## Reducing the time of process...

Hello.

Is there a way to reduce the time of the process of calculations in maple?

I have 26 coupled simple algebraic equations. But still, I could not get any solution for them.

My codes are as follows:

restart;
eq[1] := d[0] = 1:
eq[2] := d[0] + d[1] + d[2] + d[3] + d[4] + d[5] + d[6] + d[7] = 0:
eq[3] := b[0] = 1:
eq[4] := b[0] + b[1] + b[2] + b[3] + b[4] + b[5] + b[6] + b[7] = 0:
eq[5] := a[0] = -0.5:
eq[6] := d[1] = 1 + 1.0*a[2]:
eq[7] := a[0] + a[1] + a[2] + a[3] + a[4] + a[5] + a[6] + a[7] + a[8] + a[9] = 0.5:
eq[8] := d[1] + 2*d[2] + 3*d[3] + 4*d[4] + 5*d[5] + 6*d[6] + 7*d[7] = 1.0*a[2] + 3.0*a[3] + 6.0*a[4] + 10.0*a[5] + 15.0*a[6] + 21.0*a[7] + 28.0*a[8] + 36.0*a[9]:
eq[9] := 24*a[4] - 2.104513094*a[1]*a[2] + 6.313539282*a[0]*a[3] + 5.165076420*b[1] + 5.261282735*d[1] = 0:
eq[10] := -88.3895499*a[7]^2 - 191.5106915*a[7]*a[8] - 176.7790999*a[7]*a[9] - 117.8527333*a[8]^2 - 252.5415715*a[8]*a[9] - 151.5249428*a[9]^2 + 25.25415713*a[0]*a[4] + 63.13539282*a[0]*a[5] + 126.2707856*a[0]*a[6] + 220.9738749*a[0]*a[7] + 353.5581998*a[0]*a[8] + 530.3372997*a[0]*a[9] + 12.62707857*a[1]*a[4] + 42.09026188*a[1]*a[5] + 94.70308919*a[1]*a[6] + 176.7790999*a[1]*a[7] + 294.6318332*a[1]*a[8] + 454.5748283*a[1]*a[9] - 4.209026188*a[2]^2 - 12.62707857*a[2]*a[3] - 8.41805237*a[2]*a[4] + 10.52256547*a[2]*a[5] + 50.50831422*a[2]*a[6] + 117.8527333*a[2]*a[7] + 218.8693618*a[2]*a[8] + 359.8717391*a[2]*a[9] - 12.62707857*a[3]^2 - 31.56769641*a[3]*a[4] - 25.25415713*a[3]*a[5] + 50.5083143*a[3]*a[7] + 132.5843249*a[3]*a[8] + 252.5415713*a[3]*a[9] - 25.25415713*a[4]^2 - 58.92636665*a[4]*a[5] - 50.5083142*a[4]*a[6] - 18.9406178*a[4]*a[7] + 42.0902619*a[4]*a[8] + 138.8978642*a[4]*a[9] - 42.09026188*a[5]^2 - 94.7030892*a[5]*a[6] - 84.1805237*a[5]*a[7] - 46.2992881*a[5]*a[8] + 25.2541571*a[5]*a[9] - 63.1353929*a[6]^2 - 138.8978642*a[6]*a[7] - 126.2707857*a[6]*a[8] - 82.0760107*a[6]*a[9] - 2.104513094*a[1]*a[2] + 6.313539282*a[0]*a[3] + 26.30641368*d[5] + 31.56769641*d[6] + 36.82897914*d[7] + 15.78384820*d[3] + 21.04513094*d[4] + 5.261282735*d[1] + 10.52256547*d[2] + 36.15553494*b[7] + 25.82538210*b[5] + 30.99045852*b[6] + 10.33015284*b[2] + 15.49522926*b[3] + 20.66030568*b[4] + 5.165076420*b[1] + 3024.*a[9] + 360.*a[6] + 840.*a[7] + 1680.*a[8] + 24.*a[4] + 120.*a[5] = 0:
eq[11] := 120.*a[5] - 4.209026188*a[2]^2 + 25.25415713*a[0]*a[4] + 10.33015284*b[2] + 10.52256547*d[2] = 0:
eq[12] := -972.2850495*a[7]^2 - 2298.128299*a[7]*a[8] - 2298.128298*a[7]*a[9] - 1532.085532*a[8]^2 - 3535.581998*a[8]*a[9] - 2272.874142*a[9]^2 + 25.25415713*a[0]*a[4] + 126.2707856*a[0]*a[5] + 378.8123569*a[0]*a[6] + 883.8954995*a[0]*a[7] + 1767.790999*a[0]*a[8] + 3182.023798*a[0]*a[9] + 25.25415713*a[1]*a[4] + 126.2707856*a[1]*a[5] + 378.8123569*a[1]*a[6] + 883.8954995*a[1]*a[7] + 1767.790999*a[1]*a[8] + 3182.023798*a[1]*a[9] - 