MaplePrimes Questions

Hi, I'm trying to solve this ode:
restart; with(plots); with(DEtools);

l := t -> 0.5*tanh(0.5*t);

deq := diff(f(t), t)*l(t)*(diff(f(t), t, t)*l(t)+9.8*sin(f(t)))+diff(l(t), t)*(diff(f(t), t)^2*l(t)-9.8*cos(f(t))+4*(l(t)-0.5)) = 0;

sol := dsolve({deq, f(0) = 0, D(f)(0) = 0.1}, f(t), numeric);

 

but getting an error:

Error, (in dsolve/numeric/checksing) ode system has a removable singularity at t=0. Initial data is restricted to {f(t) = 1.77632183122019}
 

How can I possibly fix this?

The image is an extract from the help page on the function "series" my question is in regard to how a method is selected, ie either it be a taylor or laurent series expansion, or as it defines in the passage attached "a more generalised series".

im just curious to know what procedure maple uses to make this choice when the series function is called, and im also finding it hard to replicate and understand the procedure of computing coeffiecents as described in the extract for a generalised series.

 

Thanks.
 

i have set of equations and variable that i want to solve them using fsolve, but after about 20mintues of computations, fsolve retrun these set unevaluated, could anyone help?


 

 restart:with(linalg):with(LinearAlgebra):with(orthopoly):Digits:=40:
M:=3:
N:=2:
l:=2:
for m from 0 to M-1 do
L[m]:=unapply(P(m,t),t);
end do:
for n from 1 to N do;
for m from 0 to M-1 do;
BB[n,m]:=unapply(piecewise((n-1)/N<=t and t<n/N, sqrt(N*(2*m+1))*L[m](2*N*t-2*n+1)),t);
end do:
end do:
##############################################
B:=Vector(N*M,1,[seq(seq(BB[n,m](t),m=0..M-1),n=1..N)]):
BS:=Vector(N*M,1,[seq(seq(BB[n,m](s),m=0..M-1),n=1..N)]):
f[1]:=unapply((23/35)*t,t):
f[2]:=unapply((11/12)*t,t):
P[1]:=evalf(Vector(N*M,1,[seq(seq(int((23/35)*t*BB[n,m](t),t=0..1,t=0..1),m=0..M-1),n=1..N)])):
P[2]:=evalf(Vector(N*M,1,[seq(seq(int((11/12)*t*BB[n,m](t),t=0..1,t=0..1),m=0..M-1),n=1..N)])):
p[1]:=Transpose(P[1]):P[1]^+:
p[2]:=Transpose(P[2]):P[2]^+:

 

#############################################
k:=Matrix(2,2,[[t*s^2,t*s^2],[s*t^2,s*t^2]]):

 

 

 

 

 

 

 

 

 

######################################

for i from 1 to 2 do;
for j from 1 to 2 do;
T[i,j]:=Matrix(N*M,N*M):

for n from 1 to M*N do;
for m from 1 to M*N do;
T[i,j](n,m):=evalf(int(int(B[n]*k(i,j)*BS[m],t=0..1),s=0..1)):
end do:
end do:
od:
od:
evalm(T[1,1]):
evalm(T[1,2]):
evalm(T[2,1]):
evalm(T[2,2]):

 

 

##########################################

X[1]:=Matrix(M*N,1):
for n from 1 to M*N do;
X[1](n,1):=Y[n,1]:
od:
evalm(X[1]):
#### yadet bashe k dar in mesal majhulat y1,y2
####ba bordarhaye X1, X2 neshun dadi...darvaghe
####dar mesale avale maghale 2ta y dashti k bayad moadele ash ro hal mikardi...
 

 

X[2]:=Matrix(M*N,1):
for n from 1 to M*N do;
X[2](n,1):=yY[n,1]:
od:
evalm(X[2]):

U[1,1]:=Matrix(M*N,1):
for n from 1 to M*N do;
U[1,1](n,1):=u[n,1]:
od:
evalm(U[1,1]):

U[1,2]:=Matrix(M*N,1):
for n from 1 to M*N do;
U[1,2](n,1):=uU[n,1]:
od:

evalm(U[1,2]):
Transpose(U[1,2]):

U[2,1]:=Matrix(N*M,1):
for n from 1 to M*N do;
U[2,1](n,1):=w[n,1]:
od:
evalm(U[2,1]):

U[2,2]:=Matrix(M*N,1):
for n from 1 to M*N do;
U[2,2](n,1):=wW[n,1]:
od:
evalm(U[2,2]):





 


A:=add(X[j], j=1..2):

z[1]:=Matrix(1,M*N):
z[2]:=Matrix(1,M*N):
for i from 1 to 2 do;
Z[i]:=Transpose(A)-add(Transpose(U[i,j]).T[i,j], j=1..2);
evalm(Z[i]):
z[i]:=Z[i]-convert(p[i],Matrix):
od:
evalm(z[1]):
##############
z[1](1,2):


##########################################
for s from 1 to M*N do;
t:=((2*s)-1)/(2*M*N);
ff[1,1]:=eval(VectorMatrixMultiply(Transpose(X[1]),eval(B,t=((2*s)-1)/(2*M*N))));
F[1,s]:=multiply(ff[1,1],ff[1,1]);
expand(%):
H[1,s]:=VectorMatrixMultiply(Transpose(U[1,1]),eval(B,t=((2*s)-1)/(2*M*N)));
hh[1,s]:=F[1,s]-H[1,s][1];
od:

 

ff[1,1]:


 

F[1,1]:

H[1,1]:

hh[1,2]:

 

for s from 1 to M*N do;
t:=((2*s)-1)/(2*M*N);
ff[2,1]:=eval(VectorMatrixMultiply(Transpose(X[1]),eval(B,t=((2*s)-1)/(2*M*N))));
G[1,s]:=multiply(ff[2,1],ff[2,1]);
expand(%):
J[1,s]:=VectorMatrixMultiply(Transpose(U[2,1]),eval(B,t=((2*s)-1)/(2*M*N)));
JJ[1,s]:=G[1,s]-J[1,s][1];
od:
JJ[1,1]:
JJ[1,2]:

for s from 1 to M*N do;
t:=((2*s)-1)/(2*M*N);
ff[1,2]:=eval(VectorMatrixMultiply(Transpose(X[2]),eval(B,t=((2*s)-1)/(2*M*N))));
GG[1,s]:=multiply(ff[1,2],ff[1,2]);
expand(%):
g[1,s]:=VectorMatrixMultiply(Transpose(U[1,2]),eval(B,t=((2*s)-1)/(2*M*N)));
gg[1,s]:=GG[1,s]-g[1,s][1];
od:
gg[1,1]:
gg[1,2]:

for s from 1 to M*N do;
t:=((2*s)-1)/(2*M*N);
ff[2,2]:=eval(VectorMatrixMultiply(Transpose(X[2]),eval(B,t=((2*s)-1)/(2*M*N))));
DD[1,s]:=multiply(ff[2,2],ff[2,2]);
expand(%):
d[1,s]:=VectorMatrixMultiply(Transpose(U[2,2]),eval(B,t=((2*s)-1)/(2*M*N)));
dd[1,s]:=DD[1,s]-d[1,s][1];
od:
dd[1,1]:
dd[1,2]:


eqq[1]:=seq(hh[1,s],s=1..M*N):

eqq[2]:=seq(gg[1,s],s=1..M*N):

 

eqq[3]:=seq(JJ[1,s],s=1..M*N):

eqq[4]:=seq(dd[1,s],s=1..M*N):
eqq[5]:=seq(z[1](1,s),s=1..M*N):
eqq[6]:=seq(z[2](1,s),s=1..M*N):

eq:=seq(eqq[s],s=1..M*N):

var[1]:=seq(X[1](s,1),s=1..M*N):
var[2]:=seq(X[2](s,1),s=1..M*N):
var[3]:=seq(U[1,1](s,1),s=1..M*N):
var[4]:=seq(U[1,2](s,1),s=1..M*N):
var[5]:=seq(U[2,1](s,1),s=1..M*N):
var[6]:=seq(U[2,2](s,1),s=1..M*N):

EQ:=Matrix(36,1):

for i to 6 do
EQ(6*i-5,1):=hh[1,i];
EQ(6*i-4,1):=gg[1,i];
EQ(6*i-3,1):=JJ[1,i];
EQ(6*i-2,1):=dd[1,i];
EQ(6*i-1,1):=z[1](1,i);
EQ(6*i,1):=z[2](1,i);
od:

 

indets(EQ);

{Y[1, 1], Y[2, 1], Y[3, 1], Y[4, 1], Y[5, 1], Y[6, 1], u[1, 1], u[2, 1], u[3, 1], u[4, 1], u[5, 1], u[6, 1], uU[1, 1], uU[2, 1], uU[3, 1], uU[4, 1], uU[5, 1], uU[6, 1], w[1, 1], w[2, 1], w[3, 1], w[4, 1], w[5, 1], w[6, 1], wW[1, 1], wW[2, 1], wW[3, 1], wW[4, 1], wW[5, 1], wW[6, 1], yY[1, 1], yY[2, 1], yY[3, 1], yY[4, 1], yY[5, 1], yY[6, 1]}

(1)

``

``

Var:=[seq](var[s],s=1..M*N);

[Y[1, 1], Y[2, 1], Y[3, 1], Y[4, 1], Y[5, 1], Y[6, 1], yY[1, 1], yY[2, 1], yY[3, 1], yY[4, 1], yY[5, 1], yY[6, 1], u[1, 1], u[2, 1], u[3, 1], u[4, 1], u[5, 1], u[6, 1], uU[1, 1], uU[2, 1], uU[3, 1], uU[4, 1], uU[5, 1], uU[6, 1], w[1, 1], w[2, 1], w[3, 1], w[4, 1], w[5, 1], w[6, 1], wW[1, 1], wW[2, 1], wW[3, 1], wW[4, 1], wW[5, 1], wW[6, 1]]

(2)

seq(indets(EQ[i][1]), i = 1 .. 36):

``

``

 

for i to 36 do
EQQ[i]:=simplify(expand(subs([seq](indets(EQ)[i]=AA[i],i=1..36),EQ[i][1])=0));
od;

(1/18)*(12*AA[8]*3^(1/2)-3*AA[9]*5^(1/2)-18*AA[7])*2^(1/2)-(8/3)*((1/6)*AA[3]*5^(1/2)+AA[1])*AA[2]*3^(1/2)+(2/3)*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(8/3)*AA[2]^2+(5/18)*AA[3]^2 = 0

 

(1/18)*(12*AA[14]*3^(1/2)-3*AA[15]*5^(1/2)-18*AA[13])*2^(1/2)-(8/3)*((1/6)*AA[33]*5^(1/2)+AA[31])*AA[32]*3^(1/2)+(2/3)*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(8/3)*AA[32]^2+(5/18)*AA[33]^2 = 0

 

(1/18)*(12*AA[20]*3^(1/2)-3*AA[21]*5^(1/2)-18*AA[19])*2^(1/2)-(8/3)*((1/6)*AA[3]*5^(1/2)+AA[1])*AA[2]*3^(1/2)+(2/3)*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(8/3)*AA[2]^2+(5/18)*AA[3]^2 = 0

 

(1/18)*(12*AA[26]*3^(1/2)-3*AA[27]*5^(1/2)-18*AA[25])*2^(1/2)-(8/3)*((1/6)*AA[33]*5^(1/2)+AA[31])*AA[32]*3^(1/2)+(2/3)*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(8/3)*AA[32]^2+(5/18)*AA[33]^2 = 0

 

AA[1]+AA[31]-0.1041666666666666666666666666666666666667e-1*AA[7]-0.6014065304058601713636966463562056829663e-2*AA[8]-0.3125000000000000000000000000000000000000e-1*AA[10]-0.6014065304058601713636966463562056829663e-2*AA[11]-0.1041666666666666666666666666666666666667e-1*AA[13]-0.6014065304058601713636966463562056829663e-2*AA[14]-0.3125000000000000000000000000000000000000e-1*AA[16]-0.6014065304058601713636966463562056829663e-2*AA[17]-.1161675426235042361515672880600823421682 = 0

