MaplePrimes Questions

When I right click on an expression, I only some times get the context menu (under Maple 2016 in document mode, in Win 10).

Any suggestions - Anyone else having this problem? - I know how to use the long forms, but this is for students - for a brief exposure to Maple.

hi

how i can remove this error?

thanks

Error, (in pdsolve/numeric/process_IBCs) initial/boundary conditions can only contain derivatives which are normal to the boundary, got (D[1](H))(x, 0)
 

RR-steady.mw


 

 

"restart;beta:=1:k:=2:L:=1: W(t):=(Heaviside(t-1)-Heaviside(t-1.1)); theta:=3:   hR:=1 :hD(x):=hR+tan(theta)*(L-x) :W0:=2: f(x):=sqrt((hR^(2)+(W0)/(k)*(L^(2)-x^(2)))):t:=5:M:=2:theta:=20:"

proc (t) options operator, arrow; Heaviside(t-1)-Heaviside(t-1.1) end proc

(1)

PDE1 := diff(H(x, y), x, x)+diff(H(x, y), y, y)+2*W(t)/k = 0

diff(diff(H(x, y), x), x)+diff(diff(H(x, y), y), y) = 0

(2)

bcs1 := {H(L, y) = hR^2, (D[1](H))(0, y) = 0};

{H(1, y) = 1, (D[1](H))(0, y) = 0}

(3)

bcs2 := {H(x, M) = hD(x)^2, (D[1](H))(x, 0) = 0}

{H(x, 2) = (1+tan(20)*(1-x))^2, (D[1](H))(x, 0) = 0}

(4)

pdsolve(PDE1, `union`(bcs1, bcs2), numeric)

Error, (in pdsolve/numeric/process_IBCs) initial/boundary conditions can only contain derivatives which are normal to the boundary, got (D[1](H))(x, 0)

 

``


 

Download RR-steady.mw

Hi,

I want to fit a curve to the function that you can see in the picture "maple4.png" (in the appendix) to determine two parameters. This works in Maple 2.
Unfortunately Maple 18 shows me an error. Can you help me with this problem?
 
 
 
 
 
Best regards

 

Hi everybody,

I have to solve a system  of 3 equations in 3 unknowns.
One equation is linear while the others are not because of some  sinh(cste*unknown) term.
More of this the unknowns must verify some constraints of inequality type (but always very simple ; for instance “unknown <= value”).

solve fails because of the sinh terms
fsolve fails due to the inequalities


What Maple procedure do you advise me to use to solve this system ?
(at this stage I think advices could be sufficient ; if I keep coming up against the problem I will submit you a more detailed question)


Thanks in advance

 

Hello,

I'm trying to send data from Excel to Maple through Excel Add-in.

However, in Excel,  I can only create variables. I want to send these variables to Maple and access them in Maple.

I want to know how to send variables from Excel to Maple.

I look forward your tips.

Thank you!

I have a list of functions which looks like this:

RR:={F[l, m-2, n-1], F[l, m+2, n], F[l, m+2, n-1], F[l-1, m+1, n-2], ...}

I wish to remove the first and second arguments from the functions, so only leaving the third argument containing the n's. I then wish to group these remaining terms together to shorten the list. i.e.

RR:={F[n-1], F[n], F[n-2]}

I have used the 'subsop' command with 1 and 2 specified as NULL in a loop, but I was wondering if there is a better way to do it? I like to avoid loops where possible and use some inbuilt Maple magic to make it tidier and (usually) more efficient.

-Yeti

 

me-equations-1.mw

Hello everyone.
I have a problem with solving a system consisting of 5 odes with 10 boundary conditions. 
The system is solved without the boundary conditions,but once the bc's come in, maple just goes into a calculation loop that never ends.
I left it to run for a good two minutes but nothing changed.
No error nothing.it just cant seem to solve it.
7th and 8th bc's do look alike but are actually different because they have different coefficients..right?

