## Issues with pdsolve (2)...

Hi,

There seems to be an issue with pdsolve, which is similar to https://mapleprimes.com/questions/222498-Issues-With-Pdsolve.

pdsolve([diff(u(x, t), t) = diff(u(x, t), x, x), u(x, 0) = 1, u(0, t) = 0, u(2, t) = 0]); # works

pdsolve([diff(u(t, x), t) = diff(u(t, x), x, x), u(0, x) = 1, u(t, 0) = 0, u(t, 2) = 0]); # swapped arguments, works

pdsolve([diff(u(x, t), t) = diff(u(x, t), x, x), u(x, 0) = 1, u(-1, t) = 0, u(1, t) = 0]); # translate by -1, works

pdsolve([diff(u(t, x), t) = diff(u(t, x), x, x), u(0, x) = 1, u(t, -1) = 0, u(t, 1) = 0]); # swapped arguments and translate by -1, doesn't work

The solution for the last example doesn't incorporate the initial condition correctly, while it is the same as the third example (except for swapped arguments). Not sure if this is still a problem in Maple 2019, though.

## Difficulties with function definition...

```restart;
with(Physics);
with(LinearAlgebra);
N := 4;

Cf := Matrix(6, 6, (z, p) -> C[z, p, 1], shape = symmetric);
sigma[1] := Vector(6, [sigma[1, 1, 1], sigma[2, 2, 1], sigma[3, 3, 1], sigma[1, 2, 1], sigma[1, 3, 1], sigma[2, 3, 1]]);
varepsilon[1] := Vector(6, [varepsilon[1, 1, 1], varepsilon[2, 2, 1], varepsilon[3, 3, 1], gamma[1, 2, 1], gamma[1, 3, 1], gamma[2, 3, 1]]);
sigma[1] := Cf . (varepsilon[1]);

for i from 2 to N do
C[i] := Matrix(6, 6, (z, p) -> C[z, p, i], shape = symmetric);
sigma[i] := Vector(6, [sigma[1, 1, i], sigma[2, 2, i], sigma[3, 3, i], sigma[1, 2, i], sigma[1, 3, i], sigma[2, 3, i]]);
varepsilon[i] := Vector(6, [varepsilon[1, 1, i], varepsilon[2, 2, i], varepsilon[3, 3, i], gamma[1, 2, i], gamma[1, 3, i], gamma[2, 3, i]]);
sigma[i] := (C[i]) . (varepsilon[i]);
end do;

B[1] := 0;

for i to N do
Parameters(epsilon11c, C[1, 1, i], C[1, 2, i], C[2, 2, i], C[2, 3, i], R[i], A[i], B[i + 1], P);
end do;

g[1](r);
ux[1] := (x, r) -> epsilon[1][1]*x + g[1](r);
ur[1] := r -> A[1]*r + B[1]*1/r;
varepsilon[1][1] := epsilon11c;
varepsilon[1][2] := r -> (A[1]*r + B[1]*1/r)*1/r;
varepsilon[1][3] := r -> diff(ur[1](r), r);
varepsilon[1][3](R[2]);

for i from 2 to N - 1 do
g[i](r);
ux[i] := (x, r) -> epsilon[i][1]*x + g[i](r);
ur[i] := r -> A[i]*r + B[i]*1/r;
varepsilon[i][1] := epsilon11c;
varepsilon[i][2] := r -> (A[i]*r + B[i]*1/r)*1/r;
varepsilon[i][3] := r -> diff(ur[i](r), r);
varepsilon[i][2](r); i;
end do;
i;
varepsilon[2][2](r);```

Hi everyone,

I am currently writing a code on maple and I am finding difficulties in this section.

When I define the functions this way, the result I get from the loop "for" for varepsilon[i][2](r) is the same and doesnt depend on i value. I also tried to define it another way that would give me different results but I would end up with being unable to replace the variable "r" with its values (I would get r(R2)).

I would be grateful if you could advice me with this matter.

Thank you in advance.

## [Maplesoft] HELP!! Partition of an integer...

How to do the partition of integer?
If I input:
>Partition(10,2)
then output is:
>[[1, 9], [2, 8], [3, 7], [4, 6],[5,5]]
-------------------------------------------------
"10" is the number that I want to part,and "2" means that there are "two" number's sum = 10
Sorry my Engilsh is not good,but I really need help.
no other restriction!!

