MaplePrimes Questions

I have been performing symbolic solutions on netlists using Syrup, and then performing worst-case analysis on the result using the ranges of all the variables.

I would like to add ifelse and/or piecewise linear expressions to my Syrup models. Using symbolic analysis, I can get multiple sets of results from Syrup based on the conditional statements. I'm thinking that if I could put Syrup solve inside my worst case analysis procedure and submit numeric values to Syrup, that the conditional expressions could be solved for.

I think there is something similar that can be done with Dynamic Systems.

Does this request make sense? Is it possible?

The expression

f := arctan(y, x)+arctan(-y, x)

arctan(y, x)+arctan(-y, x)

(1)

simplifies to zero in the real range if y=0 is excluded.

x < 0, y::real, y <> 0; `assuming`([simplify(f), is(f = 0)], [%])

0, true

(2)

x >= 0, y::real, y <> 0; `assuming`([simplify(f), is(f = 0)], [%])

0, true

(3)

Combining the above assumptions as attempted bellow does not simplify to zero

x::real, y::real, y <> 0; `assuming`([simplify(f), is(f = 0)], [%])

arctan(y, x)+arctan(-y, x), FAIL

(4)

`or`(x < 0, x >= 0), y::real, y <> 0; `assuming`([simplify(f), is(f = 0)], [%])

arctan(y, x)+arctan(-y, x), FAIL

(5)

Or(x < 0, x >= 0), y::real, y <> 0; `assuming`([simplify(f), is(f = 0)], [%])

arctan(y, x)+arctan(-y, x), FAIL

(6)

`and`(-infinity <= x, x <= infinity), y::real, y <> 0; `assuming`([simplify(f), is(f = 0)], [%])

arctan(y, x)+arctan(-y, x), FAIL

(7)

interface(version)

`Standard Worksheet Interface, Maple 2022.0, Windows 10, March 8 2022 Build ID 1599809`

(8)

 

 

Download assuming_and_differently_combined_inequalities.mw

I'm a newbie to maple, I want to get a group that meeting the criteria with this code:

with(GroupTheory);
G := SymmetricGroup(6);

do

H := Subgroup({RandomElement(G),RandomElement(G)}, G);

C := Core(H, G);

until is(GroupOrder(C) <> 1) and is(GroupOrder(C) <> GroupOrder(H));
H;
C;

But it's seem I cannot construct subgroup. so I adjust it into:

with(GroupTheory);
G := SymmetricGroup(6);

do

H := Subgroup({[[rand(1 .. 6)]], [[rand(1 .. 6), rand(1 .. 6)], [rand(1 .. 6), rand(1 .. 6)]]}, G);

C := Core(H, G);

until is(GroupOrder(C) <> 1) and is(GroupOrder(C) <> GroupOrder(H));
H;
C;

However, it is clear that random numbers do not always satisfy the rules of permutation. So how can I use the loop to generate a random subgroup that satisfies the condition?

Hi!

I am wondering how maple did this calculation:

Show_Solution_Complex_Numbers.mw

How can I ask maple to show its work in this calculation?

how we can solve it
restart; int(log(sqrt(2*t))*e^(-t), t = 0 .. infinity);

How to adapt this program C to Maple ? Thank you.

Sub Les_Vendredi_13()
Dim Annee As Integer
Dim Mois As Byte
Dim Cellule As String
Dim Compteur As Byte
Cellule = "B2"
Compteur = 1
Columns("B:B")
.ClearContents For Annee = 1949 To 2009
For Mois = 1 To 12 If Weekday(Mois & "/13/" & Annee) = 6
Then Range(Cellule).Offset(Compteur, 0) = "13-" & Format(Mois, "00") & "-" & Annee Compteur = Compteur + 1 End
If Next Mois Next Annee Range(Cellule).Offset(Compteur, 0) = "Nbre = " & Compteur - 1
End Sub

Can anyone tell me what this means? (workfile maple.file.mw)

 

I expected Maple Flow 2022 to return return 2 pi Radians as the answer to the below ... but instead it returned 360 arcdeg.