I would really appreciate any help.thanks

Heres my code

restart

A__01 := -6.835541849*10^5*Pi

-683554.1849*Pi

(1)

A__02 := 0

0

(2)

A__03 := -1079.907024*Pi

-1079.907024*Pi

(3)

A__04 := -44089.46976*Pi

-44089.46976*Pi

(4)

A__05 := 2.638295324*10^10*Pi

0.2638295324e11*Pi

(5)

A__06 := 0

0

(6)

A__07 := 3.157131694*10^8*Pi

315713169.4*Pi

(7)

A__08 := 1.770427737*10^8*Pi

177042773.7*Pi

(8)

A__11 := 0

0

(9)

A__12 := 1.304761505*10^8*Pi

130476150.5*Pi

(10)

A__13 := 3.708191716*10^5*Pi

370819.1716*Pi

(11)

A__14 := 3.632098408*10^8*Pi

363209840.8*Pi

(12)

A__15 := 1.332096563*10^5*Pi

133209.6563*Pi

(13)

A__17 := 5.134419298*10^5*Pi

513441.9298*Pi

(14)

A__20 := 2.567209650*10^5*Pi

256720.9650*Pi

(15)

A__21 := 2.567209650*10^5*Pi

256720.9650*Pi

(16)

A__22 := -4.124879810*10^5*Pi

-412487.9810*Pi

(17)

A__23 := -39934.37232*Pi

-39934.37232*Pi

(18)

A__24 := -0.1955745297e-1*Pi

-0.1955745297e-1*Pi

(19)

A__25 := 0.5587843706e-2*Pi

0.5587843706e-2*Pi

(20)

A__26 := 0.4304557420e-1*Pi

0.4304557420e-1*Pi

(21)

A__27 := 0

0

(22)

A__28 := 4.174119248*10^8*Pi

417411924.8*Pi

(23)

A__29 := 3.215504392*10^9*Pi

3215504392.*Pi

(24)

A__31 := 6.447686284*10^7*Pi

64476862.84*Pi

(25)

A__32 := 2.609523010*10^8*Pi

260952301.0*Pi

(26)

A__33 := 0

0

(27)

A__34 := 0

0

(28)

A__35 := -0.1545526361e-2*Pi

-0.1545526361e-2*Pi

(29)

A__36 := -.2281415432*Pi

-.2281415432*Pi

(30)

I__1 := 1.506998916*10^10*Pi

0.1506998916e11*Pi

(31)

I__2 := 2.920855252*10^6*Pi

2920855.252*Pi

(32)

I__3 := 3.563472822*10^10*Pi

0.3563472822e11*Pi

(33)

I__4 := 1.233249995*10^6*Pi

1233249.995*Pi

(34)

I__5 := 8.659447618*10^9*Pi

8659447618.*Pi

(35)

I__6 := .1159229936*Pi

.1159229936*Pi

(36)

I__7 := -5.999289724*10^6*Pi

-5999289.724*Pi

(37)

I__8 := 5.413603800*10^9*Pi

5413603800.*Pi

(38)

I__9 := 1.460427626*10^6*PiNULL

1460427.626*Pi

(39)

I__10 := 0

0

(40)

I__11 := 2.920855252*10^6*Pi

2920855.252*Pi

(41)

I__12 := 4.219013140*10^6*Pi

4219013.140*Pi

(42)

I__13 := 1.233249995*10^6*Pi

1233249.995*Pi

(43)

I__14 := 9.976343380*10^6*Pi

9976343.380*Pi

(44)

I__15 := -2.271776306*10^5*Pi

-227177.6306*Pi

(45)

I__16 := -.6143918658*Pi

-.6143918658*Pi

(46)

I__17 := -9534.298223*Pi

-9534.298223*Pi

(47)

I__18 := 1.868000000*10^10*Pi

0.1868000000e11*Pi

(48)

I__19 := 6.000000000*10^7*Pi

60000000.00*Pi

(49)

I__20 := -.4556919660*Pi

-.4556919660*Pi

(50)

NULL

f1 := A__01+2*A__05*u(x)+A__26*p(x)+A__29*q(x)+A__31*s(x)-2*A__14*(diff(u(x), x, x))-A__17*(diff(s(x), x, x))-A__25*(diff(p(x), x))-A__28*(diff(q(x), x)) = 0

-683554.1849*Pi+0.5276590648e11*Pi*u(x)+0.4304557420e-1*Pi*p(x)+3215504392.*Pi*q(x)+64476862.84*Pi*s(x)-726419681.6*Pi*(diff(diff(u(x), x), x))-513441.9298*Pi*(diff(diff(s(x), x), x))-0.5587843706e-2*Pi*(diff(p(x), x))-417411924.8*Pi*(diff(q(x), x)) = 0

