta))-2*a*alpha[1]*d*beta[2]/(d+H(Zeta))^2-2*a*alpha[1]*H(Zeta)*beta[1]/(d+H(Zeta))-2*a*alpha[1]*H(Zeta)*beta[2]/(d+H(Zeta))^2-2*a*alpha[2]*d^2*beta[1]/(d+H(Zeta))-2*a*alpha[2]*d^2*beta[2]/(d+H(Zeta))^2-2*a*alpha[2]*H(Zeta)^2*beta[1]/(d+H(Zeta))-2*a*alpha[2]*H(Zeta)^2*beta[2]/(d+H(Zeta))^2-2*b*V*alpha[2]*E^2/A^2-4*a*alpha[-2]*alpha[2]*d*H(Zeta)/(d+H(Zeta))^2-4*a*alpha[-1]*alpha[2]*d*H(Zeta)/(d+H(Zeta))-4*a*alpha[2]*d*H(Zeta)*beta[1]/(d+H(Zeta))-4*a*alpha[2]*d*H(Zeta)*beta[2]/(d+H(Zeta))^2-b*V*alpha[1]*B^2*H(Zeta)/A^2-b*V*alpha[1]*B*E/A^2-b*V*alpha[1]*C^2*H(Zeta)/A^2-b*V*alpha[1]*C*E/A^2-6*b*V*alpha[-2]*E^2/((d+H(Zeta))^4*A^2)-2*b*V*alpha[-1]*E^2/((d+H(Zeta))^3*A^2)-4*b*V*alpha[2]*B^2*H(Zeta)^2/A^2-4*b*V*alpha[2]*C^2*H(Zeta)^2/A^2-2*b*V*beta[1]*E^2/((d+H(Zeta))^3*A^2)-6*b*V*beta[2]*E^2/((d+H(Zeta))^4*A^2)

(8)

collect(eq, [H, d], recursive):

eqq := subs(H(Zeta) = H, eq)

alpha[0]-2*a*alpha[0]*alpha[1]*d-2*a*alpha[0]*alpha[2]*d^2-2*a*alpha[1]*d^3*alpha[2]+2*w*alpha[2]*d*H-4*a*alpha[2]^2*d^3*H-2*a*alpha[-1]*beta[2]/(d+H)^3-4*a*alpha[2]^2*d*H^3-2*a*alpha[-1]*alpha[0]/(d+H)-2*a*alpha[0]*beta[1]/(d+H)-2*a*alpha[-2]*alpha[-1]/(d+H)^3-2*a*beta[1]*beta[2]/(d+H)^3-2*a*alpha[-2]*beta[2]/(d+H)^4-2*a*alpha[-2]*alpha[0]/(d+H)^2-2*a*alpha[0]*beta[2]/(d+H)^2-2*a*alpha[0]*alpha[2]*H^2-2*a*alpha[-1]*beta[1]/(d+H)^2-2*a*alpha[0]*alpha[1]*H-2*a*alpha[1]^2*d*H-2*a*alpha[1]*H^3*alpha[2]-6*a*alpha[2]^2*d^2*H^2-2*a*alpha[-2]*beta[1]/(d+H)^3+alpha[-2]/(d+H)^2+alpha[-1]/(d+H)+beta[1]/(d+H)+beta[2]/(d+H)^2+alpha[1]*H+alpha[2]*H^2-2*a*alpha[-2]*alpha[1]*d/(d+H)^2-2*a*alpha[-2]*alpha[1]*H/(d+H)^2-2*a*alpha[-2]*alpha[2]*d^2/(d+H)^2-2*a*alpha[-2]*alpha[2]*H^2/(d+H)^2-2*a*alpha[-1]*alpha[1]*d/(d+H)-2*a*alpha[-1]*alpha[1]*H/(d+H)-2*a*alpha[-1]*alpha[2]*d^2/(d+H)-2*a*alpha[-1]*alpha[2]*H^2/(d+H)-4*a*alpha[0]*alpha[2]*d*H-6*a*alpha[1]*d^2*alpha[2]*H-6*a*alpha[1]*d*alpha[2]*H^2-2*a*alpha[1]*d*beta[1]/(d+H)-2*a*alpha[1]*d*beta[2]/(d+H)^2-2*a*alpha[1]*H*beta[1]/(d+H)-2*a*alpha[1]*H*beta[2]/(d+H)^2-2*a*alpha[2]*d^2*beta[1]/(d+H)-2*a*alpha[2]*d^2*beta[2]/(d+H)^2-2*a*alpha[2]*H^2*beta[1]/(d+H)-2*a*alpha[2]*H^2*beta[2]/(d+H)^2-4*b*V*alpha[-1]*B*H^2*C/((d+H)^3*A^2)-12*b*V*beta[2]*E*B*H/((d+H)^4*A^2)+4*b*V*beta[2]*B*C*H/((d+H)^3*A^2)-12*b*V*alpha[-2]*B*H^2*C/((d+H)^4*A^2)-4*b*V*alpha[-1]*E*B*H/((d+H)^3*A^2)-12*b*V*beta[2]*B*H^2*C/((d+H)^4*A^2)-4*b*V*beta[1]*E*C*H/((d+H)^3*A^2)-12*b*V*alpha[-2]*E*C*H/((d+H)^4*A^2)-4*b*V*beta[1]*E*B*H/((d+H)^3*A^2)-12*b*V*beta[2]*E*C*H/((d+H)^4*A^2)-4*b*V*alpha[-1]*E*C*H/((d+H)^3*A^2)-4*b*V*alpha[2]*d*B*C*H/A^2-4*b*V*beta[1]*B*H^2*C/((d+H)^3*A^2)-12*b*V*alpha[-2]*E*B*H/((d+H)^4*A^2)+4*b*V*alpha[-2]*B*C*H/((d+H)^3*A^2)+2*b*V*beta[1]*B*C*H/((d+H)^2*A^2)+2*b*V*alpha[-1]*B*C*H/((d+H)^2*A^2)-a*alpha[1]^2*H^2+w*beta[2]/(d+H)^2-a*beta[2]^2/(d+H)^4+w*alpha[-2]/(d+H)^2-a*alpha[-1]^2/(d+H)^2+w*beta[1]/(d+H)-a*alpha[-2]^2/(d+H)^4+2*alpha[2]*d*H-a*alpha[2]^2*H^4+w*alpha[2]*H^2+w*alpha[-1]/(d+H)+w*alpha[1]*H-a*beta[1]^2/(d+H)^2+K+alpha[1]*d+alpha[2]*d^2+w*alpha[0]-a*alpha[0]^2-6*b*V*alpha[2]*E*B*H/A^2-6*b*V*alpha[2]*E*C*H/A^2+2*b*V*alpha[-2]*B^2*H/((d+H)^3*A^2)+2*b*V*alpha[-2]*B*E/((d+H)^3*A^2)+2*b*V*alpha[-2]*C^2*H/((d+H)^3*A^2)+2*b*V*alpha[-2]*C*E/((d+H)^3*A^2)+b*V*alpha[-1]*B^2*H/((d+H)^2*A^2)+b*V*alpha[-1]*B*E/((d+H)^2*A^2)+b*V*alpha[-1]*C^2*H/((d+H)^2*A^2)+b*V*alpha[-1]*C*E/((d+H)^2*A^2)-2*b*V*alpha[2]*d*B^2*H/A^2-2*b*V*alpha[2]*d*C^2*H/A^2-8*b*V*alpha[2]*B*H^2*C/A^2+b*V*beta[1]*B^2*H/((d+H)^2*A^2)+b*V*beta[1]*B*E/((d+H)^2*A^2)+b*V*beta[1]*C^2*H/((d+H)^2*A^2)+b*V*beta[1]*C*E/((d+H)^2*A^2)+2*b*V*beta[2]*B^2*H/((d+H)^3*A^2)+2*b*V*beta[2]*B*E/((d+H)^3*A^2)+2*b*V*beta[2]*C^2*H/((d+H)^3*A^2)+2*b*V*beta[2]*C*E/((d+H)^3*A^2)-6*b*V*alpha[-2]*B^2*H^2/((d+H)^4*A^2)-6*b*V*alpha[-2]*C^2*H^2/((d+H)^4*A^2)-2*b*V*alpha[-1]*B^2*H^2/((d+H)^3*A^2)-2*b*V*alpha[-1]*C^2*H^2/((d+H)^3*A^2)-2*b*V*beta[1]*B^2*H^2/((d+H)^3*A^2)-2*b*V*beta[1]*C^2*H^2/((d+H)^3*A^2)-6*b*V*beta[2]*B^2*H^2/((d+H)^4*A^2)-6*b*V*beta[2]*C^2*H^2/((d+H)^4*A^2)-2*b*V*alpha[1]*B*C*H/A^2-2*b*V*alpha[2]*d*B*E/A^2-2*b*V*alpha[2]*d*C*E/A^2-a*alpha[1]^2*d^2+w*alpha[1]*d-a*alpha[2]^2*d^4+w*alpha[2]*d^2-2*b*V*alpha[2]*E^2/A^2-4*a*alpha[-2]*alpha[2]*d*H/(d+H)^2-4*a*alpha[-1]*alpha[2]*d*H/(d+H)-4*a*alpha[2]*d*H*beta[1]/(d+H)-4*a*alpha[2]*d*H*beta[2]/(d+H)^2-b*V*alpha[1]*B^2*H/A^2-b*V*alpha[1]*C^2*H/A^2-6*b*V*alpha[-2]*E^2/((d+H)^4*A^2)-2*b*V*alpha[-1]*E^2/((d+H)^3*A^2)-4*b*V*alpha[2]*B^2*H^2/A^2-4*b*V*alpha[2]*C^2*H^2/A^2-2*b*V*beta[1]*E^2/((d+H)^3*A^2)-6*b*V*beta[2]*E^2/((d+H)^4*A^2)-b*V*alpha[1]*B*E/A^2-b*V*alpha[1]*C*E/A^2