## Hi I need help Maple 2017 froze on loading screen...

Hi so the Maple 2017 software froze on the loading screen I have a MacBook Air 2018, I tried restarting my Mac but it says I have to Quit out of Maple 2017, however it isn't allowing me to do so, the software won't quit. Is there anyone that can help me out??? I would gladly appreciate it.

## How to exclude a range from a range?...

Hi everyone

Im new to MaplePrimes aswell as to Maple.

I have a task where i shoud plot the following shape (with a hole in the centre) using the plot3d function:

All i have accomplished in the last hours is the following file A1.0.mw:

As you can see i havent been able to get rid off the surface in the centre nor the spikes on the edge...

• In order to fix the issue regarding the centre I assume I have to exclude the range -2..2 from x, but havent been able to do so.
• Regarding the spikes on the edge Im honestly pretty much clueless why they appear in the first place.

After several hours of trying on my own, I really need your help please!

 > f := (x, y) -> ((((((x^2)+(y^2))^(1/2))-4))/(((((x^2)+(y^2))^(1/2))-2)*((((x^2)+(y^2))^(1/2))-6)))+15; plot3d(f, -6..6, -sqrt(-x^2+36) .. sqrt(-x^2+36), grid=[400,400], view=0..30);
 >

## Maple 2019 Student license period...

Hi,

I want to figure out if the Student license offered by Maplesoft for Maple 2019 is perpetual or is just lasts for a year? If it lasts for just 12 months, is there another license I should get which isn't as expensive as the full license? I need it for my personal research.

## fix the solve problem pls...

restart;
Solve({(6*(-8*L*alpha^2*a[1]^3+2*L*a[1]^3-2*a[1]^3))*d-24*L*alpha^2*a[0]*a[1]^2+6*L*a[0]*a[1]^2-6*a[0]*a[1]^2+12*alpha^2*k^2*lambda*v*a[1]-12*alpha^2*k^2*lambda*a[1]-3*k^2*lambda*v*a[1]+3*k^2*lambda*a[1]+(3*(8*alpha^2*k^2*v^2*a[1]-16*alpha^2*k^2*v*a[1]+8*alpha^2*k^2*a[1]-2*k^2*v^2*a[1]+4*k^2*v*a[1]-2*k^2*a[1]))*d = 0, (-8*L*alpha^2*a[1]^3+2*L*a[1]^3-2*a[1]^3)*d^6+(-24*L*alpha^2*a[0]*a[1]^2+6*L*a[0]*a[1]^2-6*a[0]*a[1]^2)*d^5+(-24*L*alpha^2*a[0]^2*a[1]-24*L*alpha^2*a[1]^2*a[2]-4*alpha^4*a[1]+6*L*a[0]^2*a[1]+6*L*a[1]^2*a[2]-4*alpha^2*beta*a[1]+alpha^2*a[1]-6*a[0]^2*a[1]-6*a[1]^2*a[2]+beta*a[1])*d^4+(4*alpha^2*k^2*lambda*mu*a[1]-8*L*alpha^2*a[0]^3-48*L*alpha^2*a[0]*a[1]*a[2]-4*alpha^4*a[0]-k^2*lambda*mu*a[1]+2*L*a[0]^3+12*L*a[0]*a[1]*a[2]-4*alpha^2*beta*a[0]+alpha^2*a[0]-2*a[0]^3-12*a[0]*a[1]*a[2]+beta*a[0])*d^3+(-24*L*alpha^2*a[0]^2*a[2]-24*L*alpha^2*a[1]*a[2]^2-4*alpha^4*a[2]+6*L*a[0]^2*a[2]+6*L*a[1]*a[2]^2-4*alpha^2*beta*a[2]+alpha^2*a[2]-6*a[0]^2*a[2]-6*a[1]*a[2]^2+beta*a[2])*d^2+(-4*alpha^2*k^2*lambda*mu*a[2]-24*L*alpha^2*a[0]*a[2]^2+k^2*lambda*mu*a[2]+6*L*a[0]*a[2]^2-6*a[0]*a[2]^2)*d+8*alpha^2*k^2*mu^2*a[2]-2*a[2]^3-2*k^2*mu^2*a[2]-8*L*alpha^2*a[2]^3+2*L*a[2]^3 = 0, (6*(-8*L*alpha^2*a[1]^3+2*L*a[1]^3-2*a[1]^3))*d^5+(5*(-24*L*alpha^2*a[0]*a[1]^2+6*L*a[0]*a[1]^2-6*a[0]*a[1]^2))*d^4+(4*(-24*L*alpha^2*a[0]^2*a[1]-24*L*alpha^2*a[1]^2*a[2]-4*alpha^4*a[1]+6*L*a[0]^2*a[1]+6*L*a[1]^2*a[2]-4*alpha^2*beta*a[1]+alpha^2*a[1]-6*a[0]^2*a[1]-6*a[1]^2*a[2]+beta*a[1]))*d^3+(3*(4*alpha^2*k^2*lambda*mu*a[1]-8*L*alpha^2*a[0]^3-48*L*alpha^2*a[0]*a[1]*a[2]-4*alpha^4*a[0]-k^2*lambda*mu*a[1]+2*L*a[0]^3+12*L*a[0]*a[1]*a[2]-4*alpha^2*beta*a[0]+alpha^2*a[0]-2*a[0]^3-12*a[0]*a[1]*a[2]+beta*a[0]))*d^2+(4*alpha^2*k^2*lambda^2*a[1]+8*alpha^2*k^2*mu*v*a[1]-8*alpha^2*k^2*mu*a[1]-k^2*lambda^2*a[1]-2*k^2*mu*v*a[1]+2*k^2*mu*a[1])*d^3+(2*(-24*L*alpha^2*a[0]^2*a[2]-24*L*alpha^2*a[1]*a[2]^2-4*alpha^4*a[2]+6*L*a[0]^2*a[2]+6*L*a[1]*a[2]^2-4*alpha^2*beta*a[2]+alpha^2*a[2]-6*a[0]^2*a[2]-6*a[1]*a[2]^2+beta*a[2]))*d+12*alpha^2*k^2*lambda*mu*a[2]-24*L*alpha^2*a[0]*a[2]^2-3*k^2*lambda*mu*a[2]+6*L*a[0]*a[2]^2-6*a[0]*a[2]^2+(-4*alpha^2*k^2*lambda^2*a[2]-8*alpha^2*k^2*mu*v*a[2]+8*alpha^2*k^2*mu*a[2]+k^2*lambda^2*a[2]+2*k^2*mu*v*a[2]-2*k^2*mu*a[2])*d = 0, (15*(-8*L*alpha^2*a[1]^3+2*L*a[1]^3-2*a[1]^3))*d^2+(5*(-24*L*alpha^2*a[0]*a[1]^2+6*L*a[0]*a[1]^2-6*a[0]*a[1]^2))*d+(3*(12*alpha^2*k^2*lambda*v*a[1]-12*alpha^2*k^2*lambda*a[1]-3*k^2*lambda*v*a[1]+3*k^2*lambda*a[1]))*d+(3*(8*alpha^2*k^2*v^2*a[1]-16*alpha^2*k^2*v*a[1]+8*alpha^2*k^2*a[1]-2*k^2*v^2*a[1]+4*k^2*v*a[1]-2*k^2*a[1]))*d^2+8*alpha^2*k^2*mu*v*a[1]-6*a[0]^2*a[1]-6*a[1]^2*a[2]-4*alpha^4*a[1]+4*alpha^2*k^2*lambda^2*a[1]-8*alpha^2*k^2*mu*a[1]-2*k^2*mu*v*a[1]-24*L*alpha^2*a[0]^2*a[1]-24*L*alpha^2*a[1]^2*a[2]-k^2*lambda^2*a[1]+2*k^2*mu*a[1]+6*L*a[0]^2*a[1]+6*L*a[1]^2*a[2]-4*alpha^2*beta*a[1]+alpha^2*a[1]+beta*a[1] = 0, (15*(-8*L*alpha^2*a[1]^3+2*L*a[1]^3-2*a[1]^3))*d^4+(10*(-24*L*alpha^2*a[0]*a[1]^2+6*L*a[0]*a[1]^2-6*a[0]*a[1]^2))*d^3+(6*(-24*L*alpha^2*a[0]^2*a[1]-24*L*alpha^2*a[1]^2*a[2]-4*alpha^4*a[1]+6*L*a[0]^2*a[1]+6*L*a[1]^2*a[2]-4*alpha^2*beta*a[1]+alpha^2*a[1]-6*a[0]^2*a[1]-6*a[1]^2*a[2]+beta*a[1]))*d^2+(12*alpha^2*k^2*lambda*v*a[1]-12*alpha^2*k^2*lambda*a[1]-3*k^2*lambda*v*a[1]+3*k^2*lambda*a[1])*d^3+(3*(4*alpha^2*k^2*lambda*mu*a[1]-8*L*alpha^2*a[0]^3-48*L*alpha^2*a[0]*a[1]*a[2]-4*alpha^4*a[0]-k^2*lambda*mu*a[1]+2*L*a[0]^3+12*L*a[0]*a[1]*a[2]-4*alpha^2*beta*a[0]+alpha^2*a[0]-2*a[0]^3-12*a[0]*a[1]*a[2]+beta*a[0]))*d+(3*(4*alpha^2*k^2*lambda^2*a[1]+8*alpha^2*k^2*mu*v*a[1]-8*alpha^2*k^2*mu*a[1]-k^2*lambda^2*a[1]-2*k^2*mu*v