(51)

f2 := A__03+2*A__08*s(x)+(A__21-A__23)*(diff(q(x), x))+A__22*q(x)+A__31*u(x)+A__32*(diff(w(x), x))+(A__34-A__35)*(diff(p(x), x))+A__36*p(x)-2*A__13*(diff(s(x), x, x))-A__17*(diff(u(x), x, x)) = 0

-1079.907024*Pi+354085547.4*Pi*s(x)+296655.3373*Pi*(diff(q(x), x))-412487.9810*Pi*q(x)+64476862.84*Pi*u(x)+260952301.0*Pi*(diff(w(x), x))+0.1545526361e-2*Pi*(diff(p(x), x))-.2281415432*Pi*p(x)-741638.3432*Pi*(diff(diff(s(x), x), x))-513441.9298*Pi*(diff(diff(u(x), x), x)) = 0

(52)

f3 := 2*A__12*(diff(w(x), x, x))+A__32*(diff(s(x), x))+A__33*(diff(p(x), x, x)) = 0

260952301.0*Pi*(diff(diff(w(x), x), x))+260952301.0*Pi*(diff(s(x), x)) = 0

(53)

f4 := A__04+2*A__07*q(x)+A__22*s(x)+(A__23-A__21)*(diff(s(x), x))+A__24*p(x)+A__28*(diff(u(x), x))+A__29*u(x)-2*A__15*(diff(q(x), x, x))-A__20*(diff(w(x), x, x))-A__27*(diff(p(x), x, x)) = 0

-44089.46976*Pi+631426338.8*Pi*q(x)-412487.9810*Pi*s(x)-296655.3373*Pi*(diff(s(x), x))-0.1955745297e-1*Pi*p(x)+417411924.8*Pi*(diff(u(x), x))+3215504392.*Pi*u(x)-266419.3126*Pi*(diff(diff(q(x), x), x))-256720.9650*Pi*(diff(diff(w(x), x), x)) = 0

(54)

f5 := A__02+2*A__06*p(x)+A__24*q(x)+A__25*(diff(u(x), x))+A__26*u(x)+(A__35-A__34)*(diff(s(x), x))+A__36*s(x)-2*A__11*(diff(p(x), x, x))-A__27*(diff(q(x), x, x))-A__33*(diff(w(x), x, x)) = 0

-0.1955745297e-1*Pi*q(x)+0.5587843706e-2*Pi*(diff(u(x), x))+0.4304557420e-1*Pi*u(x)-0.1545526361e-2*Pi*(diff(s(x), x))-.2281415432*Pi*s(x) = 0

(55)

f := f1, f2, f3, f4, f5

-683554.1849*Pi+0.5276590648e11*Pi*u(x)+0.4304557420e-1*Pi*p(x)+3215504392.*Pi*q(x)+64476862.84*Pi*s(x)-726419681.6*Pi*(diff(diff(u(x), x), x))-513441.9298*Pi*(diff(diff(s(x), x), x))-0.5587843706e-2*Pi*(diff(p(x), x))-417411924.8*Pi*(diff(q(x), x)) = 0, -1079.907024*Pi+354085547.4*Pi*s(x)+296655.3373*Pi*(diff(q(x), x))-412487.9810*Pi*q(x)+64476862.84*Pi*u(x)+260952301.0*Pi*(diff(w(x), x))+0.1545526361e-2*Pi*(diff(p(x), x))-.2281415432*Pi*p(x)-741638.3432*Pi*(diff(diff(s(x), x), x))-513441.9298*Pi*(diff(diff(u(x), x), x)) = 0, 260952301.0*Pi*(diff(diff(w(x), x), x))+260952301.0*Pi*(diff(s(x), x)) = 0, -44089.46976*Pi+631426338.8*Pi*q(x)-412487.9810*Pi*s(x)-296655.3373*Pi*(diff(s(x), x))-0.1955745297e-1*Pi*p(x)+417411924.8*Pi*(diff(u(x), x))+3215504392.*Pi*u(x)-266419.3126*Pi*(diff(diff(q(x), x), x))-256720.9650*Pi*(diff(diff(w(x), x), x)) = 0, -0.1955745297e-1*Pi*q(x)+0.5587843706e-2*Pi*(diff(u(x), x))+0.4304557420e-1*Pi*u(x)-0.1545526361e-2*Pi*(diff(s(x), x))-.2281415432*Pi*s(x) = 0