 

AA[1]+AA[31]-0.1041666666666666666666666666666666666667e-1*AA[19]-0.9021097956087902570455449695343085244494e-2*AA[20]-0.2329237476562280933759555904928412745252e-2*AA[21]-0.7291666666666666666666666666666666666667e-1*AA[22]-0.2706329386826370771136634908602925573348e-1*AA[23]-0.2329237476562280933759555904928412745252e-2*AA[24]-0.1041666666666666666666666666666666666667e-1*AA[25]-0.9021097956087902570455449695343085244494e-2*AA[26]-0.2329237476562280933759555904928412745252e-2*AA[27]-0.7291666666666666666666666666666666666667e-1*AA[28]-0.2706329386826370771136634908602925573348e-1*AA[29]-0.2329237476562280933759555904928412745252e-2*AA[30]-.1620453040219171410085268329823612381694 = 0

 

(1/2)*(AA[9]*5^(1/2)-2*AA[7])*2^(1/2)-2*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(5/2)*AA[3]^2 = 0

 

(1/2)*(AA[15]*5^(1/2)-2*AA[13])*2^(1/2)-2*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(5/2)*AA[33]^2 = 0

 

(1/2)*(AA[21]*5^(1/2)-2*AA[19])*2^(1/2)-2*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(5/2)*AA[3]^2 = 0

 

(1/2)*(AA[27]*5^(1/2)-2*AA[25])*2^(1/2)-2*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(5/2)*AA[33]^2 = 0

 

AA[2]+AA[32]-0.9021097956087902570455449695343085244494e-2*AA[7]-0.5208333333333333333333333333333333333333e-2*AA[8]-0.2706329386826370771136634908602925573348e-1*AA[10]-0.5208333333333333333333333333333333333333e-2*AA[11]-0.9021097956087902570455449695343085244494e-2*AA[13]-0.5208333333333333333333333333333333333333e-2*AA[14]-0.2706329386826370771136634908602925573348e-1*AA[16]-0.5208333333333333333333333333333333333333e-2*AA[17]-0.6706936200477749554587801633123274049430e-1 = 0

 

AA[2]+AA[32]-0.6014065304058601713636966463562056829663e-2*AA[19]-0.5208333333333333333333333333333333333333e-2*AA[20]-0.1344785884099797529576133819368888753762e-2*AA[21]-0.4209845712841021199545876524493439780765e-1*AA[22]-0.1562500000000000000000000000000000000000e-1*AA[23]-0.1344785884099797529576133819368888753762e-2*AA[24]-0.6014065304058601713636966463562056829663e-2*AA[25]-0.5208333333333333333333333333333333333333e-2*AA[26]-0.1344785884099797529576133819368888753762e-2*AA[27]-0.4209845712841021199545876524493439780765e-1*AA[28]-0.1562500000000000000000000000000000000000e-1*AA[29]-0.1344785884099797529576133819368888753762e-2*AA[30]-0.9355689989796860791725737785335001844313e-1 = 0

 

(1/18)*(-12*AA[8]*3^(1/2)-3*AA[9]*5^(1/2)-18*AA[7])*2^(1/2)+(8/3)*((1/6)*AA[3]*5^(1/2)+AA[1])*AA[2]*3^(1/2)+(2/3)*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(8/3)*AA[2]^2+(5/18)*AA[3]^2 = 0

 

(1/18)*(-12*AA[14]*3^(1/2)-3*AA[15]*5^(1/2)-18*AA[13])*2^(1/2)+(8/3)*((1/6)*AA[33]*5^(1/2)+AA[31])*AA[32]*3^(1/2)+(2/3)*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(8/3)*AA[32]^2+(5/18)*AA[33]^2 = 0

 

(1/18)*(-12*AA[20]*3^(1/2)-3*AA[21]*5^(1/2)-18*AA[19])*2^(1/2)+(8/3)*((1/6)*AA[3]*5^(1/2)+AA[1])*AA[2]*3^(1/2)+(2/3)*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(8/3)*AA[2]^2+(5/18)*AA[3]^2 = 0

 

(1/18)*(-12*AA[26]*3^(1/2)-3*AA[27]*5^(1/2)-18*AA[25])*2^(1/2)+(8/3)*((1/6)*AA[33]*5^(1/2)+AA[31])*AA[32]*3^(1/2)+(2/3)*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(8/3)*AA[32]^2+(5/18)*AA[33]^2 = 0

 

AA[3]+AA[33]-0.2329237476562280933759555904928412745252e-2*AA[7]-0.1344785884099797529576133819368888753762e-2*AA[8]-0.6987712429686842801278667714785238235753e-2*AA[10]-0.1344785884099797529576133819368888753762e-2*AA[11]-0.2329237476562280933759555904928412745252e-2*AA[13]-0.1344785884099797529576133819368888753762e-2*AA[14]-0.6987712429686842801278667714785238235753e-2*AA[16]-0.1344785884099797529576133819368888753762e-2*AA[17] = 0

 

AA[3]+AA[33] = 0

 

(1/18)*(12*AA[11]*3^(1/2)-3*AA[12]*5^(1/2)-18*AA[10])*2^(1/2)-(8/3)*((1/6)*AA[6]*5^(1/2)+AA[4])*AA[5]*3^(1/2)+(2/3)*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(8/3)*AA[5]^2+(5/18)*AA[6]^2 = 0

 

(1/18)*(12*AA[17]*3^(1/2)-3*AA[18]*5^(1/2)-18*AA[16])*2^(1/2)-(8/3)*((1/6)*AA[36]*5^(1/2)+AA[34])*AA[35]*3^(1/2)+(2/3)*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(8/3)*AA[35]^2+(5/18)*AA[36]^2 = 0

 