(9)

collect(eqq, {d+H})

Error, (in collect) cannot collect d+H

 

``

NULL

``


 

Download SHAFEEG2.mwSHAFEEG2.mw

Hey.. AoA,
How to combine a specific rows of two different Matrix?

Hi, I have a procedure named f1. In it, it calls another procedure f couple of times. procedure f does not have recursive calls implemented.

I have no idea what caused the error. Could anyone give a hint?

Thanks a million in advance,

Best,

Jie

I like Maple the most for calculation of difficult parts. But when it comes to display, I am ignorant and do not know how to command the maple for showing me what is visible in the document.

I attach herewith my document which shows in print view only top half of the sketch. What should I do to show all three figures in the portrait page.
(Here below, after uploading it is shown alright, but in the print preview it is not showing!!).

I want to convert the doc to pdf. Therefore, in the doc preview itself it should be complete.

Thanks for help.

Ramakrishnan V
 

NULL

 

NULL

 

 

 

NULL

 

 

``

NULL


 

Download sketchesNotComing_in_full.mw

Hello,

do not work well and U functions are not replaced with series form.

Please see equation 5.

Also, How me can differential with respect to the constant Amnr], Bmnr], Cmnr] as shown in   attached figure?

For Differentiation I need a

Diff.pdf

Hello! I have a Maple sheet that is functional in some versions of Maple but not others. It works perfectly in Maple 18 (which is the version with which it was written), but when running it in Maple 2019, I see the following error:

  • "Error, (in Matrix) cannot determine if this expression is true or false: Distance(Vector[row](3, {(1) = 0., (2) = 1.313799622, (3) = 0}), Vector[row](3, {(1) = 0., (2) = -1.313799622, (3) = 0})) < 99999999999999999999/100000000000000000000"

And believe that it is related to the following lines of code:

  • R := Matrix(N, (i, j) -> Distance(coords[i], coords[j]) ;
  • S := Matrix(N, (i, j) -> if i = j then 1 elif R[i, j] < 3 then (1+C*R[i, j]+(2/5)*C^2*R[i, j]^2+(1/15)*C^3*R[i, j]^3)*exp(-C*R[i, j]) else 0 end if)

It seems as if it cannot compute a distance between two points (as given in the form of two vectors). I have imported the Student:-Precalculus package, along with ArrayTools and LinearAlgebra, at the start of the sheet, but am wondering if there is an issue with this package in other versions of Maple. The full sheet can be provided if more information is needed, but I'm pretty sure that portion is the problem. Any help would be greatly appreciated.

 

Sheet: testsheet.mw

I can use ApproximateInt for the integral?

approximate_int
 

restart

``

 

"f[1,1](r,theta):=(sin(-4.700000000 10^(-6)+4.700000000 r)-0.1369508410 sinh(-4.700000000 10^(-6)+4.700000000 r)) cos(6 theta):"

"L[1, 1](r, theta):=-2* (((&PartialD;)^2)/(&PartialD;r^2) f[1,1](r,theta))+7* f[1,1](r,theta)+5 *f[1,1](r,theta)-(2 *6 (((&PartialD;)^2)/(&PartialD;theta^2) f[1,1](r,theta)))/r+(0.6 (((&PartialD;)^4)/(&PartialD;r^2&PartialD;theta^2) f[1,1](r,theta)))/4+(.5 (((&PartialD;)^4)/(&PartialD;theta^4) f[1,1](r,theta)))/4"

proc (r, theta) options operator, arrow, function_assign; -2*(diff(f[1, 1](r, theta), r, r))+12*f[1, 1](r, theta)-12*(diff(f[1, 1](r, theta), theta, theta))/r+.6*(diff(f[1, 1](r, theta), r, r, theta, theta))/4+.5*(diff(f[1, 1](r, theta), theta, theta, theta, theta))/4 end proc

(1)

``

``

 

for w to 1 do for s to 1 do k[w, s] := (int(int(L[w, s](r, theta)*f[w, 1](r, theta), theta = 0 .. 2*Pi), r = 0 .. 1))/(int(int(f[w, 1](r, theta)^2, theta = 0 .. 2*Pi), r = 0 .. 1)); print([w, s] = %) end do end do

[1, 1] = 0.3929199233e-1*(int(0.1005309649e-16*(2329569981.*r*cos(4.700000000*r)^2-0.9913063750e15*r*cos(4.700000000*r)*sin(4.700000000*r)+0.1054581250e21*r*sin(4.700000000*r)^2-328995293.4*r*cos(4.700000000*r)*cosh(4.700000000*r)+0.6999899860e14*r*cos(4.700000000*r)*sinh(4.700000000*r)+0.6999899860e14*r*sin(4.700000000*r)*cosh(4.700000000*r)-0.1489340396e20*r*sin(4.700000000*r)*sinh(4.700000000*r)+1363855.810*r*cosh(4.700000000*r)^2-0.5803641743e12*r*cosh(4.700000000*r)*sinh(4.700000000*r)+0.6174086961e17*r*sinh(4.700000000*r)^2+2982150000.*cos(4.700000000*r)^2-0.1269000000e16*cos(4.700000000*r)*sin(4.700000000*r)+0.1350000000e21*sin(4.700000000*r)^2-816815901.0*cos(4.700000000*r)*cosh(4.700000000*r)+0.1737906172e15*cos(4.700000000*r)*sinh(4.700000000*r)+0.1737906172e15*sin(4.700000000*r)*cosh(4.700000000*r)-0.3697672707e20*sin(4.700000000*r)*sinh(4.700000000*r)+55931812.29*cosh(4.700000000*r)^2-0.2380077119e14*cosh(4.700000000*r)*sinh(4.700000000*r)+0.2531996935e19*sinh(4.700000000*r)^2)/r, r = 0 .. 1))

(2)

``


 

Download approximate_int.mw

 

Hi everybody and thank you all in advance.

This is my question. Suppose I have a list of lists like this:

[[1,2,3],[7,8,9],[13,12,11]]

I want to select all 3rd element from the list of lists and get:

[3,9,11]

Another example:

[1, [2, 3], [4, [5, 6], 7], [8, 3], 9] and select the first element from the list of lists and get:

[1, 2, 4, 8, 9]

Additionally suppose I want to sort a list of lists but base on the 3rd element of every sublist. Example:

From this list:

[[1,2,3],[7,8,2],[13,12,1]] sorted by the  3rd element I would get:

[[13,12,1], [7,8,2], [1,2,3]]

 

So, I am trying to write a method for array interpolation. I have a Matrix that is X by 3, where each column holds specific data (column 1 holds independent data 1, column 2 holds independent data 2, column 3 holds dependent data).

This data comes from a function with 2 independent variables, and I am creating a graph of this function, basically, with both independent variables going from 0 to 1 (approximately 300 values per variable, giving me a matrix with 90k values already). My goal is to use interpolation to get a lot of values in between the points I already calculated.

That being said, I don't know how to use the ArrayInterpolation command to achieve this. I will post my code below if anyone can help me out!