4.209026188*a[2]^2 - 25.25415713*a[2]*a[3] - 25.25415713*a[2]*a[4] + 42.09026184*a[2]*a[5] + 252.5415713*a[2]*a[6] + 707.1163996*a[2]*a[7] + 1532.085532*a[2]*a[8] + 2878.973912*a[2]*a[9] - 37.88123569*a[3]^2 - 126.2707857*a[3]*a[4] - 126.2707857*a[3]*a[5] + 353.5581998*a[3]*a[7] + 1060.674599*a[3]*a[8] + 2272.874141*a[3]*a[9] - 126.2707857*a[4]^2 - 353.5581998*a[4]*a[5] - 353.5581998*a[4]*a[6] - 151.5249424*a[4]*a[7] + 378.812357*a[4]*a[8] + 1388.978642*a[4]*a[9] - 294.6318332*a[5]^2 - 757.6247134*a[5]*a[6] - 757.624714*a[5]*a[7] - 462.992880*a[5]*a[8] + 277.795729*a[5]*a[9] - 568.2185354*a[6]^2 - 1388.978642*a[6]*a[7] - 1388.978642*a[6]*a[8] - 984.912128*a[6]*a[9] + 105.2256547*d[5] + 157.8384820*d[6] + 220.9738748*d[7] + 31.56769640*d[3] + 63.13539282*d[4] + 10.52256547*d[2] + 216.9332096*b[7] + 103.3015284*b[5] + 154.9522926*b[6] + 10.33015284*b[2] + 30.99045852*b[3] + 61.98091704*b[4] + 15120.*a[9] + 720.*a[6] + 2520.*a[7] + 6720.*a[8] + 120.*a[5] = 0:
eq[13] := 720.*a[6] - 25.25415713*a[2]*a[3] + 25.25415713*a[1]*a[4] + 126.2707856*a[0]*a[5] + 30.99045852*b[3] + 31.56769640*d[3] = 0:
eq[14] := -9722.850492*a[7]^2 - 25279.41129*a[7]*a[8] - 27577.53959*a[7]*a[9] - 18385.02639*a[8]^2 - 45962.56593*a[8]*a[9] - 31820.23799*a[9]^2 + 126.2707856*a[0]*a[5] + 757.6247138*a[0]*a[6] + 2651.686498*a[0]*a[7] + 7071.163996*a[0]*a[8] + 15910.11899*a[0]*a[9] + 25.25415713*a[1]*a[4] + 252.5415712*a[1]*a[5] + 1136.437071*a[1]*a[6] + 3535.581998*a[1]*a[7] + 8838.954995*a[1]*a[8] + 19092.14279*a[1]*a[9] - 25.25415713*a[2]*a[3] - 50.50831424*a[2]*a[4] + 126.2707856*a[2]*a[5] + 1010.166285*a[2]*a[6] + 3535.581998*a[2]*a[7] + 9192.513195*a[2]*a[8] + 20152.81739*a[2]*a[9] - 75.76247138*a[3]^2 - 378.8123569*a[3]*a[4] - 505.0831425*a[3]*a[5] + 2121.349198*a[3]*a[7] + 7424.722196*a[3]*a[8] + 18182.99313*a[3]*a[9] - 505.0831426*a[4]^2 - 1767.790999*a[4]*a[5] - 2121.349199*a[4]*a[6] - 1060.674600*a[4]*a[7] + 3030.498859*a[4]*a[8] + 12500.80778*a[4]*a[9] - 1767.790999*a[5]^2 - 5303.372998*a[5]*a[6] - 6060.997709*a[5]*a[7] - 4166.935929*a[5]*a[8] + 2777.95729*a[5]*a[9] - 4545.748282*a[6]^2 - 12500.80779*a[6]*a[7] - 13889.78642*a[6]*a[8] - 10834.03341*a[6]*a[9] + 315.6769641*d[5] + 631.3539280*d[6] + 1104.869374*d[7] + 31.56769640*d[3] + 126.2707856*d[4] + 1084.666048*b[7] + 309.9045852*b[5] + 619.8091704*b[6] + 30.99045852*b[3] + 123.9618341*b[4] + 60480.*a[9] + 720.*a[6] + 5040.*a[7] + 20160.*a[8] - 2.*10^(-7)*a[3]*a[6] = 0:
eq[15] := 2.*d[2] + 5.261282735*a[0]*d[1] - 2.630641368*d[0] = 0:
eq[16] := 17.36935863*d[5] + 27.36935863*d[6] + 39.36935863*d[7] + 3.369358632*d[3] + 9.369358632*d[4] - 2.630641368*d[0] - 2.630641368*d[1] - 0.630641368*d[2] + 36.82897914*a[6]*d[7] + 5.261282735*a[7]*d[1] + 10.52256547*a[7]*d[2] + 15.78384820*a[7]*d[3] + 21.04513094*a[7]*d[4] + 26.30641368*a[7]*d[5] + 31.56769641*a[7]*d[6] + 36.82897914*a[7]*d[7] + 5.261282735*a[8]*d[1] + 10.52256547*a[8]*d[2] + 15.78384820*a[8]*d[3] + 21.04513094*a[8]*d[4] + 26.30641368*a[8]*d[5] + 31.56769641*a[8]*d[6] + 36.82897914*a[8]*d[7] + 5.261282735*a[9]*d[1] + 10.52256547*a[9]*d[2] + 15.78384820*a[9]*d[3] + 21.04513094*a[9]*d[4] + 26.30641368*a[9]*d[5] + 31.56769641*a[9]*d[6] + 36.82897914*a[9]*d[7] + 10.52256547*a[0]*d[2] + 15.78384820*a[0]*d[3] + 21.04513094*a[0]*d[4] + 26.30641368*a[0]*d[5] + 31.56769641*a[0]*d[6] + 36.82897914*a[0]*d[7] + 5.261282735*a[1]*d[1] + 10.52256547*a[1]*d[2] + 15.78384820*a[1]*d[3] + 21.04513094*a[1]*d[4] + 26.30641368*a[1]*d[5] + 31.56769641*a[1]*d[6] + 36.82897914*a[1]*d[7] + 5.261282735*a[2]*d[1] + 10.52256547*a[2]*d[2] + 15.78384820*a[2]*d[3] + 21.04513094*a[2]*d[4] + 26.30641368*a[2]*d[5] + 31.56769641*a[2]*d[6] + 36.82897914*a[2]*d[7] + 5.261282735*a[3]*d[1] + 10.52256547*a[3]*d[2] + 15.78384820*a[3]*d[3] + 21.04513094*a[3]*d[4] + 26.30641368*a[3]*d[5] + 31.56769641*a[3]*d[6] + 36.82897914*a[3]*d[7] + 5.261282735*a[4]*d[1] + 10.52256547*a[4]*d[2] + 15.78384820*a[4]*d[3] + 21.04513094*a[4]*d[4] + 26.30641368*a[4]*d[5] + 31.56769641*a[4]*d[6] + 36.82897914*a[4]*d[7] + 5.261282735*a[5]*d[1] + 10.52256547*a[5]*d[2] + 15.78384820*a[5]*d[3] + 21.04513094*a[5]*d[4] + 26.30641368*a[5]*d[5] + 31.56769641*a[5]*d[6] + 36.82897914*a[5]*d[7] + 5.261282735*a[6]*d[1] + 10.52256547*a[6]*d[2] + 15.78384820*a[6]*d[3] + 21.04513094*a[6]*d[4] + 26.30641368*a[6]*d[5] + 31.56769641*a[6]*d[6] + 5.261282735*a[0]*d[1] = 0:
eq[17] := 6.*d[3] + 5.261282735*a[1]*d[1] + 10.52256547*a[0]*d[2] - 2.630641368*d[1] = 0:
eq[18] := 46.84679316*d[5] + 104.2161518*d[6] + 191.5855104*d[7] - 1.891924104*d[3] + 13.47743453*d[4] - 2.630641368*d[1] - 5.261282736*d[2] + 441.9477498*a[6]*d[7] + 36.82897914*a[7]*d[1] + 84.18052376*a[7]*d[2] + 142.0546338*a[7]*d[3] + 210.4513094*a[7]*d[4] + 289.3705504*a[7]*d[5] + 378.8123569*a[7]*d[6] + 478.7767289*a[7]*d[7] + 42.09026188*a[8]*d[1] + 94.70308923*a[8]*d[2] + 157.8384820*a[8]*d[3] + 231.4964403*a[8]*d[4] + 315.6769641*a[8]*d[5] + 410.3800533*a[8]*d[6] + 515.6057081*a[8]*d[7] + 47.35154462*a[9]*d[1] + 105.2256547*a[9]*d[2] + 173.6223302*a[9]*d[3] + 252.5415713*a[9]*d[4] + 341.9833778*a[9]*d[5] + 441.9477497*a[9]*d[6] + 552.4346872*a[9]*d[7] + 10.52256547*a[0]*d[2] + 31.56769641*a[0]*d[3] + 63.13539282*a[0]*d[4] + 105.2256547*a[0]*d[5] + 157.8384820*a[0]*d[6] + 220.9738749*a[0]*d[7] + 5.261282735*a[1]*d[1] + 21.04513094*a[1]*d[2] + 47.35154461*a[1]*d[3] + 84.18052376*a[1]*d[4] + 131.5320684*a[1]*d[5] + 189.4061784*a[1]*d[6] + 257.8028540*a[1]*d[7] + 10.52256547*a[2]*d[1] + 31.56769641*a[2]*d[2] + 63.13539282*a[2]*d[3] + 105.2256547*a[2]*d[4] + 157.8384820*a[2]*d[5] + 220.9738748*a[2]*d[6] + 294.6318332*a[2]*d[7] + 15.78384820*a[3]*d[1] + 42.09026188*a[3]*d[2] + 78.91924103*a[3]*d[3] + 126.2707856*a[3]*d[4] + 184.1448957*a[3]*d[5] + 