(1/18)*(12*AA[23]*3^(1/2)-3*AA[24]*5^(1/2)-18*AA[22])*2^(1/2)-(8/3)*((1/6)*AA[6]*5^(1/2)+AA[4])*AA[5]*3^(1/2)+(2/3)*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(8/3)*AA[5]^2+(5/18)*AA[6]^2 = 0

 

(1/18)*(12*AA[29]*3^(1/2)-3*AA[30]*5^(1/2)-18*AA[28])*2^(1/2)-(8/3)*((1/6)*AA[36]*5^(1/2)+AA[34])*AA[35]*3^(1/2)+(2/3)*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(8/3)*AA[35]^2+(5/18)*AA[36]^2 = 0

 

AA[4]+AA[34]-0.7291666666666666666666666666666666666667e-1*AA[7]-0.4209845712841021199545876524493439780765e-1*AA[8]-.2187500000000000000000000000000000000000*AA[10]-0.4209845712841021199545876524493439780765e-1*AA[11]-0.7291666666666666666666666666666666666667e-1*AA[13]-0.4209845712841021199545876524493439780765e-1*AA[14]-.2187500000000000000000000000000000000000*AA[16]-0.4209845712841021199545876524493439780765e-1*AA[17]-.3485026278705127084547018641802470265047 = 0

 

AA[4]+AA[34]-0.3125000000000000000000000000000000000000e-1*AA[19]-0.2706329386826370771136634908602925573348e-1*AA[20]-0.6987712429686842801278667714785238235753e-2*AA[21]-.2187500000000000000000000000000000000000*AA[22]-0.8118988160479112313409904725808776720045e-1*AA[23]-0.6987712429686842801278667714785238235753e-2*AA[24]-0.3125000000000000000000000000000000000000e-1*AA[25]-0.2706329386826370771136634908602925573348e-1*AA[26]-0.6987712429686842801278667714785238235753e-2*AA[27]-.2187500000000000000000000000000000000000*AA[28]-0.8118988160479112313409904725808776720045e-1*AA[29]-0.6987712429686842801278667714785238235753e-2*AA[30]-.4861359120657514230255804989470837145084 = 0

 

(1/2)*(AA[12]*5^(1/2)-2*AA[10])*2^(1/2)-2*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(5/2)*AA[6]^2 = 0

 

(1/2)*(AA[18]*5^(1/2)-2*AA[16])*2^(1/2)-2*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(5/2)*AA[36]^2 = 0

 

(1/2)*(AA[24]*5^(1/2)-2*AA[22])*2^(1/2)-2*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(5/2)*AA[6]^2 = 0

 

(1/2)*(AA[30]*5^(1/2)-2*AA[28])*2^(1/2)-2*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(5/2)*AA[36]^2 = 0

 

AA[5]+AA[35]-0.2706329386826370771136634908602925573348e-1*AA[7]-0.1562500000000000000000000000000000000000e-1*AA[8]-0.8118988160479112313409904725808776720045e-1*AA[10]-0.1562500000000000000000000000000000000000e-1*AA[11]-0.2706329386826370771136634908602925573348e-1*AA[13]-0.1562500000000000000000000000000000000000e-1*AA[14]-0.8118988160479112313409904725808776720045e-1*AA[16]-0.1562500000000000000000000000000000000000e-1*AA[17]-0.6706936200477749554587801633123274049430e-1 = 0

 

AA[5]+AA[35]-0.6014065304058601713636966463562056829663e-2*AA[19]-0.5208333333333333333333333333333333333333e-2*AA[20]-0.1344785884099797529576133819368888753762e-2*AA[21]-0.4209845712841021199545876524493439780765e-1*AA[22]-0.1562500000000000000000000000000000000000e-1*AA[23]-0.1344785884099797529576133819368888753762e-2*AA[24]-0.6014065304058601713636966463562056829663e-2*AA[25]-0.5208333333333333333333333333333333333333e-2*AA[26]-0.1344785884099797529576133819368888753762e-2*AA[27]-0.4209845712841021199545876524493439780765e-1*AA[28]-0.1562500000000000000000000000000000000000e-1*AA[29]-0.1344785884099797529576133819368888753762e-2*AA[30]-0.9355689989796860791725737785335001844313e-1 = 0

 

(1/18)*(-12*AA[11]*3^(1/2)-3*AA[12]*5^(1/2)-18*AA[10])*2^(1/2)+(8/3)*((1/6)*AA[6]*5^(1/2)+AA[4])*AA[5]*3^(1/2)+(2/3)*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(8/3)*AA[5]^2+(5/18)*AA[6]^2 = 0

 

(1/18)*(-12*AA[17]*3^(1/2)-3*AA[18]*5^(1/2)-18*AA[16])*2^(1/2)+(8/3)*((1/6)*AA[36]*5^(1/2)+AA[34])*AA[35]*3^(1/2)+(2/3)*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(8/3)*AA[35]^2+(5/18)*AA[36]^2 = 0

 

(1/18)*(-12*AA[23]*3^(1/2)-3*AA[24]*5^(1/2)-18*AA[22])*2^(1/2)+(8/3)*((1/6)*AA[6]*5^(1/2)+AA[4])*AA[5]*3^(1/2)+(2/3)*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(8/3)*AA[5]^2+(5/18)*AA[6]^2 = 0

 

(1/18)*(-12*AA[29]*3^(1/2)-3*AA[30]*5^(1/2)-18*AA[28])*2^(1/2)+(8/3)*((1/6)*AA[36]*5^(1/2)+AA[34])*AA[35]*3^(1/2)+(2/3)*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(8/3)*AA[35]^2+(5/18)*AA[36]^2 = 0

 

AA[6]+AA[36]-0.2329237476562280933759555904928412745252e-2*AA[7]-0.1344785884099797529576133819368888753762e-2*AA[8]-0.6987712429686842801278667714785238235753e-2*AA[10]-0.1344785884099797529576133819368888753762e-2*AA[11]-0.2329237476562280933759555904928412745252e-2*AA[13]-0.1344785884099797529576133819368888753762e-2*AA[14]-0.6987712429686842801278667714785238235753e-2*AA[16]-0.1344785884099797529576133819368888753762e-2*AA[17] = 0