360 arcdeg * (pi rad/180 arcdeg) =

Question: Why don't the "arcdeg" units cancel out and Maple Flow 2022 return the answer 2 pi rad ?
I expected Maple Flow to handle the units by cancelling out the "arcdeg" units and return 2 pi rad as the answer.

(Note: in this post I placed a space between the numbers and the units for clarity ...
understanding that in Flow you actually enter the number, then press Ctl+Space+U then enter the unit.)

Thanks for any help.

Hello,

maybe some of you can help me with this. 

In the equations are variables F_[i][j] and GG_[i][j] (for i=1,2,3 and j=1,2,3). There are 5 Equations that equal 0 and 1 Equation that equals Q(given). 
Is there a better way to try and solve this equations? 

Thank you

Hello everyone!

I've imported some values I gathered in a dat file, from Python, with the ImportMatrix, to Maple. This procedure gave me a 602x2 matrix, with the elements of the first column being the values of the horizontal plot and the ones of the second column, the values of the vertical plot.

The code that gave the dat file also works fine when I plot it in Python, the problem is that I need to do the same plot in Maple. I tried using differents commands of the plots package, but nothing seens to work

So my question is, anyone knows how can I counterplot the elements of a matrix or do a different approach for the plot of the dat file?

Any help with the problem will be appreciated and if any more information is necessary, please let me know. Thanks!

Hello Everyone;

I have 2D domain meshing defined. I need to plot it like figure given at end. I need to heighlights boundry and ineer points saperately and need to mention the points on it. Domain and mesh is given in Maple file attched. Kindly guide me.

Thanks

Download Question2.mw

Hello,

How do we make the maple to produce as general solutions as possible for ode/pde ??

For example, I have the following ODE with initial conditions (cons);

eq:=diff(x[0](tau), tau) + x[0](tau) - diff(y[0](tau), tau) - y[0](tau)=0;

cons:= x[0](0)=1 , y[0](0)=1;

The general solution for this ode is as

x[0](tau) = y[0](tau) = exp( - tau ), 

but maple returns nothing.

when I use:

dsolve({cons, eq}, [v[0](tau), theta[0](tau)]);

Thanks.

Hi guys,

suppose we have metric in curve geometry such as ds2=A(r)*dt^2-B(r)*dr^2+r^2*dtheta^2+r^2*sin^2(theta)*dphi^2.

how we can calculate and find exact not symbolic different components of contravariant derivative of contravariant derivative of Weyl tensor and Riemann tensor.

with best regards,

Hello Everyone;

Hope you are fine. I am solving system of odes using rk-4 method. For this purpose I formulate the "residual" (on maple file) which is further function of "x" and "y". With the help of discritization point further I convert "residual" into system of ode's. Then i used "sys111 := solve(odes_Combine, `~`[diff](var, t))" to simplify the system. Finnally i applied RK-1. Code is pasted and attached. This all process is for "N=4". When i increase the value of "N", number of Odes increase accordingly. With increasing value of "N" the comand "sys111 := solve(odes_Combine, `~`[diff](var, t))" taking a lot of time due to heavy computation. Is that any way to proceed without this comand for rk-1?

Question1.mw

 


 

restart; with(PDEtools, Solve); with(LinearAlgebra); with(plots); DD := 30; Digits := DD; N := 4; nu := 1.0; t0, tf := 0, 1; Ntt := 10; h := evalf((tf-t0)/(Ntt-1)); xmin := 0; xmax := Pi; `&Delta;xx` := 1.0*xmax/N; ymin := 0; ymax := xmax; `&Delta;yy` := 1.0*ymax/N

0, 1

 

.111111111111111111111111111111

 

.785398163397448309615660845820

 

