# Question:how do i make ( isentropic-process) ?

## Question:how do i make ( isentropic-process) ?

Maple 15

what is the wrong in this operations for isentropic process ( isentropic-process)

Restart: with(RealDomain) : interface(dispalyprecision=4) : ; Isentropical := proc(N,v) local K,PTR,KM1,KP1,GO, M,MS,C,PPT,TTT,RRT,AAS,eq,o ; K : = G() : KM1 : = k - 1 : KP1 : = K + 1 : GO := 1 : If N=1 then M := v Elif N=2 then PPT := v : M := sqrt ( 2 * (PPT^(-KM/K) -1 ) : Elif N=3 then MS := v : M := sqrt ( 1 / (KP1/ (2*MS^2) –KM1/2 ) : Elif N=4 then C := v : M := sqrt ( 2 / (KM1* (1 /(C^2) -1 )) ) : Elif N=5 then TTT := v : M := sqrt ( 2 * (1/TTT-1 ) / KM1 : Elif N=6 then RRT := v : M := sqrt ( 2 * (1/RRT^KM1 -1 ) / KM1 : Elif N=7 then AAS := v : eq :=AAS- (2*(1+KM1*M^2/2)/ KP1) ^ (KP1/ (2*KM1)) /M : M := fsolve(eq,M,0..1) : GO :=2 : Elif N=8 then AAS := v : eq :=AAS- (2*(1+KM1*M^2/2)/ KP1) ^ (KP1/ (2*KM1)) /M : M := fsolve(eq,M,1..infinity) : GO :=2 : Fi:fi GO<>2 then ASS := (2 *(1+ KM1*M^2/2/KP1) ^ (KP1/ (2*KM1)) /M fi: PTR := (1+ KM1*M^2/2/KP1) : PPT := PTR^(-K/KM1) : TTT:=PTR^ (-1) : RRT:+PTR^(-1/KM1) : If N <> 3 then MS := sqrt ( KP1 / ( 2 / ( M^2)+KM1) ) If N <> 3 then C := sqrt( 1 / (2 / (KM1*M^2) + 1 ) ) O := evalf([m,1./PPT,MS,C,1./TTT,1./RRT,AAS]) end : irp := proc (N, v) local f; f:=Isentropic1(N,v) : printf(cat(`% 9.4f `\$7, ` \ n`) , f[ii\$ii=1..7]) end : G := ( ) -> 1.4 : For mi form .1 to .5 do irp(1.mi) od : > > > Eq := table( [ (M2) = M2 , (MS2) = (K+1) /2 (2 / ( M2)+ (K-1) ) (C2) = 1 / (2 / (K-1)*M2+1 ) (PP0) = (1+(K-1)*M2/2)^(-K/(K-1) ) (RR0) = (1+(K-1)*M2/2)^(-1/(K-1) ) (TT0) = (1+(K-1)*M2/2)^(-1) (AAS) = (2 *(1 +(K-1)*M2/2 ) / (K+1) )^( (k-1) /(2*(k-1)))/ squt(M2) ]) : if vL=M then M2v := solve ( M2 -Eq[M2 ] , M2 ) : M2v := eval(M2v ,M2 = VR^2 ) : elif vL=MS then M2v := solve( M2 -Eq[MS2 ] , M2 ) : M2v := eval(M2v ,MS2 = VR^2 ) : elif vL=C then M2v := solve( M2 -Eq[C2 ] , M2 ) : M2v := eval(M2v ,C2 = VR^2 ) : elif vL=PP0 then M2v := solve( M2 -Eq[PP0] , M2 ) : M2v := eval(M2v ,PP0 = VR ) : elif vL=RR0 then M2v := solve( M2 -Eq[RR0] , M2 ) : M2v := eval(M2v ,RR0 = VR ) : elif vL=TT0 then M2v := solve( M2 -Eq[TT0] , M2 ) : M2v := eval(M2v ,TT0 = VR ) : elif vL=AASsub then M2v := fsolve( M2 -Eq[AAS] , M2 ) : M2 :=0..1 : elif vL=AASup then M2v := fsolve( M2 -Eq[AAS] , M2 ) : M2 :=1..infinity : fi: Eqsva1 := eva1(Eq, M2 = M2v) : Eqava1 [M] := sqrt(EqsVa1[M2] ) : Eqsva1[MS] := sqrt(EqsVa1[MS2] ) : Eqava1 [C] := sqrt(EqsVa1[C2] ) : 1var := [M, MS, C, PP0, RR0, TT0, AAS] : [seq(1var[i]=EqsVA1[1var[i] ] , I=1…nope(1var))] end: Egs :=[M=0.5, MS=0.53452, C=0.2182, P0P=0.84302, RR0=0.88517, TT0=0.95238, AASsub=1.33985, AASsup=0.95238] : For i from 1 to nops(Egs) do print(I,Isentropic2(Egs[i])) od : (process)

﻿