 

AA[6]+AA[36] = 0

(3)

fsolve({seq}(EQQ[i],i=1..36),{seq}(AA[i],i=1..36));

fsolve({AA[3]+AA[33] = 0, AA[6]+AA[36] = 0, (1/2)*(AA[9]*5^(1/2)-2*AA[7])*2^(1/2)-2*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(5/2)*AA[3]^2 = 0, (1/2)*(AA[12]*5^(1/2)-2*AA[10])*2^(1/2)-2*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(5/2)*AA[6]^2 = 0, (1/2)*(AA[15]*5^(1/2)-2*AA[13])*2^(1/2)-2*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(5/2)*AA[33]^2 = 0, (1/2)*(AA[18]*5^(1/2)-2*AA[16])*2^(1/2)-2*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(5/2)*AA[36]^2 = 0, (1/2)*(AA[21]*5^(1/2)-2*AA[19])*2^(1/2)-2*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(5/2)*AA[3]^2 = 0, (1/2)*(AA[24]*5^(1/2)-2*AA[22])*2^(1/2)-2*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(5/2)*AA[6]^2 = 0, (1/2)*(AA[27]*5^(1/2)-2*AA[25])*2^(1/2)-2*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(5/2)*AA[33]^2 = 0, (1/2)*(AA[30]*5^(1/2)-2*AA[28])*2^(1/2)-2*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(5/2)*AA[36]^2 = 0, (1/18)*(-12*AA[8]*3^(1/2)-3*AA[9]*5^(1/2)-18*AA[7])*2^(1/2)+(8/3)*((1/6)*AA[3]*5^(1/2)+AA[1])*AA[2]*3^(1/2)+(2/3)*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(8/3)*AA[2]^2+(5/18)*AA[3]^2 = 0, (1/18)*(12*AA[8]*3^(1/2)-3*AA[9]*5^(1/2)-18*AA[7])*2^(1/2)-(8/3)*((1/6)*AA[3]*5^(1/2)+AA[1])*AA[2]*3^(1/2)+(2/3)*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(8/3)*AA[2]^2+(5/18)*AA[3]^2 = 0, (1/18)*(-12*AA[11]*3^(1/2)-3*AA[12]*5^(1/2)-18*AA[10])*2^(1/2)+(8/3)*((1/6)*AA[6]*5^(1/2)+AA[4])*AA[5]*3^(1/2)+(2/3)*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(8/3)*AA[5]^2+(5/18)*AA[6]^2 = 0, (1/18)*(12*AA[11]*3^(1/2)-3*AA[12]*5^(1/2)-18*AA[10])*2^(1/2)-(8/3)*((1/6)*AA[6]*5^(1/2)+AA[4])*AA[5]*3^(1/2)+(2/3)*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(8/3)*AA[5]^2+(5/18)*AA[6]^2 = 0, (1/18)*(-12*AA[14]*3^(1/2)-3*AA[15]*5^(1/2)-18*AA[13])*2^(1/2)+(8/3)*AA[32]*((1/6)*AA[33]*5^(1/2)+AA[31])*3^(1/2)+(2/3)*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(8/3)*AA[32]^2+(5/18)*AA[33]^2 = 0, (1/18)*(12*AA[14]*3^(1/2)-3*AA[15]*5^(1/2)-18*AA[13])*2^(1/2)-(8/3)*AA[32]*((1/6)*AA[33]*5^(1/2)+AA[31])*3^(1/2)+(2/3)*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(8/3)*AA[32]^2+(5/18)*AA[33]^2 = 0, (1/18)*(-12*AA[17]*3^(1/2)-3*AA[18]*5^(1/2)-18*AA[16])*2^(1/2)+(8/3)*AA[35]*((1/6)*AA[36]*5^(1/2)+AA[34])*3^(1/2)+(2/3)*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(8/3)*AA[35]^2+(5/18)*AA[36]^2 = 0, (1/18)*(12*AA[17]*3^(1/2)-3*AA[18]*5^(1/2)-18*AA[16])*2^(1/2)-(8/3)*AA[35]*((1/6)*AA[36]*5^(1/2)+AA[34])*3^(1/2)+(2/3)*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(8/3)*AA[35]^2+(5/18)*AA[36]^2 = 0, (1/18)*(-12*AA[20]*3^(1/2)-3*AA[21]*5^(1/2)-18*AA[19])*2^(1/2)+(8/3)*((1/6)*AA[3]*5^(1/2)+AA[1])*AA[2]*3^(1/2)+(2/3)*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(8/3)*AA[2]^2+(5/18)*AA[3]^2 = 0, (1/18)*(12*AA[20]*3^(1/2)-3*AA[21]*5^(1/2)-18*AA[19])*2^(1/2)-(8/3)*((1/6)*AA[3]*5^(1/2)+AA[1])*AA[2]*3^(1/2)+(2/3)*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(8/3)*AA[2]^2+(5/18)*AA[3]^2 = 0, (1/18)*(-12*AA[23]*3^(1/2)-3*AA[24]*5^(1/2)-18*AA[22])*2^(1/2)+(8/3)*((1/6)*AA[6]*5^(1/2)+AA[4])*AA[5]*3^(1/2)+(2/3)*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(8/3)*AA[5]^2+(5/18)*AA[6]^2 = 0, (1/18)*(12*AA[23]*3^(1/2)-3*AA[24]*5^(1/2)-18*AA[22])*2^(1/2)-(8/3)*((1/6)*AA[6]*5^(1/2)+AA[4])*AA[5]*3^(1/2)+(2/3)*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(8/3)*AA[5]^2+(5/18)*AA[6]^2 = 0, (1/18)*(-12*AA[26]*3^(1/2)-3*AA[27]*5^(1/2)-18*AA[25])*2^(1/2)+(8/3)*AA[32]*((1/6)*AA[33]*5^(1/2)+AA[31])*3^(1/2)+(2/3)*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(8/3)*AA[32]^2+(5/18)*AA[33]^2 = 0, (1/18)*(12*AA[26]*3^(1/2)-3*AA[27]*5^(1/2)-18*AA[25])*2^(1/2)-(8/3)*AA[32]*((1/6)*AA[33]*5^(1/2)+AA[31])*3^(1/2)+(2/3)*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(8/3)*AA[32]^2+(5/18)*AA[33]^2 = 0, (1/18)*(-12*AA[29]*3^(1/2)-3*AA[30]*5^(1/2)-18*AA[28])*2^(1/2)+(8/3)*AA[35]*((1/6)*AA[36]*5^(1/2)+AA[34])*3^(1/2)+(2/3)*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(8/3)*AA[35]^2+(5/18)*AA[36]^2 = 0, (1/18)*(12*AA[29]*3^(1/2)-3*AA[30]*5^(1/2)-18*AA[28])*2^(1/2)-(8/3)*AA[35]*((1/6)*AA[36]*5^(1/2)+AA[34])*3^(1/2)+(2/3)*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(8/3)*AA[35]^2+(5/18)*AA[36]^2 = 0, AA[3]+AA[33]-0.2329237476562280933759555904928412745252e-2*AA[7]-0.1344785884099797529576133819368888753762e-2*AA[8]-0.6987712429686842801278667714785238235753e-2*AA[10]-0.1344785884099797529576133819368888753762e-2*AA[11]-0.2329237476562280933759555904928412745252e-2*AA[13]-0.1344785884099797529576133819368888753762e-2*AA[14]-0.6987712429686842801278667714785238235753e-2*AA[16]-0.1344785884099797529576133819368888753762e-2*AA[17] = 0, AA[6]+AA[36]-0.2329237476562280933759555904928412745252e-2*AA[7]-0.1344785884099797529576133819368888753762e-2*AA[8]-0.6987712429686842801278667714785238235753e-2*AA[10]-0.1344785884099797529576133819368888753762e-2*AA[11]-0.2329237476562280933759555904928412745252e-2*AA[13]-0.1344785884099797529576133819368888753762e-2*AA[14]-0.6987712429686842801278667714785238235753e-2*AA[16]-0.1344785884099797529576133819368888753762e-2*AA[17] = 