.785398163397448309615660845820

(1)

residual := 1.000000000*(diff(A[0, 0](t), t))-32.00000000*A[2, 0](t)-32.00000002*A[0, 2](t)+(diff(A[1, 1](t), t))*(4.000000001-8.000000003*y-8.000000003*x+16.00000000*x*y)+(diff(A[1, 0](t), t))*(-2.000000000+4.000000000*x)+(diff(A[0, 3](t), t))*(-4.000000000+40.00000000*y-95.99999994*y^2+64.00000001*y^3)+(diff(A[0, 2](t), t))*(3.000000000-16.00000001*y+16.00000001*y^2)+(diff(A[0, 1](t), t))*(-2.000000001+4.000000000*y)-A[3, 3](t)*(768.0000000-7680.000000*y+18432.00000*y^2-12288.00000*y^3-1536.000000*x+15360.00000*x*y-36863.99998*x*y^2+24576.00000*x*y^3)-A[3, 2](t)*(-576.0000002+3072.000000*y-3072.000000*y^2+1152.000000*x-6144.000000*x*y+6144.000000*x*y^2)-A[3, 1](t)*(384.0000000-768.0000000*y-768.0000006*x+1536.000000*x*y)-A[3, 0](t)*(-192.0000000+384.0000000*x)-A[2, 3](t)*(-128.0000000+1280.000000*y-3072.000000*y^2+2048.000000*y^3)-A[2, 2](t)*(96.00000000-512.0000002*y+512.0000002*y^2)-A[2, 1](t)*(-64.00000002+128.0000000*y)-A[3, 3](t)*(767.9999998-1536.000000*y-7679.999998*x+15360.00000*x*y+18432.00000*x^2-36864.00000*x^2*y-12288.00000*x^3+24576.00000*x^3*y)-A[2, 3](t)*(-575.9999998+1152.000000*y+3072.000000*x-6144.000000*x*y-3072.000000*x^2+6144.000000*x^2*y)-A[3, 2](t)*(-128.0000000+1280.000000*x-3072.000000*x^2+2048.000000*x^3)-A[1, 2](t)*(-64.00000002+128.0000000*x)-A[1, 3](t)*(384.0000000-768.0000000*y-767.9999998*x+1536.000000*x*y)-A[2, 2](t)*(96.00000004-512.0000002*x+512.0000002*x^2)+(diff(A[3, 3](t), t))*(16.00000000-160.0000000*y+383.9999999*y^2-256.0000000*y^3-160.0000000*x+1600.000000*x*y-3839.999999*x*y^2+2560.000000*x*y^3+384.0000000*x^2-3840.000000*x^2*y+9215.999998*x^2*y^2-6144.000001*x^2*y^3-256.0000000*x^3+2560.000000*x^3*y-6143.999998*x^3*y^2+4096.000000*x^3*y^3)+(diff(A[3, 2](t), t))*(-12.00000000+64.00000002*y-64.00000002*y^2+120.0000000*x-640.0000002*x*y+640.0000002*x*y^2-288.0000001*x^2+1536.000000*x^2*y-1536.000000*x^2*y^2+192.0000000*x^3-1024.000000*x^3*y+1024.000000*x^3*y^2)+(diff(A[3, 1](t), t))*(8.000000003-16.00000000*y-80.00000003*x+160.0000000*x*y+192.0000000*x^2-384.0000000*x^2*y-128.0000001*x^3+256.0000000*x^3*y)-A[0, 3](t)*(-191.9999999+384.0000000*y)+(diff(A[3, 0](t), t))*(-4.000000000+40.00000000*x-96.00000002*x^2+64.00000001*x^3)+(diff(A[2, 3](t), t))*(-12.00000000+120.0000000*y-287.9999999*y^2+192.0000000*y^3+64.00000000*x-640.0000000*x*y+1536.000000*x*y^2-1024.000000*x*y^3-64.00000000*x^2+640.0000000*x^2*y-1536.000000*x^2*y^2+1024.000000*x^2*y^3)+(diff(A[2, 2](t), t))*(8.999999999-48.00000002*y+48.00000002*y^2-48.00000000*x+256.0000001*x*y-256.0000001*x*y^2+48.00000000*x^2-256.0000001*x^2*y+256.0000001*x^2*y^2)+(diff(A[2, 1](t), t))*(-6.000000002+12.00000000*y+32.00000001*x-64.00000000*x*y-32.00000001*x^2+64.00000000*x^2*y)+(diff(A[2, 0](t), t))*(3.000000000-16.00000000*x+16.00000000*x^2)+(diff(A[1, 3](t), t))*(8.000000003-80.00000003*y+192.0000000*y^2-128.0000000*y^3-16.00000000*x+160.0000000*x*y-383.9999999*x*y^2+256.0000000*x*y^3)+(diff(A[1, 2](t), t))*(-6.000000000+32.00000001*y-32.00000001*y^2+12.00000000*x-64.00000002*x*y+64.00000002*x*y^2):