252.5415712*a[3]*d[6] + 331.4608123*a[3]*d[7] + 21.04513094*a[4]*d[1] + 52.61282735*a[4]*d[2] + 94.70308923*a[4]*d[3] + 147.3159166*a[4]*d[4] + 210.4513094*a[4]*d[5] + 284.1092676*a[4]*d[6] + 368.2897915*a[4]*d[7] + 26.30641368*a[5]*d[1] + 63.13539282*a[5]*d[2] + 110.4869374*a[5]*d[3] + 168.3610475*a[5]*d[4] + 236.7577231*a[5]*d[5] + 315.6769640*a[5]*d[6] + 405.1187706*a[5]*d[7] + 31.56769641*a[6]*d[1] + 73.65795829*a[6]*d[2] + 126.2707856*a[6]*d[3] + 189.4061784*a[6]*d[4] + 263.0641367*a[6]*d[5] + 347.2446605*a[6]*d[6] = 0:
eq[19] := 24.*d[4] + 10.52256547*a[2]*d[1] + 21.04513094*a[1]*d[2] + 31.56769641*a[0]*d[3] - 5.261282736*d[2] = 0:
eq[20] := 67.38717264*d[5] + 281.0807590*d[6] + 729.5130625*d[7] - 15.78384821*d[3] - 7.56769641*d[4] - 5.261282736*d[2] + 4861.425246*a[6]*d[7] + 220.9738749*a[7]*d[1] + 589.2636663*a[7]*d[2] + 1136.437070*a[7]*d[3] + 1894.061785*a[7]*d[4] + 2893.705504*a[7]*d[5] + 4166.935926*a[7]*d[6] + 5745.320746*a[7]*d[7] + 294.6318332*a[8]*d[1] + 757.6247138*a[8]*d[2] + 1420.546338*a[8]*d[3] + 2314.964404*a[8]*d[4] + 3472.446605*a[8]*d[5] + 4924.560640*a[8]*d[6] + 6702.874204*a[8]*d[7] + 378.8123569*a[9]*d[1] + 947.0308923*a[9]*d[2] + 1736.223302*a[9]*d[3] + 2777.957285*a[9]*d[4] + 4103.800534*a[9]*d[5] + 5745.320747*a[9]*d[6] + 7734.085620*a[9]*d[7] + 31.56769641*a[0]*d[3] + 126.2707856*a[0]*d[4] + 315.6769641*a[0]*d[5] + 631.3539282*a[0]*d[6] + 1104.869374*a[0]*d[7] + 21.04513094*a[1]*d[2] + 94.70308923*a[1]*d[3] + 252.5415712*a[1]*d[4] + 526.1282735*a[1]*d[5] + 947.0308923*a[1]*d[6] + 1546.817124*a[1]*d[7] + 10.52256547*a[2]*d[1] + 63.13539282*a[2]*d[2] + 189.4061784*a[2]*d[3] + 420.9026188*a[2]*d[4] + 789.1924103*a[2]*d[5] + 1325.843249*a[2]*d[6] + 2062.422832*a[2]*d[7] + 31.56769641*a[3]*d[1] + 126.2707856*a[3]*d[2] + 315.6769641*a[3]*d[3] + 631.3539281*a[3]*d[4] + 1104.869374*a[3]*d[5] + 1767.790999*a[3]*d[6] + 2651.686498*a[3]*d[7] + 63.13539282*a[4]*d[1] + 210.4513094*a[4]*d[2] + 473.5154462*a[4]*d[3] + 883.8954995*a[4]*d[4] + 1473.159166*a[4]*d[5] + 2272.874141*a[4]*d[6] + 3314.608123*a[4]*d[7] + 105.2256547*a[5]*d[1] + 315.6769641*a[5]*d[2] + 662.9216246*a[5]*d[3] + 1178.527333*a[5]*d[4] + 1894.061784*a[5]*d[5] + 2841.092676*a[5]*d[6] + 4051.187706*a[5]*d[7] + 157.8384820*a[6]*d[1] + 441.9477497*a[6]*d[2] + 883.8954995*a[6]*d[3] + 1515.249428*a[6]*d[4] + 2367.577230*a[6]*d[5] + 3472.446605*a[6]*d[6] = 0:
eq[21] := 2.119408818*b[2] + 6.176017503*a[0]*b[1] + 42.07215928*a[2] + 0.5*d[0] = 0:
eq[22] := 0.5*d[5] + 0.5*d[6] + 0.5*d[7] + 0.5*d[3] + 0.5*d[4] + 0.5*d[0] + 0.5*d[1] + 0.5*d[2] + 44.50758518*b[7] + 21.19408818*b[5] + 31.79113227*b[6] + 2.119408818*b[2] + 6.358226454*b[3] + 12.71645291*b[4] + 1514.597734*a[9] + 631.0823892*a[6] + 883.5153448*a[7] + 1178.020460*a[8] + 126.2164778*a[3] + 252.4329557*a[4] + 420.7215928*a[5] + 42.07215928*a[2] + 12.35203501*a[0]*b[2] + 18.52805251*a[0]*b[3] + 24.70407001*a[0]*b[4] + 30.88008752*a[0]*b[5] + 37.05610502*a[0]*b[6] + 43.23212252*a[0]*b[7] + 6.176017503*a[1]*b[1] + 12.35203501*a[1]*b[2] + 18.52805251*a[1]*b[3] + 24.70407001*a[1]*b[4] + 30.88008752*a[1]*b[5] + 37.05610502*a[1]*b[6] + 43.23212252*a[1]*b[7] + 6.176017503*a[2]*b[1] + 12.35203501*a[2]*b[2] + 18.52805251*a[2]*b[3] + 24.70407001*a[2]*b[4] + 30.88008752*a[2]*b[5] + 37.05610502*a[2]*b[6] + 43.23212252*a[2]*b[7] + 6.176017503*a[3]*b[1] + 12.35203501*a[3]*b[2] + 18.52805251*a[3]*b[3] + 24.70407001*a[3]*b[4] + 30.88008752*a[3]*b[5] + 37.05610502*a[3]*b[6] + 43.23212252*a[3]*b[7] + 6.176017503*a[4]*b[1] + 12.35203501*a[4]*b[2] + 18.52805251*a[4]*b[3] + 24.70407001*a[4]*b[4] + 30.88008752*a[4]*b[5] + 37.05610502*a[4]*b[6] + 43.23212252*a[4]*b[7] + 6.176017503*a[5]*b[1] + 12.35203501*a[5]*b[2] + 18.52805251*a[5]*b[3] + 24.70407001*a[5]*b[4] + 30.88008752*a[5]*b[5] + 37.05610502*a[5]*b[6] + 43.23212252*a[5]*b[7] + 6.176017503*a[6]*b[1] + 12.35203501*a[6]*b[2] + 18.52805251*a[6]*b[3] + 24.70407001*a[6]*b[4] + 30.88008752*a[6]*b[5] + 37.05610502*a[6]*b[6] + 43.23212252*a[6]*b[7] + 6.176017503*a[7]*b[1] + 12.35203501*a[7]*b[2] + 18.52805251*a[7]*b[3] + 24.70407001*a[7]*b[4] + 30.88008752*a[7]*b[5] + 37.05610502*a[7]*b[6] + 43.23212252*a[7]*b[7] + 6.176017503*a[8]*b[1] + 12.35203501*a[8]*b[2] + 18.52805251*a[8]*b[3] + 24.70407001*a[8]*b[4] + 30.88008752*a[8]*b[5] + 37.05610502*a[8]*b[6] + 43.23212252*a[8]*b[7] + 6.176017503*a[9]*b[1] + 12.35203501*a[9]*b[2] + 18.52805251*a[9]*b[3] + 24.70407001*a[9]*b[4] + 30.88008752*a[9]*b[5] + 37.05610502*a[9]*b[6] + 43.23212252*a[9]*b[7] + 6.176017503*a[0]*b[1] = 0:
eq[23] := 6.358226454*b[3] + 6.176017503*a[1]*b[1] + 12.35203501*a[0]*b[2] + 126.2164778*a[3] + 0.5*d[1] = 0:
eq[24] := 2.5*d[5] + 3.0*d[6] + 3.5*d[7] + 1.5*d[3] + 2.0*d[4] + 0.5*d[1] + d[2] + 222.5379259*b[7] + 63.58226454*b[5] + 127.1645291*b[6] + 6.358226454*b[3] + 25.43290582*b[4] + 10602.18414*a[9] + 2524.329557*a[6] + 4417.576724*a[7] + 7068.122760*a[8] + 126.2164778*a[3] + 504.8659114*a[4] + 1262.164778*a[5] + 12.35203501*a[0]*b[2] + 37.05610502*a[0]*b[3] + 74.11221004*a[0]*b[4] + 123.5203501*a[0]*b[5] + 185.2805251*a[0]*b[6] + 259.3927351*a[0]*b[7] + 6.176017503*a[1]*b[1] + 24.70407002*a[1]*b[2] + 55.58415753*a[1]*b[3] + 98.81628005*a[1]*b[4] + 154.4004376*a[1]*b[5] + 222.3366301*a[1]*b[6] + 302.6248576*a[1]*b[7] + 12.35203501*a[2]*b[1] + 37.05610502*a[2]*b[2] + 74.11221004*a[2]*b[3] + 123.5203501*a[2]*b[4] + 185.2805251*a[2]*b[5] + 259.3927351*a[2]*b[6] + 345.8569801*a[2]*b[7] + 18.52805251*a[3]*b[1] + 49.40814003*a[3]*b[2] + 92.64026255*a[3]*b[3] + 148.2244201*a[3]*b[4] + 216.1606126*a[3]*b[5] + 296.4488402*a[3]*b[6] + 389.0891027*a[3]*b[7] + 24.70407001*a[4]*b[1] + 61.76017503*a[4]*b[2] + 111.1683151*a[4]*b[3] + 172.9284901*a[4]*b[4] + 247.0407002*a[4]*b[5] + 333.5049452*a[4]*b[6] + 