# Question:How do I sovle Double integration of function containing imaginary term as well

## Question:How do I sovle Double integration of function containing imaginary term as well

Maple 2018

restart;

##########  omega and theta are variables,where J[3],F[2],H[2],etc are constants.

#### I tried with "evlf" and "evlc" command but maple was not ready to provide the solution,please help me to solve this

t1:=-1/(-16.*omega^2+exp(-4*omega)+exp(4*omega)-2.)*(-(0.5817764173e-1*I)*exp((2/9)*omega*cos(theta))*omega^5*cos(theta)*J[3]-(.6981317009*I)*exp((2/9)*omega*cos(theta))*omega^4*cos(theta)*H[3]-0.4524927691e-1*exp(.2222222222*omega*(cos(theta)-9.))*cos(theta)*omega^3*G[3]-.6205615118*exp(.1111111111*omega*(2.*cos(theta)-9.))*cos(theta)*omega^3*H[2]+.6205615118*exp(.1111111111*omega*(2.*cos(theta)-9.))*cos(theta)*omega^3*F[2]+.9308422676*exp(.2222222222*omega*(cos(theta)-9.))*cos(theta)*omega^4*H[3]-.1034269187*exp(.1111111111*omega*(2.*cos(theta)-9.))*cos(theta)*omega^3*G[2]-0.7757018900e-1*exp(.1111111111*omega*(2.*cos(theta)-9.))*cos(theta)*omega^2*G[2]-0.7757018898e-1*exp(.2222222222*omega*(cos(theta)-9.))*cos(theta)*omega^4*J[3]-0.9696273622e-1*exp(.2222222222*omega*(cos(theta)-9.))*cos(theta)*omega^3*J[3]-0.4524927691e-1*exp(.2222222222*omega*(cos(theta)-9.))*cos(theta)*omega^2*J[3]-.2714956613*exp(.2222222222*omega*(cos(theta)-9.))*cos(theta)*omega^2*H[3]-0.7757018898e-1*exp(.2222222222*omega*(cos(theta)-9.))*cos(theta)*omega^4*G[3]+0.8726646261e-1*exp((2/9)*omega*cos(theta))*omega^3*J[3])*cos((2/9)*omega*sin(theta));

t2:=int(int(t1,omega=0..infinity),theta=0..2*Pi);

﻿