for i2 from 0 while i2 <= N-1 do odes11[0, i2] := simplify(eval(residual, [x = 0, y = i2*ymax/(N-1)])) = 0; odes11[N-1, i2] := simplify(eval(residual, [x = xmax, y = i2*ymax/(N-1)])) = 0 end do:

8

(2)

odes_Combine := {seq(seq(odes11[i, j], i = 0 .. N-1), j = 0 .. N-1)}:

sys111 := solve(odes_Combine, `~`[diff](var, t)):

ICS1 := {A[0, 0](0) = .444104979341173495851499233536, A[0, 1](0) = .198590961107083475045046921568, A[0, 2](0) = -0.167999146492673347540059075790e-1, A[0, 3](0) = -0.869171705198864625153083083786e-3, A[1, 0](0) = .198590961107083475045046921567, A[1, 1](0) = 0.888041604305848495880917177172e-1, A[1, 2](0) = -0.751243816645416714455046298805e-2, A[1, 3](0) = -0.388668563362181391196975707953e-3, A[2, 0](0) = -0.167999146492673347540059075793e-1, A[2, 1](0) = -0.751243816645416714455046298835e-2, A[2, 2](0) = 0.635518954643030408055028178047e-3, A[2, 3](0) = 0.328796368925226898150257328603e-4, A[3, 0](0) = -0.869171705198864625153083083734e-3, A[3, 1](0) = -0.388668563362181391196975707910e-3, A[3, 2](0) = 0.328796368925226898150257328592e-4, A[3, 3](0) = 0.170108305076655667148638268230e-5}:

f, diffs := eval(GenerateMatrix(`~`[`-`](`~`[rhs](sys222), `~`[lhs](sys222)), var1))