432.3212252*a[4]*b[7] + 30.88008752*a[5]*b[1] + 74.11221004*a[5]*b[2] + 129.6963676*a[5]*b[3] + 197.6325601*a[5]*b[4] + 277.9207877*a[5]*b[5] + 370.5610502*a[5]*b[6] + 475.5533477*a[5]*b[7] + 37.05610502*a[6]*b[1] + 86.46424505*a[6]*b[2] + 148.2244201*a[6]*b[3] + 222.3366301*a[6]*b[4] + 308.8008752*a[6]*b[5] + 407.6171552*a[6]*b[6] + 518.7854702*a[6]*b[7] + 43.23212252*a[7]*b[1] + 98.81628005*a[7]*b[2] + 166.7524726*a[7]*b[3] + 247.0407001*a[7]*b[4] + 339.6809627*a[7]*b[5] + 444.6732602*a[7]*b[6] + 562.0175927*a[7]*b[7] + 49.40814002*a[8]*b[1] + 111.1683151*a[8]*b[2] + 185.2805251*a[8]*b[3] + 271.7447701*a[8]*b[4] + 370.5610502*a[8]*b[5] + 481.7293652*a[8]*b[6] + 605.2497153*a[8]*b[7] + 55.58415753*a[9]*b[1] + 123.5203501*a[9]*b[2] + 203.8085776*a[9]*b[3] + 296.4488401*a[9]*b[4] + 401.4411377*a[9]*b[5] + 518.7854703*a[9]*b[6] + 648.4818378*a[9]*b[7] = 0:
eq[25] := 25.43290582*b[4] + 12.35203501*a[2]*b[1] + 24.70407002*a[1]*b[2] + 37.05610502*a[0]*b[3] + 504.8659114*a[4] + d[2] = 0:
eq[26] := 10.0*d[5] + 15.0*d[6] + 21.0*d[7] + 3.0*d[3] + 6.0*d[4] + d[2] + 890.1517036*b[7] + 127.1645291*b[5] + 381.4935873*b[6] + 25.43290582*b[4] + 63613.10484*a[9] + 7572.988671*a[6] + 17670.30690*a[7] + 35340.61380*a[8] + 504.8659114*a[4] + 2524.329556*a[5] + 37.05610502*a[0]*b[3] + 148.2244201*a[0]*b[4] + 370.5610502*a[0]*b[5] + 741.1221004*a[0]*b[6] + 1296.963676*a[0]*b[7] + 24.70407002*a[1]*b[2] + 111.1683151*a[1]*b[3] + 296.4488402*a[1]*b[4] + 617.6017504*a[1]*b[5] + 1111.683151*a[1]*b[6] + 1815.749146*a[1]*b[7] + 12.35203501*a[2]*b[1] + 74.11221005*a[2]*b[2] + 222.3366301*a[2]*b[3] + 494.0814003*a[2]*b[4] + 926.4026256*a[2]*b[5] + 1556.356411*a[2]*b[6] + 2420.998862*a[2]*b[7] + 37.05610502*a[3]*b[1] + 148.2244201*a[3]*b[2] + 370.5610503*a[3]*b[3] + 741.1221006*a[3]*b[4] + 1296.963676*a[3]*b[5] + 2075.141881*a[3]*b[6] + 3112.712822*a[3]*b[7] + 74.11221004*a[4]*b[1] + 247.0407002*a[4]*b[2] + 555.8415753*a[4]*b[3] + 1037.570941*a[4]*b[4] + 1729.284901*a[4]*b[5] + 2668.039561*a[4]*b[6] + 3890.891028*a[4]*b[7] + 123.5203501*a[5]*b[1] + 370.5610502*a[5]*b[2] + 778.1782055*a[5]*b[3] + 1383.427921*a[5]*b[4] + 2223.366301*a[5]*b[5] + 3335.049452*a[5]*b[6] + 4755.533478*a[5]*b[7] + 185.2805251*a[6]*b[1] + 518.7854703*a[6]*b[2] + 1037.570941*a[6]*b[3] + 1778.693041*a[6]*b[4] + 2779.207876*a[6]*b[5] + 4076.171553*a[6]*b[6] + 5706.640175*a[6]*b[7] + 259.3927351*a[7]*b[1] + 691.7139604*a[7]*b[2] + 1334.019781*a[7]*b[3] + 2223.366302*a[7]*b[4] + 3396.809627*a[7]*b[5] + 4891.405863*a[7]*b[6] + 6744.211115*a[7]*b[7] + 345.8569802*a[8]*b[1] + 889.3465205*a[8]*b[2] + 1667.524727*a[8]*b[3] + 2717.447702*a[8]*b[4] + 4076.171553*a[8]*b[5] + 5780.752383*a[8]*b[6] + 7868.246300*a[8]*b[7] + 444.6732602*a[9]*b[1] + 1111.683151*a[9]*b[2] + 2038.085777*a[9]*b[3] + 3260.937242*a[9]*b[4] + 4817.293653*a[9]*b[5] + 6744.211114*a[9]*b[6] + 9078.745732*a[9]*b[7] = 0:

solve([seq(eq[i], i = 1 .. 26)],{seq(a[i], i = 0 .. 9),seq(b[i], i = 0 .. 7),seq(d[i], i = 0 .. 7)});

Thanks a lot.

Suppose I have a list of 10 thousand expressions containing the symbol x. I would like to integrate all of them in the range x=0..1 and store the result in a new list or array of 10 thousand elements. I run Maple on a server with 32 CPUs and would like to parallelize the computation. Could you give some code samples showing how this can be done? Since the starting expressions vary greatly in complexity, some kind of dynamics load balancing (rather than dividing the calculation "equally") would be also very useful. Thanks for any help!

## How to generate a Maple Code...

Please, what is the maple code for solving the following initial value problems?

## Maple seems to plot incorrectly...

The function n->ceil(sqrt(4*n))-floor(sqrt(2*n))-1 counts the number of squares strictly between 2n and 4n.

Maple 2016 gives the same output as what I get when I create a plot here:

Note, however, that Maple does not plot at least the point of interest (72.4), which is nevertheless an element of the graph:

[10, 2], [11, 2], [12, 2], [13, 2], [14, 2], [15, 2], [16, 2], [17, 3], [18, 2], [19, 2], [20, 2], [21, 3], [22, 3], [23, 3], [24, 3], [25, 2], [26, 3], [27, 3], [28, 3], [29, 3], [30, 3], [31, 4], [32, 3], [33, 3], [34, 3], [35, 3], [36, 3], [37, 4], [38, 4], [39, 4], [40, 4], [41, 3], [42, 3], [43, 4], [44, 4], [45, 4], [46, 4], [47, 4], [48, 4], [49, 4], [50, 4], [51, 4], [52, 4], [53, 4], [54, 4], [55, 4], [56, 4], [57, 5], [58, 5], [59, 5], [60, 5], [61, 4], [62, 4], [63, 4], [64, 4], [65, 5], [66, 5], [67, 5], [68, 5], [69, 5], [70, 5], [71, 5], [72, 4], [73, 5], [74, 5], [75, 5], [76, 5], [77, 5], [78, 5], [79, 5], [80, 5], [81, 5], [82, 6], [83, 6], [84, 6], [85, 5], [86, 5], [87, 5], [88, 5], [89, 5], [90, 5], [91, 6], [92, 6], [93, 6], [94, 6], [95, 6], [96, 6], [97, 6], [98, 5], [99, 5], [100, 5]

What's going wrong here?
Regards
Prof.G

## how to get an adjustable parameter...

example.msim

I want to get an adjustable parameter in maplesim. For example, here is a pulse voltage source, i  want to make its amplitude controlled by another voltage output (doesn't exist in this .msim).

## reflect 2d plot...

hello
i want to reflect a plot i have j:= plot(y(x),x=0..35) ,y(x) icludes heavside functions around  x=17.5 , for some reason maple using reflect function keeps returning the reflected function in the output and not just the plot. i would like to get rid of it .

reflect(j,[[17.5,0],[17.5,15]])
output : the reflected function of y(x)
the reflected graph.

thanks for the help

## Error in numeric dsolve...

Hello,

I want to solve three coupled differential equations with initial and boundary conditions numerically and get the plots of solutions.

Could you please help me to solve the error and get all three plots that I need?

My codes:

restart;

sys := {diff(phi(eta), eta\$2) + 5.261282735*f(eta)*diff(phi(eta), eta) - 2.630641368*phi(eta) = 0, 1.059704409*diff(theta(eta), eta\$2) + 6.176017503*f(eta)*diff(theta(eta), eta) + 21.03607964*diff(f(eta), eta\$2) + 0.5*phi(eta) = 0, diff(f(eta), eta\$4) - 1.052256547*diff(f(eta), eta)*diff(f(eta), eta\$2) + 1.052256547*f(eta)*diff(f(eta), eta\$3) + 5.165076420*diff(theta(eta), eta) + 5.261282735*diff(phi(eta), eta) = 0, eval(diff(phi(eta), eta), {eta = 0}) = 1 + 0.5*eval(diff(f(eta), eta\$2), {eta = 0}), eval(diff(phi(eta), eta), {eta = 1}) = 0.5*eval(diff(f(eta), eta\$2), {eta = 1}), f(0) = -0.5, f(1) = 0.5, phi(0) = 1, phi(1) = 0, theta(0) = 1, theta(1) = 0};

dsol:=dsolve(sys,numeric);
Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system
plots[odeplot]((dsol),eta=0..1);
Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

Thank you.