*a[1]+2*k^2*mu*a[1]))*d^2+(-12*alpha^2*k^2*lambda*v*a[2]+12*alpha^2*k^2*lambda*a[2]+3*k^2*lambda*v*a[2]-3*k^2*lambda*a[2])*d+8*alpha^2*k^2*mu*v*a[2]-6*a[0]^2*a[2]-6*a[1]*a[2]^2-4*alpha^4*a[2]+4*alpha^2*k^2*lambda^2*a[2]-8*alpha^2*k^2*mu*a[2]-2*k^2*mu*v*a[2]-24*L*alpha^2*a[0]^2*a[2]-24*L*alpha^2*a[1]*a[2]^2-k^2*lambda^2*a[2]+2*k^2*mu*a[2]+6*L*a[0]^2*a[2]+6*L*a[1]*a[2]^2-4*alpha^2*beta*a[2]+alpha^2*a[2]+beta*a[2] = 0, (20*(-8*L*alpha^2*a[1]^3+2*L*a[1]^3-2*a[1]^3))*d^3+(10*(-24*L*alpha^2*a[0]*a[1]^2+6*L*a[0]*a[1]^2-6*a[0]*a[1]^2))*d^2+(4*(-24*L*alpha^2*a[0]^2*a[1]-24*L*alpha^2*a[1]^2*a[2]-4*alpha^4*a[1]+6*L*a[0]^2*a[1]+6*L*a[1]^2*a[2]-4*alpha^2*beta*a[1]+alpha^2*a[1]-6*a[0]^2*a[1]-6*a[1]^2*a[2]+beta*a[1]))*d+(8*alpha^2*k^2*v^2*a[1]-16*alpha^2*k^2*v*a[1]+8*alpha^2*k^2*a[1]-2*k^2*v^2*a[1]+4*k^2*v*a[1]-2*k^2*a[1])*d^3+(3*(4*alpha^2*k^2*lambda^2*a[1]+8*alpha^2*k^2*mu*v*a[1]-8*alpha^2*k^2*mu*a[1]-k^2*lambda^2*a[1]-2*k^2*mu*v*a[1]+2*k^2*mu*a[1]))*d+(3*(12*alpha^2*k^2*lambda*v*a[1]-12*alpha^2*k^2*lambda*a[1]-3*k^2*lambda*v*a[1]+3*k^2*lambda*a[1]))*d^2+(-8*alpha^2*k^2*v^2*a[2]+16*alpha^2*k^2*v*a[2]-8*alpha^2*k^2*a[2]+2*k^2*v^2*a[2]-4*k^2*v*a[2]+2*k^2*a[2])*d+4*alpha^2*k^2*lambda*v*a[2]+2*L*a[0]^3-4*alpha^4*a[0]-48*L*alpha^2*a[0]*a[1]*a[2]+4*alpha^2*k^2*lambda*mu*a[1]-4*alpha^2*k^2*lambda*a[2]-k^2*lambda*v*a[2]-k^2*lambda*mu*a[1]+12*L*a[0]*a[1]*a[2]+k^2*lambda*a[2]-8*L*alpha^2*a[0]^3-12*a[0]*a[1]*a[2]-4*alpha^2*beta*a[0]+alpha^2*a[0]+beta*a[0]-2*a[0]^3 = 0, 8*alpha^2*k^2*v^2*a[1]-8*L*alpha^2*a[1]^3-16*alpha^2*k^2*v*a[1]+8*alpha^2*k^2*a[1]-2*k^2*v^2*a[1]+2*L*a[1]^3+4*k^2*v*a[1]-2*k^2*a[1]-2*a[1]^3 = 0}, {alpha, a[0], a[1], a[2]});
/ /  /          2     3           3         3\
Solve|{ 6 \-8 L alpha  a[1]  + 2 L a[1]  - 2 a[1] / d
\ \

2          2                2              2
- 24 L alpha  a[0] a[1]  + 6 L a[0] a[1]  - 6 a[0] a[1]

2  2                         2  2
+ 12 alpha  k  lambda v a[1] - 12 alpha  k  lambda a[1]

2                    2                 /       2  2  2
- 3 k  lambda v a[1] + 3 k  lambda a[1] + 3 \8 alpha  k  v  a[

2  2                 2  2           2  2
1] - 16 alpha  k  v a[1] + 8 alpha  k  a[1] - 2 k  v  a[1]

2             2     \        /          2     3
+ 4 k  v a[1] - 2 k  a[1]/ d = 0, \-8 L alpha  a[1]

3         3\  6
+ 2 L a[1]  - 2 a[1] / d

/           2          2                2              2\  5
+ \-24 L alpha  a[0] a[1]  + 6 L a[0] a[1]  - 6 a[0] a[1] / d  +

/           2     2                  2     2
\-24 L alpha  a[0]  a[1] - 24 L alpha  a[1]  a[2]

4                2                2
- 4 alpha  a[1] + 6 L a[0]  a[1] + 6 L a[1]  a[2]