0, AA[1]+AA[31]-0.1041666666666666666666666666666666666667e-1*AA[7]-0.6014065304058601713636966463562056829663e-2*AA[8]-0.3125000000000000000000000000000000000000e-1*AA[10]-0.6014065304058601713636966463562056829663e-2*AA[11]-0.1041666666666666666666666666666666666667e-1*AA[13]-0.6014065304058601713636966463562056829663e-2*AA[14]-0.3125000000000000000000000000000000000000e-1*AA[16]-0.6014065304058601713636966463562056829663e-2*AA[17]-.1161675426235042361515672880600823421682 = 0, AA[2]+AA[32]-0.9021097956087902570455449695343085244494e-2*AA[7]-0.5208333333333333333333333333333333333333e-2*AA[8]-0.2706329386826370771136634908602925573348e-1*AA[10]-0.5208333333333333333333333333333333333333e-2*AA[11]-0.9021097956087902570455449695343085244494e-2*AA[13]-0.5208333333333333333333333333333333333333e-2*AA[14]-0.2706329386826370771136634908602925573348e-1*AA[16]-0.5208333333333333333333333333333333333333e-2*AA[17]-0.6706936200477749554587801633123274049430e-1 = 0, AA[4]+AA[34]-0.7291666666666666666666666666666666666667e-1*AA[7]-0.4209845712841021199545876524493439780765e-1*AA[8]-.2187500000000000000000000000000000000000*AA[10]-0.4209845712841021199545876524493439780765e-1*AA[11]-0.7291666666666666666666666666666666666667e-1*AA[13]-0.4209845712841021199545876524493439780765e-1*AA[14]-.2187500000000000000000000000000000000000*AA[16]-0.4209845712841021199545876524493439780765e-1*AA[17]-.3485026278705127084547018641802470265047 = 0, AA[5]+AA[35]-0.2706329386826370771136634908602925573348e-1*AA[7]-0.1562500000000000000000000000000000000000e-1*AA[8]-0.8118988160479112313409904725808776720045e-1*AA[10]-0.1562500000000000000000000000000000000000e-1*AA[11]-0.2706329386826370771136634908602925573348e-1*AA[13]-0.1562500000000000000000000000000000000000e-1*AA[14]-0.8118988160479112313409904725808776720045e-1*AA[16]-0.1562500000000000000000000000000000000000e-1*AA[17]-0.6706936200477749554587801633123274049430e-1 = 0, AA[1]+AA[31]-0.1041666666666666666666666666666666666667e-1*AA[19]-0.9021097956087902570455449695343085244494e-2*AA[20]-0.2329237476562280933759555904928412745252e-2*AA[21]-0.7291666666666666666666666666666666666667e-1*AA[22]-0.2706329386826370771136634908602925573348e-1*AA[23]-0.2329237476562280933759555904928412745252e-2*AA[24]-0.1041666666666666666666666666666666666667e-1*AA[25]-0.9021097956087902570455449695343085244494e-2*AA[26]-0.2329237476562280933759555904928412745252e-2*AA[27]-0.7291666666666666666666666666666666666667e-1*AA[28]-0.2706329386826370771136634908602925573348e-1*AA[29]-0.2329237476562280933759555904928412745252e-2*AA[30]-.1620453040219171410085268329823612381694 = 0, AA[2]+AA[32]-0.6014065304058601713636966463562056829663e-2*AA[19]-0.5208333333333333333333333333333333333333e-2*AA[20]-0.1344785884099797529576133819368888753762e-2*AA[21]-0.4209845712841021199545876524493439780765e-1*AA[22]-0.1562500000000000000000000000000000000000e-1*AA[23]-0.1344785884099797529576133819368888753762e-2*AA[24]-0.6014065304058601713636966463562056829663e-2*AA[25]-0.5208333333333333333333333333333333333333e-2*AA[26]-0.1344785884099797529576133819368888753762e-2*AA[27]-0.4209845712841021199545876524493439780765e-1*AA[28]-0.1562500000000000000000000000000000000000e-1*AA[29]-0.1344785884099797529576133819368888753762e-2*AA[30]-0.9355689989796860791725737785335001844313e-1 = 0, AA[4]+AA[34]-0.3125000000000000000000000000000000000000e-1*AA[19]-0.2706329386826370771136634908602925573348e-1*AA[20]-0.6987712429686842801278667714785238235753e-2*AA[21]-.2187500000000000000000000000000000000000*AA[22]-0.8118988160479112313409904725808776720045e-1*AA[23]-0.6987712429686842801278667714785238235753e-2*AA[24]-0.3125000000000000000000000000000000000000e-1*AA[25]-0.2706329386826370771136634908602925573348e-1*AA[26]-0.6987712429686842801278667714785238235753e-2*AA[27]-.2187500000000000000000000000000000000000*AA[28]-0.8118988160479112313409904725808776720045e-1*AA[29]-0.6987712429686842801278667714785238235753e-2*AA[30]-.4861359120657514230255804989470837145084 = 0, AA[5]+AA[35]-0.6014065304058601713636966463562056829663e-2*AA[19]-0.5208333333333333333333333333333333333333e-2*AA[20]-0.1344785884099797529576133819368888753762e-2*AA[21]-0.4209845712841021199545876524493439780765e-1*AA[22]-0.1562500000000000000000000000000000000000e-1*AA[23]-0.1344785884099797529576133819368888753762e-2*AA[24]-0.6014065304058601713636966463562056829663e-2*AA[25]-0.5208333333333333333333333333333333333333e-2*AA[26]-0.1344785884099797529576133819368888753762e-2*AA[27]-0.4209845712841021199545876524493439780765e-1*AA[28]-0.1562500000000000000000000000000000000000e-1*AA[29]-0.1344785884099797529576133819368888753762e-2*AA[30]-0.9355689989796860791725737785335001844313e-1 = 0}, {AA[1], AA[2], AA[3], AA[4], AA[5], AA[6], AA[7], AA[8], AA[9], AA[10], AA[11], AA[12], AA[13], AA[14], AA[15], AA[16], AA[17], AA[18], AA[19], AA[20], AA[21], AA[22], AA[23], AA[24], AA[25], AA[26], AA[27], AA[28], AA[29], AA[30], AA[31], AA[32], AA[33], AA[34], AA[35], AA[36]})