## dsolve Warning, it is required that the numerator ...

To Maple support,

Why when removing symbol a from these equations makes Maple warning go away? This is from a textbook. Attached worksheet.

```restart;
ode:={diff(x__1(t),t)*sin(x__2(t))=x__4(t)*sin(x__3(t))+x__5(t)*cos(x__3(t)),diff(x__2(t),t)= x__4(t)*cos(x__3(t))-x__5(t)*sin(x__3(t)),diff(x__3(t),t)+diff(x__1(t),t)*cos(x__2(t))= 1,diff(x__4(t),t)-(1-B)*a*x__5(t)= sin(x__2(t))*cos(x__3(t)),diff(x__5(t),t)+(1-B)*a*x__4(t)=sin(x__2(t))*sin(x__3(t))};
dsolve(ode)

restart;
ode:={diff(x__1(t),t)*sin(x__2(t))=x__4(t)*sin(x__3(t))+x__5(t)*cos(x__3(t)),diff(x__2(t),t)= x__4(t)*cos(x__3(t))-x__5(t)*sin(x__3(t)),diff(x__3(t),t)+diff(x__1(t),t)*cos(x__2(t))= 1,diff(x__4(t),t)-(1-B)*x__5(t)= sin(x__2(t))*cos(x__3(t)),diff(x__5(t),t)+(1-B)*a*x__4(t)=sin(x__2(t))*sin(x__3(t))};
dsolve(ode)
```

worksheet attached also

 > interface(version)

 > Physics:-Version();

 > restart;
 > ode:={diff(x__1(t),t)*sin(x__2(t))=x__4(t)*sin(x__3(t))+x__5(t)*cos(x__3(t)),diff(x__2(t),t)= x__4(t)*cos(x__3(t))-x__5(t)*sin(x__3(t)),diff(x__3(t),t)+diff(x__1(t),t)*cos(x__2(t))= 1,diff(x__4(t),t)-(1-B)*a*x__5(t)= sin(x__2(t))*cos(x__3(t)),diff(x__5(t),t)+(1-B)*a*x__4(t)=sin(x__2(t))*sin(x__3(t))}; dsolve(ode)

Warning, it is required that the numerator of the given ODE depends on the highest derivative. Returning NULL.

 > restart;
 > ode:={diff(x__1(t),t)*sin(x__2(t))=x__4(t)*sin(x__3(t))+x__5(t)*cos(x__3(t)),diff(x__2(t),t)= x__4(t)*cos(x__3(t))-x__5(t)*sin(x__3(t)),diff(x__3(t),t)+diff(x__1(t),t)*cos(x__2(t))= 1,diff(x__4(t),t)-(1-B)*x__5(t)= sin(x__2(t))*cos(x__3(t)),diff(x__5(t),t)+(1-B)*a*x__4(t)=sin(x__2(t))*sin(x__3(t))}; dsolve(ode)

 >

Hi,

I want to plot a quadric with important elements ( center, Principlal directions, Principal planes..)

 Plot Quadric with center, Principal directions,Principal planes

Ideas ? Thanks

## Units:-Simple:-`+`, "invalid subscript selector...

Anyone keen to spend some time helping me with an error?

I'm getting the error mentioned above with Maple 2022 (but can also be reproduced in 2021).

Originally the error comes from within a company library, but I've managed to reproduce it without the library by merging the library in the workbook.

The error arises during a simple addition / subtraction operation, and I have no clue why.

P.S.: I've also filed a request to Maple support on this one.

CrashTest.zip

## Maxima of the given equation...

Let say,

A= A1+A2+.....................+An

B=B1+B2+.....................+Bn,

C=C1+C2+.....................+Cn

And all the values of A1 to Cn may be both positive or Negative.

Then, how to program to find the Maximum Value of  (A^2+B^2+C^2+A.B+B.C+C.A)^(1/2).

## How to tell Maple Flow that the number you just en...

I should know this by now but its been a long day learning Maple Flow 2022 and my eyes are rolling back in my head and I'm not thinking clearly ... so maybe some kind soul will gentley remind me how to  specify a the units for a number are Radians ...

When I look at the Units Palette in Maple Flow I don't see a unit symbol for radians ... or did I miss it?

Altenately ...

An example for specifying feet ...
type the number
press Ctl+Shift+U
type ft

enter the number
press Ctl+Shift+U
type what?

I know Maple Flow 2022 uses Radians by default ... but  when I just type a number without specifying units it could be anything.

Thanks for any help.

## Where is the Common Symbols palette in Maple Flow?...

Question 1: The Common Symbols palette referenced in the the section titled ... "Solution 2 - Use the Palettes" in Online Help HERE ...

Where is the Common Symbols palette in Maple Flow 2022 ... or is it missing?

Question 2: How can I add it if it  is missing as it looks very handy.

Question 3: Can you create custom Palettes and if so how?

Question 4: OT: Any chance of getting a spell checke for Forum Post ? :-)

Thanks for any help.

## Long form ScientificConstants GetValue not working...

The long form of ScientificConstants[GetValue] is not working in at least Maple 2021 and Maple 2022

ScientificConstants[GetValue](Constant(g))

This is causing issues for MapleFlow, not being able to call on a constant.

**edit some of the long forms work - specifically the GetValue does not.  I modified the title to reflect that.**

## Where are Common Scientific Constants in Maple Flo...

I know they must be in Maple Flow somewhere but after 45 minutes of looking ... I'm asking ...

Where are the common scientific constants in Maple Flow?

For instance "e" for Euler's number ~2.71828, or "c" the speed of light  in a vacuum ...

Or must I define them myself?

Thanks for any help.

PS - I'm wondering if prior knowlede of the original "Maple Math" program is expected of Maple Flow users?

 First 24 25 26 27 28 29 30 Last Page 26 of 2143
﻿