2                  2              2
- 4 alpha  beta a[1] + alpha  a[1] - 6 a[0]  a[1]

2                 \  4   /       2  2
- 6 a[1]  a[2] + beta a[1]/ d  + \4 alpha  k  lambda mu a[1]

2     3             2
- 8 L alpha  a[0]  - 48 L alpha  a[0] a[1] a[2]

4         2                          3
- 4 alpha  a[0] - k  lambda mu a[1] + 2 L a[0]

2                  2
+ 12 L a[0] a[1] a[2] - 4 alpha  beta a[0] + alpha  a[0]

3                                \  3   /
- 2 a[0]  - 12 a[0] a[1] a[2] + beta a[0]/ d  + \
2     2                  2          2          4
-24 L alpha  a[0]  a[2] - 24 L alpha  a[1] a[2]  - 4 alpha  a[2]

2                     2          2
+ 6 L a[0]  a[2] + 6 L a[1] a[2]  - 4 alpha  beta a[2]

2              2                   2            \  2
+ alpha  a[2] - 6 a[0]  a[2] - 6 a[1] a[2]  + beta a[2]/ d  +

/        2  2                            2          2
\-4 alpha  k  lambda mu a[2] - 24 L alpha  a[0] a[2]

2                               2              2\
+ k  lambda mu a[2] + 6 L a[0] a[2]  - 6 a[0] a[2] / d

2  2   2              3      2   2
+ 8 alpha  k  mu  a[2] - 2 a[2]  - 2 k  mu  a[2]

2     3           3        /          2     3
- 8 L alpha  a[2]  + 2 L a[2]  = 0, 6 \-8 L alpha  a[1]

3         3\  5
+ 2 L a[1]  - 2 a[1] / d

/           2          2                2              2\
+ 5 \-24 L alpha  a[0] a[1]  + 6 L a[0] a[1]  - 6 a[0] a[1] /

4     /           2     2                  2     2
d  + 4 \-24 L alpha  a[0]  a[1] - 24 L alpha  a[1]  a[2]

4                2                2
- 4 alpha  a[1] + 6 L a[0]  a[1] + 6 L a[1]  a[2]

2                  2              2
- 4 alpha  beta a[1] + alpha  a[1] - 6 a[0]  a[1]

2                 \  3     /       2  2
- 6 a[1]  a[2] + beta a[1]/ d  + 3 \4 alpha  k  lambda mu a[1]

2     3             2
- 8 L alpha  a[0]  - 48 L alpha  a[0] a[1] a[2]

4         2                          3
- 4 alpha  a[0] - k  lambda mu a[1] + 2 L a[0]

2                  2
+ 12 L a[0] a[1] a[2] - 4 alpha  beta a[0] + alpha  a[0]

3                                \  2   /       2  2
- 2 a[0]  - 12 a[0] a[1] a[2] + beta a[0]/ d  + \4 alpha  k

2               2  2                    2  2
lambda  a[1] + 8 alpha  k  mu v a[1] - 8 alpha  k  mu a[1]

2       2           2                2        \  3     /
- k  lambda  a[1] - 2 k  mu v a[1] + 2 k  mu a[1]/ d  + 2 \
2     2                  2          2          4
-24 L alpha  a[0]  a[2] - 24 L alpha  a[1] a[2]  - 4 alpha  a[2]

2                     2          2
+ 6 L a[0]  a[2] + 6 L a[1] a[2]  - 4 alpha  beta a[2]