f, diffs := Matrix(16, 16, {(1, 1) = 0, (1, 2) = 0, (1, 3) = 32., (1, 4) = 0.494812294492356575865153049102e-27, (1, 5) = 0, (1, 6) = 0, (1, 7) = 0.120000000000000000001649374315e-7, (1, 8) = -0.107999999927999999998854228220e-6, (1, 9) = 32.0000000200000000000000000000, (1, 10) = -0.199999999999999999998350625685e-7, (1, 11) = 0.249999999859375000081951230025e-7, (1, 12) = -0.700000000203125000132933066388e-7, (1, 13) = 0.196000000000000000000494812294e-6, (1, 14) = 0.292000000072000000001204420404e-6, (1, 15) = -0.458000000726562499721923065316e-6, (1, 16) = 0.682900000453875000014432471170e-5, (2, 1) = 0, (2, 2) = 0, (2, 3) = 0, (2, 4) = -0.377561971763063776372092766396e-27, (2, 5) = 0, (2, 6) = 0, (2, 7) = 32.0000000000000000000000000000, (2, 8) = 0.719999999999999999998878327317e-7, (2, 9) = 0, (2, 10) = -0.125853990587687925457364255465e-27, (2, 11) = 0.906355783222184042180194163758e-27, (2, 12) = 0.135077431625990682476379737660e-25, (2, 13) = 96.0000000000000000000000000001, (2, 14) = 0.719999999999999999989394464730e-7, (2, 15) = -0.549999999914062500010607576813e-6, (2, 16) = 0.202000000048749999997617654955e-5, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0.855583965847405137008732798371e-28, (3, 5) = 0, (3, 6) = 0, (3, 7) = -0.257808598553160159742093659020e-28, (3, 8) = -0.377264825438544618607975742790e-27, (3, 9) = 0, (3, 10) = 0.285194655282468379002910932790e-28, (3, 11) = 31.9999999925000000046874999970, (3, 12) = 0.326865301360930805043812804544e-26, (3, 13) = -0.773425795659480479226280977060e-28, (3, 14) = -0.313579545661510489918366218529e-27, (3, 15) = -0.149999999882812500075601322065e-6, (3, 16) = 0.324999999796875000093151106353e-6, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = -0.384112032581666751703476763000e-29, (4, 5) = 0, (4, 6) = 0, (4, 7) = 0.265935771387910529598689301718e-29, (4, 8) = 0.399754551928273029196600976861e-28, (4, 9) = 0, (4, 10) = -0.128037344193888917234492254333e-29, (4, 11) = 0.173718566046259004921454811253e-28, (4, 12) = -0.553232882345597286403223410199e-27, (4, 13) = 0.797807314163731588796067905154e-29, (4, 14) = 0.427742792008362106477653509643e-28, (4, 15) = 31.9999999950000000007812499996, (4, 16) = 0.583137134641934297089284679036e-26, (5, 1) = 0, (5, 2) = 0, (5, 3) = 0, (5, 4) = 96.0000000000000000000000000001, (5, 5) = 0, (5, 6) = 0, (5, 7) = -0.125853990576278889372664086359e-27, (5, 8) = -0.780000000000000000003341913398e-7, (5, 9) = 0, (5, 10) = 32.0000000000000000000000000000, (5, 11) = 0.155215894719877680168982772333e-28, (5, 12) = 0.179999999957812500011610427218e-6, (5, 13) = -0.377561971728836668117992259076e-27, (5, 14) = 0.121999999999999999999928850210e-6, (5, 15) = 0.957742348838601502120463181878e-26, (5, 16) = 0.413250000106171874986265224797e-5, (6, 1) = 0, (6, 2) = 0, (6, 3) = 0, (6, 4) = -0.821348457439978150891092618719e-28, (6, 5) = 0, (6, 6) = 0, (6, 7) = -0.273782819058452669879599110853e-28, (6, 8) = 95.9999999999999999999999999997, (6, 9) = 0, (6, 10) = -0.273782819146659383630364206240e-28, (6, 11) = 0.294057068291966163490658104104e-27, (6, 12) = -0.253498333196688505804635565222e-27, (6, 13) = -0.821348457175358009638797332558e-28, (6, 14) = 95.9999999999999999999999999997, (6, 15) = 0.212121033252676198558579131631e-28, (6, 