(56)

b1 := u(0.5e-1) = 0

u(0.5e-1) = 0

(57)

b2 := s(0.5e-1) = 0

s(0.5e-1) = 0

(58)

b3 := w(0.5e-1) = 0

w(0.5e-1) = 0

(59)

b4 := q(0.5e-1) = 0

q(0.5e-1) = 0

(60)

b5 := p(0.5e-1) = 0

p(0.5e-1) = 0

(61)

b6 := p(.25) = 10

p(.25) = 10

(62)

b7 := I__1*(D(u))(.25)+I__2*(D(s))(.25)+I__3*u(.25)+I__4*s(.25)+I__5*q(.25)+I__6*p(.25)+I__7 = 0

0.1506998916e11*Pi*(D(u))(.25)+2920855.252*Pi*(D(s))(.25)+0.3563472822e11*Pi*u(.25)+1233249.995*Pi*s(.25)+8659447618.*Pi*q(.25)+.1159229936*Pi*p(.25)-5999289.724*Pi = 0

(63)

b8 := I__11*(D(u))(.25)+I__12*(D(s))(.25)+I__13*u(.25)+I__14*s(.25)+I__15*q(.25)+I__16*p(.25)+I__17 = 0

2920855.252*Pi*(D(u))(.25)+4219013.140*Pi*(D(s))(.25)+1233249.995*Pi*u(.25)+9976343.380*Pi*s(.25)-227177.6306*Pi*q(.25)-.6143918658*Pi*p(.25)-9534.298223*Pi = 0

(64)

b9 := I__8*s(.25)+I__8*(D(w))(.25)+I__9*(D(q))(.25)+I__10*(D(p))(.25) = 0

5413603800.*Pi*s(.25)+5413603800.*Pi*(D(w))(.25)+1460427.626*Pi*(D(q))(.25) = 0

(65)

b10 := I__18*s(0.5e-1)+I__18*(D(w))(0.5e-1)+I__19*(D(q))(0.5e-1)+I__20*(D(p))(0.5e-1) = 0

0.1868000000e11*Pi*s(0.5e-1)+0.1868000000e11*Pi*(D(w))(0.5e-1)+60000000.00*Pi*(D(q))(0.5e-1)-.4556919660*Pi*(D(p))(0.5e-1) = 0

(66)

bc := b1, b2, b3, b4, b5, b6, b7, b8, b9, b10

u(0.5e-1) = 0, s(0.5e-1) = 0, w(0.5e-1) = 0, q(0.5e-1) = 0, p(0.5e-1) = 0, p(.25) = 10, 0.1506998916e11*Pi*(D(u))(.25)+2920855.252*Pi*(D(s))(.25)+0.3563472822e11*Pi*u(.25)+1233249.995*Pi*s(.25)+8659447618.*Pi*q(.25)+.1159229936*Pi*p(.25)-5999289.724*Pi = 0, 2920855.252*Pi*(D(u))(.25)+4219013.140*Pi*(D(s))(.25)+1233249.995*Pi*u(.25)+9976343.380*Pi*s(.25)-227177.6306*Pi*q(.25)-.6143918658*Pi*p(.25)-9534.298223*Pi = 0, 5413603800.*Pi*s(.25)+5413603800.*Pi*(D(w))(.25)+1460427.626*Pi*(D(q))(.25) = 0, 0.1868000000e11*Pi*s(0.5e-1)+0.1868000000e11*Pi*(D(w))(0.5e-1)+60000000.00*Pi*(D(q))(0.5e-1)-.4556919660*Pi*(D(p))(0.5e-1) = 0

(67)

dsolve({f})