(4)

``


 

Download ttttt33.mw

Hello

I have question. How can I rotate this 2-D plot and create 3-D plot?

plot(exp(-(x-3)^2*cos(4*(x-3))),x=1..5)

Thank you.

I need to create a list of matrices.


with(LinearAlgebra):
interface(rtablesize=50);
E:=[E1,E2,E3]:
P:=[0,1,2]:
N:=3:
B:=[1,2,3]:
for b from 1 to 12 by 5 do
B:=(i,j)->
if i=b+P[a] and j=b+P[a] then E[a]
elif i=b+P[a] and j=b+N+2+P[a] then -E[a]
elif i=b+P[a]+N+2 and j=b+P[a] then -E[a]
elif i=b+P[a]+N+2 and j=b+P[a]+N+2 then E[a]
else 0:
end if:
B[b]:=add(i,i=[seq(Matrix(20,B), a=1..3)]);
end do;
H:=[seq(B[b],b=1..12,5)];

It isn't indexing the first and second variable, only the last one was indexed. 

hi my friend. i want to find a approximately function of this plot. how i can get this. and i have numerical value in this excel

Book1.xlsx

 

Hello,

How do i Copied Tutor contents in worksheet in Maple ?

Thanks

Hello,

I am trying to solve analytically a simple system of partial differential equations with boundary conditions and I am not able to do it. Even in the very simple case of

pdsolve([diff(u(x, y, t), y, y) = 0, diff(p(x, y, t), y) = 0, u(x, 0, t) = 1, (D[2](u))(x, 1, t) = 0, p(x, 1, t) = 2], [p(x, y, t), u(x, y, t)]);

I don't get any answer.  However if I remove the boundary conditions I get the right answer

pdsolve([diff(u(x, y, t), y, y) = 0, diff(p(x, y, t), y) = 0], [{p(x, y, t), u(x, y, t)}]);
 {p(x, y, t) = _F3(x, t), u(x, y, t) = _F1(x, t) y + _F2(x, t)}

Can maple 2015 solve analytically systems of partial differential equations with boundary conditions? I have not been able to find any example anywhere.

Thanks a lot for your help.

Javier

Hi MaplePrimes,

As an amataeur with this computer tool, I want to know the arrow notation.

For example " l -> 8*l ".

a_quandry_MaplePrimes.mw

I'm sure this easy question is okay.

Regards,

Matt

 

Respected members!

I downloaded this file because I've to study the geodesics over the cone, the sphere and the cylinder (and in general on a Riemannian manifold). But when I modify the equation, putting one of that I'm interested to, the file doesn't work (for example, it doesn't recognize the "assign" command). Could you help me, please?

 

http://www.maplesoft.com/applications/download.aspx?SF=34940/199536\GeodesicsSurface.pdf

Best,

Marzio

Respected member!

Please help me in finding the solution of this problem....
 

NULL

 

 

NULL

>   

``

NULL

restart

with(RealDomain):

r := .2:

k := 5;

5

(1)

BCSforNum1 := u(0) = 0, (D(u))(0) = 1+beta*(((D@@2)(u))(0)-(D(u))(0)*RealDomain:-`^`(k, -1)), (D(u))(m) = 0, ((D@@2)(u))(m) = 0;

u(0) = 0, (D(u))(0) = 1+.2*((D@@2)(u))(0)-0.4000000000e-1*(D(u))(0), (D(u))(6) = 0, ((D@@2)(u))(6) = 0

 

v(0) = 1, v(6) = 0

(2)

numsol1 := dsolve({BCSforNum1, BCSforNum2, ODEforNum1, ODEforNum2}, numeric, output = listprocedure)

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

 

``


 

Download mplprimes.mw

Dear community, 

I'm new to maple and was wondering if you could help me out.