16) = 0.649999999999999999980740836208e-6, (7, 1) = 0, (7, 2) = 0, (7, 3) = 0, (7, 4) = 0.186123768597305842557431955743e-28, (7, 5) = 0, (7, 6) = 0, (7, 7) = 0.214460223691860703703477959545e-28, (7, 8) = 0.317673924810187018756335641686e-28, (7, 9) = 0, (7, 10) = 0.620412561991019475191439852476e-29, (7, 11) = 0.753895620987131323747484439705e-28, (7, 12) = 95.9999999700000000093749999970, (7, 13) = 0.643380671075582111110433878635e-28, (7, 14) = 0.348244413167432788858088750543e-30, (7, 15) = -0.195081345734130085456007896310e-26, (7, 16) = 0.162499999949218750020914346448e-6, (8, 1) = 0, (8, 2) = 0, (8, 3) = 0, (8, 4) = -0.835597462589282450911924283887e-30, (8, 5) = 0, (8, 6) = 0, (8, 7) = -0.168983990754200234313642237958e-29, (8, 8) = 0.255518912827614707211229660888e-30, (8, 9) = 0, (8, 10) = -0.278532487529760816970641427962e-30, (8, 11) = -0.912041057783558505972445866734e-29, (8, 12) = 0.152862192823148604497047654434e-28, (8, 13) = -0.506951972262600702940926713875e-29, (8, 14) = 0.212025424265299406832408057357e-29, (8, 15) = 0.158222957859551043617221056103e-27, (8, 16) = 96.0000000000000000000000000002, (9, 1) = 0, (9, 2) = 0, (9, 3) = 0, (9, 4) = -0.773425795970180636575593526265e-28, (9, 5) = 0, (9, 6) = 0, (9, 7) = 0.285194655390087477280223771532e-28, (9, 8) = -0.241100887243597349107036806234e-27, (9, 9) = 0, (9, 10) = -0.257808598656726878858531175422e-28, (9, 11) = 32.0000000125000000000000000004, (9, 12) = 0.999999999843750000174507862823e-8, (9, 13) = 0.855583966170262431840671314596e-28, (9, 14) = -0.104420360226003256663758222866e-27, (9, 15) = 0.600000000000000000027497059897e-7, (9, 16) = 0.900000000046874999977170328969e-6, (10, 1) = 0, (10, 2) = 0, (10, 3) = 0, (10, 4) = 0.643380671224932994877201196193e-28, (10, 5) = 0, (10, 6) = 0, (10, 7) = 0.620412562284547562356437593923e-29, (10, 8) = -0.782971264706294608812923943602e-28, (10, 9) = 0, (10, 10) = 0.214460223741644331625733732064e-28, (10, 11) = -0.117716452160171050903010422567e-27, (10, 12) = -0.324249553007268016939337229307e-26, (10, 13) = 0.186123768685364268706931278177e-28, (10, 14) = 0.210791990319339808396292213890e-27, (10, 15) = 95.9999999999999999999999999990, (10, 16) = 0.601289924118833452883693495332e-26, (11, 1) = 0, (11, 2) = 0, (11, 3) = 0, (11, 4) = -0.145794923079456919867181504653e-28, (11, 5) = 0, (11, 6) = 0, (11, 7) = -0.485983076931523066223938348837e-29, (11, 8) = 0.703045314344404024740114826873e-28, (11, 9) = 0, (11, 10) = -0.485983076931523066223938348844e-29, (11, 11) = 0.154061910958820937154327251969e-28, (11, 12) = 0.586431085917646726477197552134e-27, (11, 13) = -0.145794923079456919867181504651e-28, (11, 14) = 0.327116591013740734656854347967e-28, (11, 15) = 0.186427448215109472676159333906e-27, (11, 16) = 0.727156843809743343593213639608e-26, (12, 1) = 0, (12, 2) = 0, (12, 3) = 0, (12, 4) = 0.654542236344866764687318521378e-30, (12, 5) = 0, (12, 6) = 0, (12, 7) = 0.382930495785563772474113758933e-30, (12, 8) = -0.765771840140216030924576968705e-29, (12, 9) = 0, (12, 10) = 0.218180745448288921562439507126e-30, (12, 11) = -0.591357855581324858104400230586e-30, (12, 12) = 0.164090126078907967224367765176e-28, (12, 13) = 0.114879148735669131742234127680e-29, (12, 