{p(x) = -(8348069854359562844158444947687051096236341151137912524314220251859518302979752075863711399491114303355727159464818873878118049666882586853655525810943213049175308691527282144198671705156405315206602082005476698250000/681384695121882013959665774575457025293276552134140462144317224809813638400658850960574519166869307475297566588656254581790292202187110433759810640316460147175047462827457254048717358546426320770069677796020553)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(34240844308626491610081019711889605294500000000000000/30208360982821581783994555050953960154213271)*_C2+(34240844308626491610081019711889605294500000000000000/30208360982821581783994555050953960154213271)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(36518476837721784214832841091680291686157228031274705355784632000216560989062326960722556132883385318459531352857105163506440586634389571544838959138967158839432026560041815075949903368195511128895239120457672524000000/681384695121882013959665774575457025293276552134140462144317224809813638400658850960574519166869307475297566588656254581790292202187110433759810640316460147175047462827457254048717358546426320770069677796020553)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+52890088411386067353098208563585262678159500000/30208360982821581783994555050953960154213271+(40481724547356470692649144601937771039268490028626499664808222488691797969949419789064234167367280240928268259342281851919996962141648735601651130392215247466791700508312504011524885277423232843331946409690109670000/227128231707294004653221924858485675097758850711380154048105741603271212800219616986858173055623102491765855529552084860596764067395703477919936880105486715725015820942485751349572452848808773590023225932006851)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(2678348281139371555723909271234184333434675500548299051769808252786097247836288900815739032022684126717657250786035442663482053931191700379311865059006620147884684100740588533231767968715948121334498160716584222500/227128231707294004653221924858485675097758850711380154048105741603271212800219616986858173055623102491765855529552084860596764067395703477919936880105486715725015820942485751349572452848808773590023225932006851)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^5*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(209187707180630961271277913183528709505420646327532250194860662732467541160038654744834169410430074383172678880446267564651011059016367505660215268401694911324789622169072892833018445175333936311950288862630000/227128231707294004653221924858485675097758850711380154048105741603271212800219616986858173055623102491765855529552084860596764067395703477919936880105486715725015820942485751349572452848808773590023225932006851)*(Sum((1/11770331150627020149080202360082902699372)*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(523535499791350128074924716767952178882367709808448685316679583994261067006997156685366259009381971777096987814006534310615919280226090261317456433508236701320831360000/7518720788474877362827383453807053170640129528155108053173359004982102061508452404831537725157338351148203869490094379903743912404883699950456145751641337726513228981)*(Sum((1/11770331150627020149080202360082902699372)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6)), q(x) = (1742285929005218423983758259465108110633000/30208360982821581783994555050953960154213271)*_C2+(1742285929005218423983758259465108110633000/30208360982821581783994555050953960154213271)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(24206810370440812994341329984370692199769333343936689758159855600642916795576585161376507481230407779242291861604745803611530996408979752049543310866592216091705608358463839395584654998551248659301268728150912533279/227128231707294004653221924858485675097758850711380154048105741603271212800219616986858173055623102491765855529552084860596764067395703477919936880105486715725015820942485751349572452848808773590023225932006851000000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(124968326820648119281015987587725426628193959737517840884316853932228462259290285201046562415043778496036693673780211984235049358581759191587305332131726120242250656054556262943017652958002462305110255214996110729/2271282317072940046532219248584856750977588507113801540481057416032712128002196169868581730556231024917658555295520848605967640673957034779199368801054867157250158209424857513495724528488087735900232259320068510000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+21516060937433367122316207062443146255651/3776045122852697722999319381369245019276658875+(191005515365978257870187163339514433229830365340711845404191506804283296607590044727718242405582382042819357644872248888430550154160980301404906624147647714756807705903659887076891291698496504949900048368434661/56782057926823501163305481214621418774439712677845038512026435400817803200054904246714543263905775622941463882388021215149191016848925869479984220026371678931253955235621437837393113212202193397505806483001712750000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(1693719726846501435956880959958841300518575631880855453523190967886058375769593466584009439325998040997488794796616687594433609260398944787147156536459782237453137127884812012247244137311677923031947635768046508621/22712823170729400465322192485848567509775885071138015404810574160327121280021961698685817305562310249176585552955208486059676406739570347791993688010548671572501582094248575134957245284880877359002322593200685100000000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^5*