I have this curve where I want to make a line that goes from x=0.5 up to its value on the curve in this case 1.60 and then all the way to the y-axis so there is an area under the curve which I can color if that's even possible?

I have the following in maple:

k := 2.5;
                              2.5
Ca0 := 1;
                               1
v := 20;
                               20
Ca := Ca0*(1-x);
                             1 - x
Fa0 := Ca0*v;
                               20
Cb := Ca0*x;
                               x
ra := k*Ca*Cb;
                         2.5 (1 - x) x
plot(1/ra, x = 0 .. 1);
 

thank you for your help

Best Regards

Saad

I am curious whether anyone here can come up with a way to simplify the expression x1 to 15*Pi/32 in fewer exact, symbolic steps. The following was performed in Maple 2016.2 for Linux.

restart;

x1 := arcsin(1/2*(2+(2+(2+2^(1/2))^(1/2))^(1/2))^(1/2));

arcsin((1/2)*(2+(2+(2+2^(1/2))^(1/2))^(1/2))^(1/2))

x2 := evalc(convert(x1,expln));

arctan((2+(2+(2+2^(1/2))^(1/2))^(1/2))^(1/2)/(2-(2+(2+2^(1/2))^(1/2))^(1/2))^(1/2))

x3 := convert(x2, expln);

((1/2)*I)*(ln(1-I*(2+(2+(2+2^(1/2))^(1/2))^(1/2))^(1/2)/(2-(2+(2+2^(1/2))^(1/2))^(1/2))^(1/2))-ln(1+I*(2+(2+(2+2^(1/2))^(1/2))^(1/2))^(1/2)/(2-(2+(2+2^(1/2))^(1/2))^(1/2))^(1/2)))

# non-Pro wolframalpha can simplify x3 to 15*Pi/32 (but not x2 or x1).
#

x4 := combine(x3);

((1/2)*I)*ln(-(I*2^(1/2)*((2+2^(1/2))*(2+(2+2^(1/2))^(1/2)))^(1/2)+I*(2*2^(1/2)+4)^(1/2)+I*2^(1/2)+(-1+I))/(I*2^(1/2)*((2+2^(1/2))*(2+(2+2^(1/2))^(1/2)))^(1/2)+I*(2*2^(1/2)+4)^(1/2)+I*2^(1/2)+1+I))

x5 := simplify(x4);

((1/2)*I)*(-ln(2)+ln(-(2+(2+2^(1/2))^(1/2))^(1/2)*(I*2^(1/2)*(2+2^(1/2))^(1/2)-I*2^(1/2)+1-I)))

x6 := expand(x5);

-((1/2)*I)*ln(2)+((1/4)*I)*ln(2+(2+2^(1/2))^(1/2))+((1/2)*I)*ln(-I*2^(1/2)*(2+2^(1/2))^(1/2)+I*2^(1/2)+(-1+I))

x7 := combine(x6);

-((1/4)*I)*(ln(-(1/2)*(2+2^(1/2))^(1/2)*(I*2^(1/2)+(-1-I)))+(2*I)*Pi)

simplify(x7,constant);

(15/32)*Pi

# It's a pity that last step worked while this next is inadequate.
simplify(x7);

-((1/4)*I)*ln(-(2+2^(1/2))^(1/2)*(I*2^(1/2)+(-1-I)))+((1/4)*I)*ln(2)+(1/2)*Pi

# Another way, using x7
simplify(evalc(x7));

(15/32)*Pi

# Another way, using x7
simplify(combine(expand(x7)));

(15/32)*Pi

 

Download simplify_example.mw

I am trying to solve system linear partial differential equations using command "pdsolve". I am surprised to see that the solution given by this command is not satisfying the system, instead, an additional constraint is obtained for an arbitrary function, is there something about "pdsolve" I am missing? 


 

with(PDEtools):

DepVars := [f(x, y, t, u)]

[f(x, y, t, u)]

(1)

Sys := {diff(f(x, y, t, u), u, t)-(diff(f(x, y, t, u), x, y)) = 0, diff(f(x, y, t, u), u, u) = 0, diff(f(x, y, t, u), u, y) = 0, diff(f(x, y, t, u), x, u) = 0, diff(f(x, y, t, u), x, x) = 0, diff(f(x, y, t, u), y, y, y) = 0}

{diff(diff(f(x, y, t, u), t), u)-(diff(diff(f(x, y, t, u), x), y)) = 0, diff(diff(diff(f(x, y, t, u), y), y), y) = 0, diff(diff(f(x, y, t, u), u), u) = 0, diff(diff(f(x, y, t, u), u), x) = 0, diff(diff(f(x, y, t, u), u), y) = 0, diff(diff(f(x, y, t, u), x), x) = 0}

(2)

pdsolve(Sys)

{f(x, y, t, u) = (_F3(t)*y+_F4(t))*x+(_F3(t)+_C1)*u+(1/2)*_F7(t)*y^2+_F8(t)*y+_F9(t)}

(3)

f := proc (x, y, t, u) options operator, arrow; (_F3(t)*y+_F4(t))*x+(_F3(t)+_C1)*u+(1/2)*_F7(t)*y^2+_F8(t)*y+_F9(t) end proc

proc (x, y, t, u) options operator, arrow; (_F3(t)*y+_F4(t))*x+(_F3(t)+_C1)*u+(1/2)*_F7(t)*y^2+_F8(t)*y+_F9(t) end proc

(4)

Sys

{0 = 0, diff(_F3(t), t)-_F3(t) = 0}

(5)

``


 

Download pdsolve_command.mw

Good day sirs,

I am trying to plot graphs on stream function but its given me a lot of multiple error using my codes. Anyone with useful information should please share. 

Below is the code.

Thanks

Maple Worksheet - Error

Failed to load the worksheet /maplenet/convert/Test.mw .
 

Download Test.mw

First 688 689 690 691 692 693 694 Last Page 690 of 2141