MaplePrimes Questions

In the attached file, I want to restrict the indices of the summation to gcd(m,n)=1. How does this work?

test.mw

I’m trying to plot a 3D surface in Maple with variables l and m. I used numerical substitution to evaluate the function and the results are real and positive. However, when I plot the function over a range of l and m, the graph shows complex (imaginary) values instead.

This seems very strange to me and has been quite frustrating. I’ve tried many different approaches to resolve the issue, but nothing has worked so far.

Why is this happening? How can the function evaluate to real numbers with direct substitution, but show complex values during plotting?

Any suggestions or explanations would be greatly appreciated. Thank you!
gra423_Omega.mw

This seems rediculous to have to ask. I just want to display a plane. The plot is used in other plots so I gave it a name. I get "length of output exceed 1000000" and the plot does not display. I then have to "display" the plot name "display(plt0)" to see it. I had tried geom3d but found if infuriating, (maybe I am missing something there).

An I missing something simple here?

restart

NULL

with(plots)

pln := x-2*y+3*z

x-2*y+3*z

(1)

NULL

display(implicitplot3d(pln, x = -3 .. 3, y = -3 .. 3, z = -3 .. 3, style = patchnogrid, transparency = .6))

 

NULL

NULL

plt0 := display(implicitplot3d(pln, x = -3 .. 3, y = -3 .. 3, z = -3 .. 3, style = patchnogrid, transparency = .6))

`[Length of output exceeds limit of 1000000]`

(2)

display(plt0)

 

Intended use

NULL

Download 2025-05-18_Q_display_a_simple_plane.mw

In the attached file, I was unable to calculate the limit values ​​L and M. Please help me.

test.mw

Same exact code. When adding Physics:-Setup(assumingusesAssume = true):  before, now pdsolve do not give solution.

Removing Physics:-Setup(assumingusesAssume = true): now it works.

Why? Should not solution be returned in both cases?

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1872 and is the same as the version installed in this computer, created 2025, May 17, 22:58 hours Pacific Time.`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 17 and is the same as the version installed in this computer, created May 5, 2025, 12:37 hours Eastern Time.`

restart;

Example 1. Adding Physics:-Setup(assumingusesAssume = true): makes pdsolve fail

 

Physics:-Setup(assumingusesAssume = true):

pde := diff(u(r, t), t) = k*diff(u(r, t), r$2):
ic  := u(r,0)=r*f(r):
bc  := u(0,t)=0,u(a,t)=a*phi(t):
sol:= pdsolve({pde, ic, bc}, u(r, t));

 

 

Example 2. Same code but removing Physics:-Setup(assumingusesAssume = true): makes it work

 

restart;

pde := diff(u(r, t), t) = k*diff(u(r, t), r$2):
ic  := u(r,0)=r*f(r):
bc  := u(0,t)=0,u(a,t)=a*phi(t):
sol:= pdsolve({pde, ic, bc}, u(r, t));

u(r, t) = Sum(2*sin(n*Pi*r/a)*exp(-k*Pi^2*n^2*t/a^2)*(Int(r*(-phi(0)+f(r))*sin(n*Pi*r/a), r = 0 .. a))/a, n = 1 .. infinity)+Int(Sum(2*sin(n*Pi*r/a)*exp(-k*Pi^2*n^2*(t-tau)/a^2)*(diff(phi(tau), tau))*a*(-1)^n/(n*Pi), n = 1 .. infinity), tau = 0 .. t)+r*phi(t)

 


 

Download pdsolve_fail_when_adding_assuming.mw

I'm currently working on applying a specific method to solve a nonlinear equation. However, I've encountered a recurring issue: during the process, I often cannot determine certain parameters, which forces me to abandon the solution or switch to a different method. This has happened multiple times and is disrupting my goal of applying all intended methods consistently to a single equation.

In particular, I’m struggling to identify the correct parameters for U(ξ), which are essential for the solution. This challenge is not limited to one method I’ve faced similar problems in previous attempts, and I’m unsure why these parameters cannot be derived in some cases.

My question is: How can I manage this issue effectively? Is there a reliable way to predict or determine whether the necessary parameters will emerge correctly before fully applying a method?

I would greatly appreciate any insights or strategies you could share to help me handle this problem more systematically.

Thank you in advance for your support.

runing.mw

I was investigating a bug and repeatedly opened worksheets. In one of the former worksheets I used the debugger and closed it. In the below case there was no debugger running in the worksheet and also no debugger was visible as a separate Windows task in the task bar.

In this case below the message from the debugger is displayed delayed (i.e. when a new statement is entered).

For comparision: No delay with Maple 2025 screen reader

Could it be that the new GUI mixes up mservers?

Is the above reproducible?

Good day.

I am constructing a 4-set Venn Diagram and I would like to know if it is possible to fix the number of decimal places in the solution.

The attached worksheet is given as an example; the default number of decimal places seems to be 2. I would like this to be either 0 or 1 (for both absolute and relative values). 

Does anyone know how to do this? 

Thanks for reading!