Code:

Interpolate := proc(M::Matrix)
  local i; local j;
  local M1 := Matrix(RowDimension(M),1);
  local M2 := Matrix(RowDimension(M),1);
  local M3 := Matrix(RowDimension(M),1);
  for i from 1 to RowDimension(M) do
    M1(i) := M(i,1);
    M2(i) := M(i,2);
    M3(i) := M(i,3);
  end do;
  print(M1,M2,M3);
  local M4 := Matrix(1000,1);
  local M5 := Matrix(1000,1);
  for j from 1 to 1000 do
    M4(j,1) := 0.001*j;
    M5(j,1) := 0.001*j;
  end do;
  ArrayInterpolation([M1,M2],M3,[M4,M5]);
end proc;

How I can replace  u__0r, theta, t) with f1, 1(r, theta) in attached file.

I want in I have only f1,1] function.

Thanks 


 

````

"f[1, 1](r, theta):=`u__0`(r, theta,t)  "

proc (r, theta) options operator, arrow, function_assign; u__0(r, theta, t) end proc

(1)
``````````

"L[1, 1](r, theta):=-`A__0`*(&PartialD;)/(&PartialD;r) (F*(&PartialD;)/(&PartialD;r)`u__0`(r,theta))-1/(2)*`A__0`*(&PartialD;)/(&PartialD;r) (`K__1`*`u__0`(r,theta))+1/(2)*`A__0`*`K__1`*(&PartialD;)/(&PartialD;r)`u__0`(r,theta)-1/(2)*`A__0`*(&PartialD;)/(&PartialD; r) (`H__1`*`u__0`(r,theta))+1/(2)*`A__0`*`H__1`*(&PartialD;)/(&PartialD;r)`u__0`(r,theta)+`K__3`*`A__0`*`u__0`(r,theta)-1/(2)*`A__0`*(&PartialD;)/(&PartialD; r) (`K__4`*`u__0`(r,theta))+1/(2)*`A__0`*`K__4`*(&PartialD;)/(&PartialD;r)`u__0`(r,theta)+`A__0`*`K__5`*`u__0`(r,theta)-2*`A__0`*(&PartialD;)/(&PartialD; theta) ((`H__2`)/(r)*(&PartialD;)/(&PartialD;theta)`u__0`(r,theta))+(1)/(4)*`A__0`*l^(2)*((&PartialD;)^(2))/(&PartialD; r &PartialD; theta)(mu*((&PartialD;)^(2))/(&PartialD;r &PartialD;theta)`u__0`(r,theta))+(1)/(4)*`A__0`*l^(2)*((&PartialD;)^(2))/(&PartialD;theta^(2))(mu*((&PartialD;)^(2))/(&PartialD; theta^(2))`u__0`(r,theta))+rho*`A__0`*`K__16`*((&PartialD;)^(2))/(&PartialD;t^(2))`u__0`(r,theta);"

proc (r, theta) options operator, arrow, function_assign; -A__0*(diff(F*(diff(u__0(r, theta), r)), r))-(1/2)*A__0*(diff(K__1*u__0(r, theta), r))+(1/2)*A__0*K__1*(diff(u__0(r, theta), r))-(1/2)*A__0*(diff(H__1*u__0(r, theta), r))+(1/2)*A__0*H__1*(diff(u__0(r, theta), r))+K__3*A__0*u__0(r, theta)-(1/2)*A__0*(diff(K__4*u__0(r, theta), r))+(1/2)*A__0*K__4*(diff(u__0(r, theta), r))+A__0*K__5*u__0(r, theta)-2*A__0*(diff(H__2*(diff(u__0(r, theta), theta))/r, theta))+(1/4)*A__0*l^2*(diff(mu*(diff(u__0(r, theta), r, theta)), r, theta))+(1/4)*A__0*l^2*(diff(mu*(diff(u__0(r, theta), theta, theta)), theta, theta))+rho*A__0*K__16*(diff(u__0(r, theta), t, t)) end proc

(2)

``


 

Download replace

 

Hi
i need to find equation of intersection between a plane(Z=0)  and 3d curve like below:

plane :  Z=0

curve:

sqrt(G*(2-G))+(1-G)*(arccos(G-1)+(1/5)*Pi)+k*sqrt(G*(2-G))*cos(sqrt((1+k)/k)*arccos(G-1)+(1/5)*Pi)+sqrt(k/(1+k))*(1-G)*k*sin(sqrt((1+k)/k)*arccos(G-1)+(1/5)*Pi)

I ploted Z=0 plane and that curve . it is like this .
i want equation of the pointed curve(curve equation of intersection between Z=  and curve )in bellow  such as k=f(G) .

best regards

## looking for the coefficients of "A and B"

restart;