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(17940925996936806583951247887267381554949866439134810717209797986703498652902681107272818322144571510641767514862964693335388659231282181718830929343597164133246230045998753678136207621829810228869368554197507/5678205792682350116330548121462141877443971267784503851202643540081780320005490424671454326390577562294146388238802121514919101684892586947998422002637167893125395523562143783739311321220219339750580648300171275000000)*(Sum((1/11770331150627020149080202360082902699372)*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(567908464939172961231355489036541402733737796850300111306273961529395913970149222452779196019005114242503159152996473899945144440561390253454895636664836039930583/1879680197118719340706845863451763292660032382038777013293339751245525515377113101207884431289334587787050967372523594975935978101220924987614036437910334431628307245250000)*(Sum((1/11770331150627020149080202360082902699372)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6)), s(x) = -(3918813159698777715502166923069721158205512571/302083609828215817839945550509539601542132710000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(174620439239526835857404560179819737000000/30208360982821581783994555050953960154213271)*_C2-(174620439239526835857404560179819737000000/30208360982821581783994555050953960154213271)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(1714034799793319944095413685187634877345/30208360982821581783994555050953960154213271)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+2283212101460462861926073342355455735633/1208334439312863271359782202038158406168530840+(48439812575068172788774336960670460032103/60416721965643163567989110101907920308426542000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(277641280305013695575983750655335856629533429/30208360982821581783994555050953960154213271000000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^5*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(2942582787656755037270050590020725674843/7552090245705395445998638762738490038553317750000)*(Sum((1/11770331150627020149080202360082902699372)*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6)), u(x) = (1396606031141676012295170523175575548697397202166854601195992097744510459116360160456528214680283141976748172638290955133705525806193943772871697031526477895014238932800197609019868735240810708264200248314429817053947/27255387804875280558386630983018281011731062085365618485772688992392545536026354038422980766674772299011902663546250183271611688087484417350392425612658405887001898513098290161948694341857052830802787111840822120000000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(133893006950646474560943347871601514548450/30208360982821581783994555050953960154213271)*_C2-(133893006950646474560943347871601514548450/30208360982821581783994555050953960154213271)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(150210905771987315113287445716725747921352793513353432325254435815960237730402486565670340566270953708994816244770944321344720014098949574807054853803795775055176243504044545483355347907596212687529677460313078735203/272553878048752805583866309830182810117310620853656184857726889923925455360263540384229807666747722990119026635462501832716116880874844173503924256126584058870018985130982901619486943418570528308027871118408221200000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+951827418419631732876275586583649251867507/75520902457053954459986387627384900385533177500+(1845963057184294273759808752170530589094942068928956702270071698704239458298771666829595058878468747392052113718820431088429483970489703306684764204293985293969782966908841606633432317076148546679077753100868525957/4542564634145880093064438497169713501955177014227603080962114832065424256004392339737163461112462049835317110591041697211935281347914069558398737602109734314500316418849715026991449056976175471800464518640137020000000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(34847750890571220206222829902351407058377341199953006575361497114702337546335619195223288387017503082911181105526586395216849660727759673783044487705413148182890926215183091560305177049808326663105999610584089860751/908512926829176018612887699433942700391035402845520616192422966413084851200878467947432692222492409967063422118208339442387056269582813911679747520421946862900063283769943005398289811395235094360092903728027404000000000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^5*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(370616025485372668039212908146602025322743515823542234470990594822792066449993618545567836950078501842998473681692784903269547857346337826299216974936579616784212669927765049685708895750207394302198529444637217/227128231707294004653221924858485675097758850711380154048105741603271212800219616986858173055623102491765855529552084860596764067395703477919936880105486715725015820942485751349572452848808773590023225932006851000000000)*(Sum((1/11770331150627020149080202360082902699372)*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(1309734104967104168977128612980451194819550004115195374649919013159989148829122160704374955136332658860059361006314282684980503286005821583895872707371778109258609723/75187207884748773628273834538070531706401295281551080531733590049821020615084524048315377251573383511482038694900943799037439124048836999504561457516413377265132289810000000)*(Sum((1/11770331150627020149080202360082902699372)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6)), w(x) = _C1+_C2*x+Sum(exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6)}