14) = -0.733606589050003370341598338138e-29, (12, 15) = 0.279365514914751130455040418258e-28, (12, 16) = -0.138821502091830040436688448298e-26, (13, 1) = 0, (13, 2) = 0, (13, 3) = 0, (13, 4) = 0.797807313447167969819086050522e-29, (13, 5) = 0, (13, 6) = 0, (13, 7) = -0.128037344212226672551029214969e-29, (13, 8) = 0.262885403001488132812902903311e-28, (13, 9) = 0, (13, 10) = 0.265935771149055989939695350174e-29, (13, 11) = -0.349411324204567081081722661297e-28, (13, 12) = 31.9999999950000000007812499995, (13, 13) = -0.384112032636680017653087644907e-29, (13, 14) = 0.119403167752948354510697994999e-28, (13, 15) = -0.452504513537780686847551220204e-27, (13, 16) = 0.149999999976562500006592455374e-6, (14, 1) = 0, (14, 2) = 0, (14, 3) = 0, (14, 4) = -0.506951972202161632959380608780e-29, (14, 5) = 0, (14, 6) = 0, (14, 7) = -0.278532487328297250365487744273e-30, (14, 8) = 0.100313589069551339782957918087e-28, (14, 9) = 0, (14, 10) = -0.168983990734053877653126869593e-29, (14, 11) = 0.876003797684675659527198447426e-29, (14, 12) = 0.309396538522635365039103628797e-27, (14, 13) = -0.835597461984891751096463232820e-30, (14, 14) = -0.169500948608311509445295032991e-28, (14, 15) = 0.104005614175784513152332127959e-27, (14, 16) = 95.9999999999999999999999999996, (15, 1) = 0, (15, 2) = 0, (15, 3) = 0, (15, 4) = 0.114879148750778899237620653952e-29, (15, 5) = 0, (15, 6) = 0, (15, 7) = 0.218180745498654813213727928025e-30, (15, 8) = -0.867251219227502985269662069579e-29, (15, 9) = 0, (15, 10) = 0.382930495835929664125402179841e-30, (15, 11) = -0.267864188359583543656192185112e-29, (15, 12) = -0.387791753042961333529856694716e-28, (15, 13) = 0.654542236495964439641183784074e-30, (15, 14) = -0.523627245808308931882255033583e-29, (15, 15) = 0.369199231034048272468531636165e-28, (15, 16) = -0.123439611085554953594747603640e-26, (16, 1) = 0, (16, 2) = 0, (16, 3) = 0, (16, 4) = -0.515746730509193430144544493936e-31, (16, 5) = 0, (16, 6) = 0, (16, 7) = -0.171915576836397810048181497977e-31, (16, 8) = 0.857347676859656256220355661580e-30, (16, 9) = 0, (16, 10) = -0.171915576836397810048181497979e-31, (16, 11) = 0.182597096197097886514765184582e-30, (16, 12) = -0.370616214664321329971866697584e-29, (16, 13) = -0.515746730509193430144544493932e-31, (16, 14) = 0.865925397235117524875431212196e-30, (16, 15) = -0.750058451906403875595888288641e-29, (16, 16) = 0.183460376006651920829411996611e-27}), Vector(16, {(1) = diff(A[0, 0](t), t), (2) = diff(A[0, 1](t), t), (3) = diff(A[0, 2](t), t), (4) = diff(A[0, 3](t), t), (5) = diff(A[1, 0](t), t), (6) = diff(A[1, 1](t), t), (7) = diff(A[1, 2](t), t), (8) = diff(A[1, 3](t), t), (9) = diff(A[2, 0](t), t), (10) = diff(A[2, 1](t), t), (11) = diff(A[2, 2](t), t), (12) = diff(A[2, 3](t), t), (13) = diff(A[3, 0](t), t), (14) = diff(A[3, 1](t), t), (15) = diff(A[3, 2](t), t), (16) = diff(A[3, 3](t), t)})

(3)

``

npts := Ntt:

``

``

``

``


 

Download Question1.mw

 

Suppose one has the following equation,

.

Based on that equation, I have two questions:

1. How may one solve it for \kappa using Maple?

2. How may we simplify it?

Thanks in advance.

Ps: I have tried to use the "solve" and "simplify" commands. However, Maplesoft does not return a result but rather the same equation.

1 2 3 4 5 6 7 Last Page 2 of 2120