t1:=[(-(0.3536776512e-1*(2.999999999*exp(-.1111111111*omega*(2.*cos(theta)+9.))+2.999999999*exp(-.1111111111*omega*(2.*cos(theta)-9.))-2.999999999*exp(-(1/9)*omega*(2*cos(theta)-27))-2.999999999*exp(-.1111111111*omega*(2.*cos(theta)+27.))-2.999999999*exp((1/9)*omega*(2*cos(theta)+27))+2.999999999*exp(.1111111111*omega*(2.*cos(theta)+9.))-2.999999999*exp(.1111111111*omega*(2.*cos(theta)-27.))+2.999999999*exp(.1111111111*omega*(2.*cos(theta)-9.))+2.999999999*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega-2.999999999*exp((1/9)*omega*(2*cos(theta)+27))*omega-9.*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega+9.*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega+12.*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2+12.*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2-2.999999999*exp(-(1/9)*omega*(2*cos(theta)-27))*omega+9.*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega-9.*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega+12.*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2+12.*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2+2.999999999*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega+.6666666665*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega*cos(theta)+.6666666665*exp((1/9)*omega*(2*cos(theta)+27))*omega*cos(theta)+2.666666667*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)-2.666666667*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)-.6666666665*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega*cos(theta)-.6666666665*exp(-(1/9)*omega*(2*cos(theta)-27))*omega*cos(theta)+.6666666665*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)+.6666666665*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)-.6666666665*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)-2.666666667*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)+2.666666667*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)-.6666666665*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)))*cos((2/9)*omega*sin(theta))/(-16.*omega^2+exp(4*omega)-2.+exp(-4.*omega)))*A-(0.3536776512e-1*(1.570796327*exp(.2222222222*omega*(cos(theta)-9.))-1.570796327*exp(.2222222222*omega*(cos(theta)-18.))-1.570796327*exp(-.2222222222*omega*(cos(theta)-9.))+1.570796327*exp(-(2/9)*omega*cos(theta))+1.570796327*exp((2/9)*omega*cos(theta))-1.570796327*exp(.2222222222*omega*(cos(theta)+9.))+1.570796327*exp(-.2222222222*omega*(cos(theta)+9.))-1.570796327*exp(-.2222222222*omega*(cos(theta)+18.))+4.712388980*exp(-(2/9)*omega*cos(theta))*omega-6.283185307*exp(-(2/9)*omega*cos(theta))*omega^3+4.712388980*exp(-(2/9)*omega*cos(theta))*omega^2+4.712388980*exp((2/9)*omega*cos(theta))*omega-6.283185307*exp((2/9)*omega*cos(theta))*omega^3+4.712388980*exp((2/9)*omega*cos(theta))*omega^2+1.570796327*exp(.2222222222*omega*(cos(theta)-18.))*omega^2+4.712388980*exp(.2222222222*omega*(cos(theta)-9.))*omega^2+1.570796327*exp(.1111111111*omega*(2.*cos(theta)+9.))*sinh(omega)+1.570796327*exp(.1111111111*omega*(2.*cos(theta)-9.))*sinh(omega)-1.570796327*exp(.1111111111*omega*(2.*cos(theta)-27.))*sinh(omega)-1.570796327*exp((1/9)*omega*(2*cos(theta)+27))*sinh(omega)+1.570796327*exp(.2222222222*omega*(cos(theta)-18.))*omega+1.570796327*exp(.2222222222*omega*(cos(theta)+9.))*omega^2+6.283185307*exp(.2222222222*omega*(cos(theta)-9.))*omega^3-1.570796327*exp(.2222222222*omega*(cos(theta)+9.))*omega-4.712388980*exp(.2222222222*omega*(cos(theta)-9.))*omega-1.570796327*exp(-.2222222222*omega*(cos(theta)-9.))*omega-4.712388980*exp(-.2222222222*omega*(cos(theta)+9.))*omega+4.712388980*exp(-.2222222222*omega*(cos(theta)+9.))*omega^2-1.570796327*exp(-(1/9)*omega*(2*cos(theta)-27))*sinh(omega)+1.570796327*exp(-.2222222222*omega*(cos(theta)+18.))*omega+1.570796327*exp(-.1111111111*omega*(2.*cos(theta)-9.))*sinh(omega)+1.570796327*exp(-.2222222222*omega*(cos(theta)-9.))*omega^2+6.283185307*exp(-.2222222222*omega*(cos(theta)+9.))*omega^3-1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+27.))*sinh(omega)+1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+9.))*sinh(omega)+1.570796327*exp(-.2222222222*omega*(cos(theta)+18.))*omega^2+.3490658504*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^2*cos(theta)*csgn(omega)*sinh(omega)-1.396263401*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^3*cos(theta)*csgn(omega)*sinh(omega)+1.396263401*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^3*cos(theta)*csgn(omega)*sinh(omega)-.3490658504*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*csgn(omega)*sinh(omega)-.3490658504*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*csgn(omega)*sinh(omega)+1.396263401*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*csgn(omega)*cosh(omega)-1.396263401*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*csgn(omega)*cosh(omega)+.3490658504*exp((1/9)*omega*(2*cos(theta)+27))*omega^2*cos(theta)*csgn(omega)*sinh(omega)-.3490658504*exp((1/9)*omega*(2*cos(theta)+27))*omega*cos(theta)*csgn(omega)*cosh(omega)-.3490658504*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega*cos(theta)*csgn(omega)*cosh(omega)+.3490658504*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)*csgn(omega)*cosh(omega)+.3490658504*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)*csgn(omega)*cosh(omega)-1.396263401*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*csgn(omega)*cosh(omega)+1.396263401*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*csgn(omega)*cosh(omega)-.3490658504*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^2*cos(theta)*csgn(omega)*sinh(omega)+1.396263401*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^3*cos(theta)*csgn(omega)*sinh(omega)-1.396263401*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^3*cos(theta)*csgn(omega)*sinh(omega)+.3490658504*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*csgn(omega)*sinh(omega)+.3490658504*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*csgn(omega)*sinh(omega)-.3490658504*exp(-(1/9)*omega*(2*cos(theta)-27))*omega^2*cos(theta)*csgn(omega)*sinh(omega)+.3490658504*exp(-(1/9)*omega*(2*cos(theta)-27))*omega*cos(theta)*csgn(omega)*cosh(omega)+.3490658504*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega*cos(theta)*csgn(omega)*cosh(omega)-.3490658504*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)*csgn(omega)*cosh(omega)-.3490658504*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)*csgn(omega)*cosh(omega)+.3490658504*exp((1/9)*omega*(2*cos(theta)+27))*omega*cos(theta)*sinh(omega)-.3490658504*exp((1/9)*omega*(2*cos(theta)+27))*omega^2*cos(theta)*cosh(omega)+1.396263401*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^3*cos(theta)*cosh(omega)-1.396263401*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^3*cos(theta)*cosh(omega)-.3490658504*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^2*cos(theta)*cosh(omega)-1.396263401*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*sinh(omega)+1.396263401*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*sinh(omega)+.3490658504*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*cosh(omega)+.3490658504*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*cosh(omega)+1.570796327*exp((1/9)*omega*(2*cos(theta)+27))*csgn(omega)*cosh(omega)*omega-1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+27.))*csgn(omega)*sinh(omega)*omega+4.712388980*exp(-.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*sinh(omega)*omega^2-4.712388980*exp(-.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*sinh(omega)*omega^2+1.570796327*exp(-.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*sinh(omega)*omega+1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*sinh(omega)*omega-4.712388980*exp(-.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*cosh(omega)*omega+4.712388980*exp(-.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*cosh(omega)*omega-1.570796327*exp(-(1/9)*omega*(2*cos(theta)-27))*csgn(omega)*sinh(omega)*omega-.3490658504*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega*cos(theta)*sinh(omega)+.3490658504*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)*sinh(omega)+.3490658504*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)*sinh(omega)-.3490658504*exp(-(1/9)*omega*(2*cos(theta)-27))*omega*cos(theta)*sinh(omega)+6.283185307*exp(-.