(68)

dsolve({bc, f})

 

 

``


 

Download me-equations-1.mw
 

restart

A__01 := -6.835541849*10^5*Pi

-683554.1849*Pi

(1)

A__02 := 0

0

(2)

A__03 := -1079.907024*Pi

-1079.907024*Pi

(3)

A__04 := -44089.46976*Pi

-44089.46976*Pi

(4)

A__05 := 2.638295324*10^10*Pi

0.2638295324e11*Pi

(5)

A__06 := 0

0

(6)

A__07 := 3.157131694*10^8*Pi

315713169.4*Pi

(7)

A__08 := 1.770427737*10^8*Pi

177042773.7*Pi

(8)

A__11 := 0

0

(9)

A__12 := 1.304761505*10^8*Pi

130476150.5*Pi

(10)

A__13 := 3.708191716*10^5*Pi

370819.1716*Pi

(11)

A__14 := 3.632098408*10^8*Pi

363209840.8*Pi

(12)

A__15 := 1.332096563*10^5*Pi

133209.6563*Pi

(13)

A__17 := 5.134419298*10^5*Pi

513441.9298*Pi

(14)

A__20 := 2.567209650*10^5*Pi

256720.9650*Pi

(15)

A__21 := 2.567209650*10^5*Pi

256720.9650*Pi

(16)

A__22 := -4.124879810*10^5*Pi

-412487.9810*Pi

(17)

A__23 := -39934.37232*Pi

-39934.37232*Pi

(18)

A__24 := -0.1955745297e-1*Pi

-0.1955745297e-1*Pi

(19)

A__25 := 0.5587843706e-2*Pi

0.5587843706e-2*Pi

(20)

A__26 := 0.4304557420e-1*Pi

0.4304557420e-1*Pi

(21)

A__27 := 0

0

(22)

A__28 := 4.174119248*10^8*Pi

417411924.8*Pi

(23)

A__29 := 3.215504392*10^9*Pi

3215504392.*Pi

(24)

A__31 := 6.447686284*10^7*Pi

64476862.84*Pi

(25)

A__32 := 2.609523010*10^8*Pi

260952301.0*Pi

(26)

A__33 := 0

0

(27)

A__34 := 0

0

(28)

A__35 := -0.1545526361e-2*Pi

-0.1545526361e-2*Pi

(29)

A__36 := -.2281415432*Pi

-.2281415432*Pi

(30)

I__1 := 1.506998916*10^10*Pi

0.1506998916e11*Pi

(31)

I__2 := 2.920855252*10^6*Pi

2920855.252*Pi

(32)

I__3 := 3.563472822*10^10*Pi

0.3563472822e11*Pi

(33)

I__4 := 1.233249995*10^6*Pi

1233249.995*Pi

(34)

I__5 := 8.659447618*10^9*Pi

8659447618.*Pi

(35)

I__6 := .1159229936*Pi

.1159229936*Pi

(36)

I__7 := -5.999289724*10^6*Pi

-5999289.724*Pi

(37)

I__8 := 5.413603800*10^9*Pi

5413603800.*Pi

(38)

I__9 := 1.460427626*10^6*PiNULL

1460427.626*Pi

(39)

I__10 := 0

0

(40)

I__11 := 2.920855252*10^6*Pi

2920855.252*Pi

(41)

I__12 := 4.219013140*10^6*Pi

4219013.140*Pi

(42)

I__13 := 1.233249995*10^6*Pi

1233249.995*Pi

(43)

I__14 := 9.976343380*10^6*Pi

9976343.380*Pi

(44)

I__15 := -2.271776306*10^5*Pi

-227177.6306*Pi

(45)

I__16 := -.6143918658*Pi

-.6143918658*Pi

(46)

I__17 := -9534.298223*Pi

-9534.298223*Pi

(47)

I__18 := 1.868000000*10^10*Pi

0.1868000000e11*Pi

(48)

I__19 := 6.000000000*10^7*Pi

60000000.00*Pi

(49)

I__20 := -.4556919660*Pi

-.4556919660*Pi

(50)

NULL

f1 := A__01+2*A__05*u(x)+A__26*p(x)+A__29*q(x)+A__31*s(x)-2*A__14*(diff(u(x), x, x))-A__17*(diff(s(x), x, x))-A__25*(diff(p(x), x))-A__28*(diff(q(x), x)) = 0

-683554.1849*Pi+0.5276590648e11*Pi*u(x)+0.4304557420e-1*Pi*p(x)+3215504392.*Pi*q(x)+64476862.84*Pi*s(x)-726419681.6*Pi*(diff(diff(u(x), x), x))-513441.9298*Pi*(diff(diff(s(x), x), x))-0.5587843706e-2*Pi*(diff(p(x), x))-417411924.8*Pi*(diff(q(x), x)) = 0

(51)