MaplePrimes_Venn_Diagram.mw

In the attached file, I'm trying to calculate a limit. After a long calculation, I've given up. I'm asking for advice on how to perform the calculation effectively in Maple. I know the solution using the pen and paper method (pi/4+1/2*ln(2)).

test.mw

This below shows strange side effect of calling latex(sol,'output'='string'):

calling pdsolve on one pde, followed by latex() call, cause the next call after that to pdsolve to fail.

Any idea why this happens and any workaround so code can call latex in between without getting this error?

i.e.   sol:=pdsolve(...);  sol:=pdsolve(...);  WORKS

But    sol:=pdsolve(...); latex(sol,output=string);   sol:=pdsolve(...);  FAIL

Clearly there is some global/buffering issue somewhere. Why is calling latex makes pdsolve fail?

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1871 and is the same as the version installed in this computer, created 2025, May 15, 11:28 hours Pacific Time.`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 17 and is the same as the version installed in this computer, created May 5, 2025, 12:37 hours Eastern Time.`

restart;

pde :=  diff(u(x,t),t)=k*diff(u(x,t),x$2)+(exp(-c*t)*sin(2*Pi*x/L));
ic  :=  u(x,0)=f(x);
bc  :=  D[1](u)(0,t)=0, D[1](u)(L,t)=0;
sol:=pdsolve([pde,ic,bc],u(x,t)) assuming L>0,t>0,k>0:

diff(u(x, t), t) = k*(diff(diff(u(x, t), x), x))+exp(-c*t)*sin(2*Pi*x/L)

u(x, 0) = f(x)

(D[1](u))(0, t) = 0, (D[1](u))(L, t) = 0

the_latex:=latex(sol,'output'='string'): #THIS CAUSE ERROR in next command, if this was not here, next call works

pde := diff(u(x,t),t)=k*diff(u(x,t),x$2)-beta*u(x,t);
bc:= D[1](u)(0,t)=0,D[1](u)(Pi,t)=0;
ic  := u(x,0)=x;
sol:=pdsolve([pde,bc,ic],u(x,t)) assuming beta>0;

diff(u(x, t), t) = k*(diff(diff(u(x, t), x), x))-beta*u(x, t)

(D[1](u))(0, t) = 0, (D[1](u))(Pi, t) = 0

u(x, 0) = x

Error, (in assuming) when calling 'unknown'. Received: 'invalid input: diff received Pi, which is not valid for its 2nd argument'

 


 

Download strange_latex_effect.mw

 

This simple expression (from a recent post) crashes Maple:

simplify(tan(Pi/5) + sin(Pi/15) - sqrt(15));

In Maple 2025, in a new worksheet, this command crashes Maple; it is not possible to interrupt the computation (with the "Stop" button) and the worksheet must be closed.
In Maple 2024, the computation can be interrupted, but after repeating (maybe twice) the command, the interruption becomes impossible.

Question: is there a simpler command which crashes Maple?

Hey guys, 

I am solving big systems of equations and doing some other stuff with the results. So now I got two diffrent ways and it turns out, that the give back the same result but they present it in diffrent ways. So my quesion now is, how can I simplify a symbolic number to its shortest form. In my example you can see, that the diffrence of y_1 and y_2 is 0, so they describe the same number. However y_2 is a way more complicated expression. So here I know the easier expression, but what if I dont. What is the right command to force maple to find a simplier expression for y_2? I read about evala but its doent do the job as you can see in the attached file. I also tryd things like simplify, normal, expand but it didint worked out too. simplify_symbolic_numbers.mw

restart; y_1 := RootOf(_Z^5-2*_Z^4+9*_Z^3-14*_Z^2+9*_Z-2, .4687 .. .4727); y_2 := 2*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)^4-9*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)^3+14*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)^2-9*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)+2; evala(Normal(y_1-y_2)); evala(y_2)

0

 

2*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)^4-9*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)^3+14*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)^2-9*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)+2

(1)
 

NULL

Download simplify_symbolic_numbers.mw

Thank you for your help. 

Regards

Felix

Some menu fonts have become smaller under Windows 10 for some reason.
There where no changes of the system settings nor system updates. A system restart did not restore to normal font size. This also on Maple 2024 and lower.

Any ideas what could have caused this and how to restore to normal?

That's from annother Windows 10 system.

 

I recently solved the following Diophantine equations:
tan(3*pi/x)+4*sin(2*pi/x)-sqrt(x)=0
and
tan(13*pi/x)+4*sin(19*pi/x)-sqrt(x)=0
Unlike my old "pencil and paper" solution, I used Maple to practice with some sub-calculations to get some guesses for the solution. To confirm my guesses, I inserted them into the equations and used "simplify." The result was "zero." Is this "zero" the mathematically exact zero, or does Maple display a very small real number as "zero" after applying "simplify"?

I am working on obtaining the complete set of solutions for a given ordinary differential equation (ODE). While testing various cases from the auxiliary ODE method, I derived a solution of the form U(ξ). However, I am currently unable to determine which specific case or class from the established solution set this result corresponds to.

I would appreciate any guidance or method to correctly classify each obtained solution U(ξ) according to its respective case within the set of auxiliary ODE cases.

ode.mw

1 2 3 4 5 6 7 Last Page 1 of 2415