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*sinh(omega)*omega^3-1.570796327*exp(.1111111111*omega*(2.*cos(theta)-27.))*csgn(omega)*cosh(omega)*omega+1.570796327*exp(.1111111111*omega*(2.*cos(theta)-27.))*csgn(omega)*sinh(omega)*omega^2+6.283185307*exp(.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*sinh(omega)*omega^3+6.283185307*exp(.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*sinh(omega)*omega^3-6.283185307*exp(.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*cosh(omega)*omega^2-6.283185307*exp(.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*cosh(omega)*omega^2-1.570796327*exp((1/9)*omega*(2*cos(theta)+27))*csgn(omega)*sinh(omega)*omega^2-.3490658504*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)*sinh(omega)-.3490658504*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)*sinh(omega)-1.570796327*exp((1/9)*omega*(2*cos(theta)+27))*csgn(omega)*sinh(omega)*omega+.3490658504*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega*cos(theta)*sinh(omega)-6.283185307*exp(-.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*cosh(omega)*omega^2-6.283185307*exp(-.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*cosh(omega)*omega^2-1.570796327*exp(-(1/9)*omega*(2*cos(theta)-27))*csgn(omega)*sinh(omega)*omega^2+1.570796327*exp(-(1/9)*omega*(2*cos(theta)-27))*csgn(omega)*cosh(omega)*omega-1.570796327*exp(.1111111111*omega*(2.*cos(theta)-27.))*csgn(omega)*sinh(omega)*omega+4.712388980*exp(.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*sinh(omega)*omega^2-4.712388980*exp(.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*sinh(omega)*omega^2+1.570796327*exp(.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*sinh(omega)*omega+1.570796327*exp(.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*sinh(omega)*omega-4.712388980*exp(.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*cosh(omega)*omega+4.712388980*exp(.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*cosh(omega)*omega+.3490658504*exp(-(1/9)*omega*(2*cos(theta)-27))*omega^2*cos(theta)*cosh(omega)+.3490658504*exp(-(2/9)*omega*cos(theta))*omega*cos(theta)+1.745329252*exp(-(2/9)*omega*cos(theta))*omega^2*cos(theta)-1.396263401*exp(-(2/9)*omega*cos(theta))*omega^3*cos(theta)-.3490658504*exp((2/9)*omega*cos(theta))*omega*cos(theta)-1.745329252*exp((2/9)*omega*cos(theta))*omega^2*cos(theta)+1.396263401*exp((2/9)*omega*cos(theta))*omega^3*cos(theta)-6.283185307*exp(.1111111111*omega*(2.*cos(theta)-9.))*cosh(omega)*omega^3-.3490658504*exp(.2222222222*omega*(cos(theta)+9.))*omega^2*cos(theta)+1.745329252*exp(.2222222222*omega*(cos(theta)-9.))*omega^2*cos(theta)-.3490658504*exp(-.2222222222*omega*(cos(theta)+18.))*omega*cos(theta)+1.570796327*exp(-(1/9)*omega*(2*cos(theta)-27))*csgn(omega)*cosh(omega)-6.283185307*exp(.1111111111*omega*(2.*cos(theta)+9.))*cosh(omega)*omega^3+6.283185307*exp(.1111111111*omega*(2.*cos(theta)-9.))*sinh(omega)*omega^2-1.570796327*exp((1/9)*omega*(2*cos(theta)+27))*sinh(omega)*omega-1.570796327*exp(.1111111111*omega*(2.*cos(theta)-27.))*cosh(omega)*omega^2+1.570796327*exp((1/9)*omega*(2*cos(theta)+27))*cosh(omega)*omega^2+1.570796327*exp(.1111111111*omega*(2.*cos(theta)-27.))*sinh(omega)*omega+6.283185307*exp(.1111111111*omega*(2.*cos(theta)+9.))*sinh(omega)*omega^2-1.570796327*exp(-.1111111111*omega*(2.*cos(theta)-9.))*cosh(omega)*omega-1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+9.))*cosh(omega)*omega+.3490658504*exp(.2222222222*omega*(cos(theta)-18.))*omega^2*cos(theta)+1.396263401*exp(.2222222222*omega*(cos(theta)-9.))*omega^3*cos(theta)+.3490658504*exp(.2222222222*omega*(cos(theta)+9.))*omega*cos(theta)-.3490658504*exp(.2222222222*omega*(cos(theta)-9.))*omega*cos(theta)+1.570796327*exp(-(1/9)*omega*(2*cos(theta)-27))*cosh(omega)*omega-4.712388980*exp(-.1111111111*omega*(2.*cos(theta)-9.))*cosh(omega)*omega^2+4.712388980*exp(-.1111111111*omega*(2.*cos(theta)+9.))*cosh(omega)*omega^2+1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+27.))*csgn(omega)*cosh(omega)+1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+27.))*cosh(omega)*omega-1.570796327*exp(-.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*cosh(omega)-1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*cosh(omega)+4.712388980*exp(-.1111111111*omega*(2.*cos(theta)-9.))*sinh(omega)*omega-4.712388980*exp(-.1111111111*omega*(2.*cos(theta)+9.))*sinh(omega)*omega+1.570796327*exp((1/9)*omega*(2*cos(theta)+27))*cosh(omega)*omega-4.712388980*exp(.1111111111*omega*(2.*cos(theta)+9.))*cosh(omega)*omega^2+4.712388980*exp(.1111111111*omega*(2.*cos(theta)-9.))*cosh(omega)*omega^2+1.570796327*exp(.1111111111*omega*(2.*cos(theta)-27.))*csgn(omega)*cosh(omega)+1.570796327*exp(.1111111111*omega*(2.*cos(theta)-27.))*cosh(omega)*omega-1.570796327*exp(.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*cosh(omega)-1.570796327*exp(.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*cosh(omega)+4.712388980*exp(.1111111111*omega*(2.*cos(theta)+9.))*sinh(omega)*omega-4.712388980*exp(.1111111111*omega*(2.*cos(theta)-9.))*sinh(omega)*omega-1.570796327*exp(.1111111111*omega*(2.*cos(theta)+9.))*cosh(omega)*omega-1.570796327*exp(.1111111111*omega*(2.*cos(theta)-9.))*cosh(omega)*omega+1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+27.))*sinh(omega)*omega-1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+27.))*cosh(omega)*omega^2+1.570796327*exp(-(1/9)*omega*(2*cos(theta)-27))*cosh(omega)*omega^2-6.283185307*exp(-.1111111111*omega*(2.*cos(theta)-9.))*cosh(omega)*omega^3-6.283185307*exp(-.1111111111*omega*(2.*cos(theta)+9.))*cosh(omega)*omega^3+.3490658504*exp(-.2222222222*omega*(cos(theta)-9.))*omega^2*cos(theta)-1.745329252*exp(-.2222222222*omega*(cos(theta)+9.))*omega^2*cos(theta)-.3490658504*exp(-.2222222222*omega*(cos(theta)-9.))*omega*cos(theta)+.3490658504*exp(-.2222222222*omega*(cos(theta)+9.))*omega*cos(theta)+6.283185307*exp(-.1111111111*omega*(2.*cos(theta)-9.))*sinh(omega)*omega^2+6.283185307*exp(-.1111111111*omega*(2.*cos(theta)+9.))*sinh(omega)*omega^2-1.570796327*exp(-(1/9)*omega*(2*cos(theta)-27))*sinh(omega)*omega+.3490658504*exp(.2222222222*omega*(cos(theta)-18.))*omega*cos(theta)+1.570796327*exp((1/9)*omega*(2*cos(theta)+27))*csgn(omega)*cosh(omega)-.3490658504*exp(-.2222222222*omega*(cos(theta)+18.))*omega^2*cos(theta)-1.396263401*exp(-.2222222222*omega*(cos(theta)+9.))*omega^3*cos(theta)-1.396263401*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^3*cos(theta)*cosh(omega)+1.396263401*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^3*cos(theta)*cosh(omega)+.3490658504*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^2*cos(theta)*cosh(omega)+1.396263401*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*sinh(omega)-1.396263401*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*sinh(omega)-.3490658504*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*cosh(omega)-.3490658504*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*cosh(omega)-1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+27.))*csgn(omega)*cosh(omega)*omega+1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+27.))*csgn(omega)*sinh(omega)*omega^2+6.283185307*exp(-.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*sinh(omega)*omega^3))*cos((2/9)*omega*sin(theta))*B/(-16.*omega^2+exp(4*omega)-2.+exp(-4.*omega))-(0.3536776512e-1*(-.5235987758*exp(.2222222222*omega*(cos(theta)-9.))-.5235987758*exp(.2222222222*omega*(cos(theta)-18.))-.5235987758*exp(-.2222222222*omega*(cos(theta)-9.))-.5235987758*exp(-(2/9)*omega*cos(theta))+.5235987758*exp((2/9)*omega*cos(theta))+.5235987758*exp(.2222222222*omega*(cos(theta)+9.))+.5235987758*exp(-.2222222222*omega*(cos(theta)+9.))+.5235987758*exp(-.2222222222*omega*(cos(theta)+18.))-2.094395103*exp(-(2/9)*omega*cos(theta))*omega-2.617993879*exp(-(2/9)*omega*cos(theta))*omega^3-3.665191430*exp(-(2/9)*omega*cos(theta))*omega^2+2.094395103*exp((2/9)*omega*cos(theta))*omega+2.617993879*exp((2/9)*omega*cos(theta))*omega^3+3.665191430*exp((2/9)*omega*cos(theta))*omega^2+.5235987758*exp(.2222222222*omega*(cos(theta)-18.))*omega^2-.5235987758*exp(.2222222222*omega*(cos(theta)-9.))*omega^2+.5235987758*exp(.2222222222*omega*(cos(theta)+9.))*omega^2-2.617993879*exp(.2222222222*omega*(cos(theta)-9.))*omega^3+1.047197552*exp(.2222222222*omega*(cos(theta)+9.))*omega+1.047197552*exp(.2222222222*omega*(cos(theta)-9.))*omega-1.047197552*exp(-.2222222222*omega*(cos(theta)-9.))*omega-1.047197552*exp(-.2222222222*omega*(cos(theta)+9.))*omega+.5235987758*exp(-.2222222222*omega*(cos(theta)+9.))*omega^2-.5235987758*exp(-.2222222222*omega*(cos(theta)-9.))*omega^2+2.617993879*exp(-.2222222222*omega*(cos(theta)+9.))*omega^3-.5235987758*exp(-.2222222222*omega*(cos(theta)+18.))*omega^2-.5235987758*exp(.2222222222*omega*(cos(theta)-18.))*omega^3+.5235987758*exp(.2222222222*omega*(cos(theta)+9.))*omega^3+2.094395103*exp(.2222222222*omega*(cos(theta)-9.))*omega^4+.5235987758*exp(-.2222222222*omega*(cos(theta)+18.))*omega^3-2.094395103*exp(-.2222222222*omega*(cos(theta)+9.))*omega^4-.5235987758*exp(-.2222222222*omega*(cos(theta)-9.))*omega^3-2.094395103*exp(-(2/9)*omega*cos(theta))*omega^4+2.094395103*exp((2/9)*omega*cos(theta))*omega^4-.1163552835*exp(-(2/9)*omega*cos(theta))*omega*cos(theta)-.5817764175*exp(-(2/9)*omega*cos(theta))*omega^2*cos(theta)-.3490658505*exp(-(2/9)*omega*cos(theta))*omega^3*cos(theta)-.1163552835*exp((2/9)*omega*cos(theta))*omega*cos(theta)-.5817764175*exp((2/9)*omega*cos(theta))*omega^2*cos(theta)-.3490658505*exp((2/9)*omega*cos(theta))*omega^3*cos(theta)-.1163552835*exp(.2222222222*omega*(cos(theta)+9.))*omega^2*cos(theta)-.3490658505*exp(.2222222222*omega*(cos(theta)-9.))*omega^2*cos(theta)+.1163552835*exp(-.2222222222*omega*(cos(theta)+18.))*omega*cos(theta)+.1163552835*exp(.2222222222*omega*(cos(theta)-18.))*omega^2*cos(theta)-.3490658505*exp(.2222222222*omega*(cos(theta)-9.))*omega^3*cos(theta)-.1163552835*exp(.2222222222*omega*(cos(theta)+9.))*omega*cos(theta)+.1163552835*exp(.2222222222*omega*(cos(theta)-9.))*omega*cos(theta)-.1163552835*exp(-.2222222222*omega*(cos(theta)-9.))*omega^2*cos(theta)-.3490658505*exp(-.2222222222*omega*(cos(theta)+9.))*omega^2*cos(theta)-.1163552835*exp(-.2222222222*omega*(cos(theta)-9.))*omega*cos(theta)+.1163552835*exp(-.2222222222*omega*(cos(theta)+9.))*omega*cos(theta)+.1163552835*exp(.2222222222*omega*(cos(theta)-18.))*omega*cos(theta)+.1163552835*exp(-.2222222222*omega*(cos(theta)+18.))*omega^2*cos(theta)-.3490658505*exp(-.2222222222*omega*(cos(theta)+9.))*omega^3*cos(theta)-.4654211340*exp(-(2/9)*omega*cos(theta))*omega^4*cos(theta)-.4654211340*exp((2/9)*omega*cos(theta))*omega^4*cos(theta)+.4654211340*exp(-.2222222222*omega*(cos(theta)+9.))*omega^4*cos(theta)-.1163552835*exp(.2222222222*omega*(cos(theta)-18.))*omega^3*cos(theta)-.1163552835*exp(.2222222222*omega*(cos(theta)+9.))*omega^3*cos(theta)+.4654211340*exp(.2222222222*omega*(cos(theta)-9.))*omega^4*cos(theta)-.1163552835*exp(-.2222222222*omega*(cos(theta)+18.))*omega^3*cos(theta)-.1163552835*exp(-.2222222222*omega*(cos(theta)-9.))*omega^3*cos(theta)))*cos((2/9)*omega*sin(theta))*E/(-16.*omega^2+exp(4*omega)-2.+exp(-4.*omega))-(0.3536776512e-1*(-3.141592654*exp(.1111111111*omega*(2.*cos(theta)-9.))*F[2]-.5235987758*exp(.1111111111*omega*(2.*cos(theta)-9.))*G[2]-1.570796327*exp(.2222222222*omega*(cos(theta)-9.))*H[3]-.2617993879*exp(.2222222222*omega*(cos(theta)-9.))*J[3]+1.570796327*exp(.2222222222*omega*(cos(theta)-18.))*H[3]+.2617993879*exp(.2222222222*omega*(cos(theta)-18.))*J[3]+1.570796327*exp(.2222222222*omega*(cos(theta)-27.))*H[3]+.2617993879*exp(.2222222222*omega*(cos(theta)-27.))*J[3]+.2617993879*exp(-(2/9)*omega*cos(theta))*J[3]-.2617993879*exp((2/9)*omega*cos(theta))*J[3]+1.570796327*exp(-(2/9)*omega*cos(theta))*H[3]-1.570796327*exp((2/9)*omega*cos(theta))*H[3]+3.141592654*exp(-.1111111111*omega*(2.*cos(theta)-9.))*F[2]+.5235987758*exp(-.1111111111*omega*(2.*cos(theta)-9.))*G[2]+3.141592654*exp(-.1111111111*omega*(2.*cos(theta)+45.))*F[2]+.5235987758*exp(-.1111111111*omega*(2.*cos(theta)+45.))*G[2]-3.141592654*exp(-.1111111111*omega*(2.*cos(theta)+9.))*F[2]+.5235987758*exp(.1111111111*omega*(2.*cos(theta)+9.))*G[2]+3.141592654*exp(.1111111111*omega*(2.*cos(theta)-45.))*F[2]+.5235987758*exp(.1111111111*omega*(2.*cos(theta)-45.))*G[2]+3.141592654*exp(.1111111111*omega*(2.*cos(theta)+9.))*F[2]+4.000000000*10^(-10)*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega^2*cos(theta)*F[2]+12.56637062*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^3*F[2]+12.56637062*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega^3*F[2]+28.27433390*exp(.2222222222*omega*(cos(theta)-27.))*omega^4*H[3]+2.356194492*exp(.2222222222*omega*(cos(theta)-27.))*omega^5*J[3]+5.585053608*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^5*G[2]+50.26548247*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^4*F[2]-12.56637062*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2*F[2]-9.424777961*exp(.2222222222*omega*(cos(theta)-9.))*omega*H[3]-3.141592654*exp(.1111111111*omega*(2.*cos(theta)-27.))*F[2]-.5235987758*exp(.1111111111*omega*(2.*cos(theta)-27.))*G[2]-.5235987758*exp(-.1111111111*omega*(2.*cos(theta)+9.))*G[2]+1.570796327*exp(-.2222222222*omega*(cos(theta)+9.))*H[3]+.2617993879*exp(-.2222222222*omega*(cos(theta)+9.))*J[3]-1.570796327*exp(-.2222222222*omega*(cos(theta)+18.))*H[3]-.2617993879*exp(-.2222222222*omega*(cos(theta)+18.))*J[3]-1.570796327*exp(-.2222222222*omega*(cos(theta)+27.))*H[3]-.2617993879*exp(-.2222222222*omega*(cos(theta)+27.))*J[3]-3.141592654*exp(-.1111111111*omega*(2.*cos(theta)+27.))*F[2]-.5235987758*exp(-.1111111111*omega*(2.*cos(theta)+27.))*G[2]-1.396263402*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^4*G[2]-5.497787146*exp(.2222222222*omega*(cos(theta)-9.))*omega^3*J[3]-14.13716694*exp(.2222222222*omega*(cos(theta)-27.))*omega^2*H[3]-4.712388982*exp(.2222222222*omega*(cos(theta)-27.))*omega^3*H[3]-4.188790206*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^3*G[2]+23.56194490*exp(.2222222222*omega*(cos(theta)-9.))*omega^3*H[3]+47.12388982*exp(.2222222222*omega*(cos(theta)-18.))*omega^4*H[3]+3.141592654*exp(.2222222222*omega*(cos(theta)-18.))*omega^4*J[3]+37.69911184*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^3*F[2]+65.97344574*exp(.2222222222*omega*(cos(theta)-9.))*omega^4*H[3]-3.141592654*exp(.2222222222*omega*(cos(theta)-9.))*omega^4*J[3]-2.356194492*exp(.2222222222*omega*(cos(theta)-9.))*omega^5*J[3]+2.356194492*exp(.2222222222*omega*(cos(theta)-18.))*omega^5*J[3]-1.396263402*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^4*G[2]-25.13274122*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^2*F[2]+1.047197552*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^2*G[2]+15.70796327*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega*F[2]+.5235987758*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega*G[2]-2.617993879*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega*G[2]+3.141592654*exp(.2222222222*omega*(cos(theta)-27.))*omega*H[3]+.5235987758*exp(.2222222222*omega*(cos(theta)-27.))*omega*J[3]-3.141592654*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega*F[2]-12.56637062*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^3*F[2]-4.188790206*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^3*G[2]-1.570796327*exp(.2222222222*omega*(cos(theta)-9.))*omega*J[3]+32.98672287*exp(.2222222222*omega*(cos(theta)-18.))*omega^3*H[3]+.7853981636*exp(.2222222222*omega*(cos(theta)-18.))*omega^3*J[3]-.5235987758*exp(.2222222222*omega*(cos(theta)-18.))*omega^2*J[3]-4.188790206*exp(.2222222222*omega*(cos(theta)-9.))*omega^2*J[3]-17.27875960*exp(.2222222222*omega*(cos(theta)-18.))*omega^2*H[3]-5.235987758*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2*G[2]-10.99557429*exp(.2222222222*omega*(cos(theta)-9.))*omega^2*H[3]+.5235987758*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega*G[2]+12.56637062*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2*F[2]-1.800000000*10^(-9)*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega^2*F[2]-1.800000000*10^(-9)*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega^2*F[2]-4.000000000*10^(-10)*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega^2*cos(theta)*F[2]-50.26548247*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^4*F[2]+1.047197552*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2*G[2]-1.047197552*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega^2*G[2]-113.0973355*exp(.2222222222*omega*(cos(theta)-9.))*omega^5*H[3]-113.0973355*exp(.2222222222*omega*(cos(theta)-18.))*omega^5*H[3]+1.570796327*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega*G[2]-9.424777961*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega*F[2]-3.141592654*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega*F[2]-.7853981636*exp(.2222222222*omega*(cos(theta)-27.))*omega^3*J[3]+1.396263402*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^4*G[2]+1.396263402*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega^4*G[2]-9.424777964*exp(.2222222222*omega*(cos(theta)-9.))*omega^6*J[3]-9.424777964*exp(.2222222222*omega*(cos(theta)-18.))*omega^6*J[3]-5.585053608*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^5*G[2]+50.26548247*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^4*F[2]+5.585053608*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^5*G[2]-28.27433390*exp(-.2222222222*omega*(cos(theta)+27.))*omega^4*H[3]-2.356194492*exp(-.2222222222*omega*(cos(theta)+27.))*omega^5*J[3]+.7853981636*exp(-.2222222222*omega*(cos(theta)+27.))*omega^3*J[3]+1.396263402*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^4*G[2]+1.396263402*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega^4*G[2]-12.56637062*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2*F[2]+9.424777961*exp(-.2222222222*omega*(cos(theta)+9.))*omega*H[3]+1.570796327*exp(-.2222222222*omega*(cos(theta)+9.))*omega*J[3]-32.98672287*exp(-.2222222222*omega*(cos(theta)+18.))*omega^3*H[3]-.7853981636*exp(-.2222222222*omega*(cos(theta)+18.))*omega^3*J[3]+.5235987758*exp(-.2222222222*omega*(cos(theta)+18.))*omega^2*J[3]+4.188790206*exp(-.2222222222*omega*(cos(theta)+9.))*omega^2*J[3]+17.27875960*exp(-.2222222222*omega*(cos(theta)+18.))*omega^2*H[3]-5.235987758*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2*G[2]+10.99557429*exp(-.2222222222*omega*(cos(theta)+9.))*omega^2*H[3]+.5235987758*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega*G[2]+12.56637062*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2*F[2]+113.0973355*exp(-.2222222222*omega*(cos(theta)+9.))*omega^5*H[3]+113.0973355*exp(-.2222222222*omega*(cos(theta)+18.))*omega^5*H[3]+1.047197552*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2*G[2]-1.047197552*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega^2*G[2]-5.585053608*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^5*G[2]-50.26548247*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^4*F[2]+9.424777964*exp(-.2222222222*omega*(cos(theta)+9.))*omega^6*J[3]+9.424777964*exp(-.2222222222*omega*(cos(theta)+18.))*omega^6*J[3]-3.141592654*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega*F[2]+1.570796327*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega*G[2]-9.424777961*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega*F[2]+2.356194492*exp(-.2222222222*omega*(cos(theta)+9.))*omega^5*J[3]-2.356194492*exp(-.2222222222*omega*(cos(theta)+18.))*omega^5*J[3]-1.396263402*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^4*G[2]-65.97344574*exp(-.2222222222*omega*(cos(theta)+9.))*omega^4*H[3]+3.141592654*exp(-.2222222222*omega*(cos(theta)+9.))*omega^4*J[3]-47.12388982*exp(-.2222222222*omega*(cos(theta)+18.))*omega^4*H[3]-3.141592654*exp(-.2222222222*omega*(cos(theta)+18.))*omega^4*J[3]+37.69911184*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^3*F[2]-4.188790206*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^3*G[2]-23.56194490*exp(-.2222222222*omega*(cos(theta)+9.))*omega^3*H[3]+5.497787146*exp(-.2222222222*omega*(cos(theta)+9.))*omega^3*J[3]+14.13716694*exp(-.2222222222*omega*(cos(theta)+27.))*omega^2*H[3]+4.712388982*exp(-.2222222222*omega*(cos(theta)+27.))*omega^3*H[3]-1.396263402*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^4*G[2]-12.56637062*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^3*F[2]-4.188790206*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^3*G[2]-3.141592654*exp(-.2222222222*omega*(cos(theta)+27.))*omega*H[3]-.5235987758*exp(-.2222222222*omega*(cos(theta)+27.))*omega*J[3]-3.141592654*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega*F[2]-2.617993879*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega*G[2]+15.70796327*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega*F[2]+.5235987758*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega*G[2]-25.13274122*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^2*F[2]+1.047197552*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^2*G[2]+12.56637062*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^3*F[2]+12.56637062*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega^3*F[2]+1.047197551*exp(-(2/9)*omega*cos(theta))*omega^2*cos(theta)*H[3]+.1745329253*exp(-(2/9)*omega*cos(theta))*omega^2*cos(theta)*J[3]-5.235987755*exp(-(2/9)*omega*cos(theta))*omega^3*cos(theta)*H[3]+.1745329253*exp(-(2/9)*omega*cos(theta))*omega^3*cos(theta)*J[3]+.5235987760*exp(-(2/9)*omega*cos(theta))*omega^5*cos(theta)*J[3]+6.283185310*exp(-(2/9)*omega*cos(theta))*omega^4*cos(theta)*H[3]+.3490658504*exp(-(2/9)*omega*cos(theta))*omega*cos(theta)*H[3]+0.5817764175e-1*exp(-(2/9)*omega*cos(theta))*omega*cos(theta)*J[3]+1.047197551*exp((2/9)*omega*cos(theta))*omega^2*cos(theta)*H[3]+.1745329253*exp((2/9)*omega*cos(theta))*omega^2*cos(theta)*J[3]-5.235987755*exp((2/9)*omega*cos(theta))*omega^3*cos(theta)*H[3]+.1745329253*exp((2/9)*omega*cos(theta))*omega^3*cos(theta)*J[3]+.5235987760*exp((2/9)*omega*cos(theta))*omega^5*cos(theta)*J[3]+6.283185310*exp((2/9)*omega*cos(theta))*omega^4*cos(theta)*H[3]+.3490658504*exp((2/9)*omega*cos(theta))*omega*cos(theta)*H[3]+0.5817764175e-1*exp((2/9)*omega*cos(theta))*omega*cos(theta)*J[3]+6.283185307*exp(-(2/9)*omega*cos(theta))*omega*H[3]+1.047197552*exp(-(2/9)*omega*cos(theta))*omega*J[3]+.7853981636*exp(-(2/9)*omega*cos(theta))*omega^3*J[3]-4.712388980*exp(-(2/9)*omega*cos(theta))*omega^2*H[3]+1.570796327*exp(-(2/9)*omega*cos(theta))*omega^2*J[3]-23.56194490*exp(-(2/9)*omega*cos(theta))*omega^3*H[3]+2.356194492*exp(-(2/9)*omega*cos(theta))*omega^5*J[3]+28.27433390*exp(-(2/9)*omega*cos(theta))*omega^4*H[3]-6.283185307*exp((2/9)*omega*cos(theta))*omega*H[3]-1.047197552*exp((2/9)*omega*cos(theta))*omega*J[3]-.7853981636*exp((2/9)*omega*cos(theta))*omega^3*J[3]+4.712388980*exp((2/9)*omega*cos(theta))*omega^2*H[3]-1.570796327*exp((2/9)*omega*cos(theta))*omega^2*J[3]+23.56194490*exp((2/9)*omega*cos(theta))*omega^3*H[3]-2.356194492*exp((2/9)*omega*cos(theta))*omega^5*J[3]-28.27433390*exp((2/9)*omega*cos(theta))*omega^4*H[3]+2.792526803*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*F[2]-.2327105670*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*G[2]+.3490658504*exp(.2222222222*omega*(cos(theta)-18.))*omega^2*cos(theta)*H[3]+2.792526804*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega^3*cos(theta)*F[2]-25.13274123*exp(-.2222222222*omega*(cos(theta)+18.))*omega^5*cos(theta)*H[3]-.5235987760*exp(-.2222222222*omega*(cos(theta)+18.))*omega^5*cos(theta)*J[3]-11.17010721*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^4*cos(theta)*F[2]+.3102807560*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^4*cos(theta)*G[2]-27.22713633*exp(-.2222222222*omega*(cos(theta)+9.))*omega^4*cos(theta)*H[3]+.6981317013*exp(-.2222222222*omega*(cos(theta)+9.))*omega^4*cos(theta)*J[3]+.5235987760*exp(-.2222222222*omega*(cos(theta)+27.))*omega^5*cos(theta)*J[3]-1.047197551*exp(-.2222222222*omega*(cos(theta)+27.))*omega^3*cos(theta)*H[3]-.1745329253*exp(-.2222222222*omega*(cos(theta)+27.))*omega^3*cos(theta)*J[3]+6.283185310*exp(-.2222222222*omega*(cos(theta)+27.))*omega^4*cos(theta)*H[3]-1.241123024*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^5*cos(theta)*G[2]-11.17010721*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^4*cos(theta)*F[2]-.3102807560*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^4*cos(theta)*G[2]-1.047197551*exp(-.2222222222*omega*(cos(theta)+27.))*omega^2*cos(theta)*H[3]-.1745329253*exp(-.2222222222*omega*(cos(theta)+27.))*omega^2*cos(theta)*J[3]-2.792526803*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*F[2]-.6981317013*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*G[2]+5.585053605*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^2*cos(theta)*F[2]+.3490658504*exp(-.2222222222*omega*(cos(theta)+18.))*omega^2*cos(theta)*H[3]+0.5817764175e-1*exp(-.2222222222*omega*(cos(theta)+18.))*omega^2*cos(theta)*J[3]+2.094395103*exp(-.2222222222*omega*(cos(theta)+9.))*omega^6*cos(theta)*J[3]-2.094395103*exp(-.2222222222*omega*(cos(theta)+18.))*omega^6*cos(theta)*J[3]-1.241123024*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^5*cos(theta)*G[2]+25.13274123*exp(-.2222222222*omega*(cos(theta)+9.))*omega^5*cos(theta)*H[3]-.5235987760*exp(-.2222222222*omega*(cos(theta)+9.))*omega^5*cos(theta)*J[3]-.6981317013*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega*cos(theta)*F[2]-.1163552835*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega*cos(theta)*G[2]-2.792526803*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*F[2]+.2327105670*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*G[2]-.3490658504*exp(-.2222222222*omega*(cos(theta)+18.))*omega*cos(theta)*H[3]-0.5817764175e-1*exp(-.2222222222*omega*(cos(theta)+18.))*omega*cos(theta)*J[3]-.3490658504*exp(-.2222222222*omega*(cos(theta)+27.))*omega*cos(theta)*H[3]-0.5817764175e-1*exp(-.2222222222*omega*(cos(theta)+27.))*omega*cos(theta)*J[3]-.6981317013*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)*F[2]-.1163552835*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)*G[2]+.3490658504*exp(-.2222222222*omega*(cos(theta)+9.))*omega*cos(theta)*H[3]+0.5817764175e-1*exp(-.2222222222*omega*(cos(theta)+9.))*omega*cos(theta)*J[3]-.1163552835*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)*G[2]-.6981317013*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega*cos(theta)*F[2]+2.792526804*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^3*cos(theta)*F[2]+9.424777960*exp(.2222222222*omega*(cos(theta)-18.))*omega^3*cos(theta)*H[3]-2.094395101*exp(.2222222222*omega*(cos(theta)-18.))*omega^4*cos(theta)*H[3]+.6981317013*exp(.2222222222*omega*(cos(theta)-18.))*omega^4*cos(theta)*J[3]+2.443460953*exp(.2222222222*omega*(cos(theta)-9.))*omega^2*cos(theta)*H[3]+.4072434923*exp(.2222222222*omega*(cos(theta)-9.))*omega^2*cos(theta)*J[3]-2.792526804*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^3*cos(theta)*F[2]-.6981317013*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)*F[2]-.1745329253*exp(.2222222222*omega*(cos(theta)-27.))*omega^2*cos(theta)*J[3]+2.792526803*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*F[2]+.6981317013*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*G[2]-5.585053605*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^2*cos(theta)*F[2]-.2327105670*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^2*cos(theta)*G[2]+2.792526803*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^3*cos(theta)*F[2]-.9308422680*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^3*cos(theta)*G[2]+.3102807560*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega^4*cos(theta)*G[2]-.3102807560*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^4*cos(theta)*G[2]-.2327105670*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega^2*cos(theta)*G[2]-13.96263402*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^3*cos(theta)*F[2]+.9308422680*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^3*cos(theta)*G[2]+5.235987755*exp(.2222222222*omega*(cos(theta)-9.))*omega^3*cos(theta)*H[3]+.5235987760*exp(.2222222222*omega*(cos(theta)-18.))*omega^3*cos(theta)*J[3]+.8726646260*exp(.2222222222*omega*(cos(theta)-9.))*omega^3*cos(theta)*J[3]+2.094395103*exp(.2222222222*omega*(cos(theta)-9.))*omega^6*cos(theta)*J[3]-2.094395103*exp(.2222222222*omega*(cos(theta)-18.))*omega^6*cos(theta)*J[3]+1.241123024*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^5*cos(theta)*G[2]+25.13274123*exp(.2222222222*omega*(cos(theta)-9.))*omega^5*cos(theta)*H[3]-.5235987760*exp(.2222222222*omega*(cos(theta)-9.))*omega^5*cos(theta)*J[3]-25.13274123*exp(.2222222222*omega*(cos(theta)-18.))*omega^5*cos(theta)*H[3]-.5235987760*exp(.2222222222*omega*(cos(theta)-18.))*omega^5*cos(theta)*J[3]+11.17010721*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^4*cos(theta)*F[2]-.3102807560*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^4*cos(theta)*G[2]-27.22713633*exp(.2222222222*omega*(cos(theta)-9.))*omega^4*cos(theta)*H[3]+.6981317013*exp(.2222222222*omega*(cos(theta)-9.))*omega^4*cos(theta)*J[3]+.5235987760*exp(.2222222222*omega*(cos(theta)-27.))*omega^5*cos(theta)*J[3]-1.047197551*exp(.2222222222*omega*(cos(theta)-27.))*omega^3*cos(theta)*H[3]-.1745329253*exp(.2222222222*omega*(cos(theta)-27.))*omega^3*cos(theta)*J[3]+6.283185310*exp(.2222222222*omega*(cos(theta)-27.))*omega^4*cos(theta)*H[3]+1.241123024*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^5*cos(theta)*G[2]+11.17010721*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^4*cos(theta)*F[2]+.3102807560*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^4*cos(theta)*G[2]-1.047197551*exp(.2222222222*omega*(cos(theta)-27.))*omega^2*cos(theta)*H[3]-2.792526804*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega^3*cos(theta)*F[2]+.8726646260*exp(-.2222222222*omega*(cos(theta)+9.))*omega^3*cos(theta)*J[3]+.6981317013*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)*F[2]+.1163552835*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)*G[2]+.6981317013*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega*cos(theta)*F[2]+.1163552835*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega*cos(theta)*G[2]-.1163552835*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega*cos(theta)*G[2]+.2327105670*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^2*cos(theta)*G[2]-2.792526803*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^3*cos(theta)*F[2]+.9308422680*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^3*cos(theta)*G[2]-.3102807560*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega^4*cos(theta)*G[2]+.3102807560*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^4*cos(theta)*G[2]+.2327105670*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega^2*cos(theta)*G[2]+13.96263402*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^3*cos(theta)*F[2]-.9308422680*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^3*cos(theta)*G[2]+5.235987755*exp(-.2222222222*omega*(cos(theta)+9.))*omega^3*cos(theta)*H[3]+.5235987760*exp(-.2222222222*omega*(cos(theta)+18.))*omega^3*cos(theta)*J[3]+.6981317013*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega*cos(theta)*F[2]+.1163552835*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega*cos(theta)*G[2]+9.424777960*exp(-.2222222222*omega*(cos(theta)+18.))*omega^3*cos(theta)*H[3]-2.094395101*exp(-.2222222222*omega*(cos(theta)+18.))*omega^4*cos(theta)*H[3]+.6981317013*exp(-.2222222222*omega*(cos(theta)+18.))*omega^4*cos(theta)*J[3]+2.443460953*exp(-.2222222222*omega*(cos(theta)+9.))*omega^2*cos(theta)*H[3]+.4072434923*exp(-.2222222222*omega*(cos(theta)+9.))*omega^2*cos(theta)*J[3]+0.5817764175e-1*exp(.2222222222*omega*(cos(theta)-18.))*omega^2*cos(theta)*J[3]+.6981317013*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)*F[2]+.1163552835*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)*G[2]+.3490658504*exp(.2222222222*omega*(cos(theta)-9.))*omega*cos(theta)*H[3]+0.5817764175e-1*exp(.2222222222*omega*(cos(theta)-9.))*omega*cos(theta)*J[3]-.3490658504*exp(.2222222222*omega*(cos(theta)-18.))*omega*cos(theta)*H[3]-0.5817764175e-1*exp(.2222222222*omega*(cos(theta)-18.))*omega*cos(theta)*J[3]-.3490658504*exp(.2222222222*omega*(cos(theta)-27.))*omega*cos(theta)*H[3]-0.5817764175e-1*exp(.2222222222*omega*(cos(theta)-27.))*omega*cos(theta)*J[3]))*cos((2/9)*omega*sin(theta))/(-16.*omega^2+exp(4*omega)-2.+exp(-4.*omega))]:
t:=coeff(t1,A);
 

 

## but i'm getting the error "Error, unable to compute coeff". Please help me!

 

 

1 2 3 4 5 6 7 Last Page 1 of 1755