2              2                   2            \
+ alpha  a[2] - 6 a[0]  a[2] - 6 a[1] a[2]  + beta a[2]/ d

2  2                            2          2
+ 12 alpha  k  lambda mu a[2] - 24 L alpha  a[0] a[2]

2                               2              2   /
- 3 k  lambda mu a[2] + 6 L a[0] a[2]  - 6 a[0] a[2]  + \
2  2       2               2  2
-4 alpha  k  lambda  a[2] - 8 alpha  k  mu v a[2]

2  2            2       2           2
+ 8 alpha  k  mu a[2] + k  lambda  a[2] + 2 k  mu v a[2]

2        \           /          2     3           3
- 2 k  mu a[2]/ d = 0, 15 \-8 L alpha  a[1]  + 2 L a[1]

3\  2
- 2 a[1] / d

/           2          2                2              2\
+ 5 \-24 L alpha  a[0] a[1]  + 6 L a[0] a[1]  - 6 a[0] a[1] / d + 3

/        2  2                         2  2
\12 alpha  k  lambda v a[1] - 12 alpha  k  lambda a[1]

2                    2            \       /       2  2  2
- 3 k  lambda v a[1] + 3 k  lambda a[1]/ d + 3 \8 alpha  k  v

2  2                 2  2           2  2
a[1] - 16 alpha  k  v a[1] + 8 alpha  k  a[1] - 2 k  v  a[1]

2             2     \  2          2  2
+ 4 k  v a[1] - 2 k  a[1]/ d  + 8 alpha  k  mu v a[1]

2              2               4
- 6 a[0]  a[1] - 6 a[1]  a[2] - 4 alpha  a[1]

2  2       2               2  2
+ 4 alpha  k  lambda  a[1] - 8 alpha  k  mu a[1]

2                       2     2
- 2 k  mu v a[1] - 24 L alpha  a[0]  a[1]

2     2         2       2           2
- 24 L alpha  a[1]  a[2] - k  lambda  a[1] + 2 k  mu a[1]

2                2               2
+ 6 L a[0]  a[1] + 6 L a[1]  a[2] - 4 alpha  beta a[1]

2                          /          2     3
+ alpha  a[1] + beta a[1] = 0, 20 \-8 L alpha  a[1]

3         3\  3
+ 2 L a[1]  - 2 a[1] / d

/           2          2                2              2\
+ 10 \-24 L alpha  a[0] a[1]  + 6 L a[0] a[1]  - 6 a[0] a[1] /

2     /           2     2                  2     2
d  + 4 \-24 L alpha  a[0]  a[1] - 24 L alpha  a[1]  a[2]

4                2                2
- 4 alpha  a[1] + 6 L a[0]  a[1] + 6 L a[1]  a[2]

2                  2              2
- 4 alpha  beta a[1] + alpha  a[1] - 6 a[0]  a[1]

2                 \     /       2  2  2
- 6 a[1]  a[2] + beta a[1]/ d + \8 alpha  k  v  a[1]

2  2                 2  2           2  2
- 16 alpha  k  v a[1] + 8 alpha  k  a[1] - 2 k  v  a[1]

2             2     \  3     /       2  2       2
+ 4 k  v a[1] - 2 k  a[1]/ d  + 3 \4 alpha  k  lambda  a[1]

2  2                    2  2
+ 8 alpha  k  mu v a[1] - 8 alpha  k  mu a[1]

2       2           2                2        \       /
- k  lambda  a[1] - 2 k  mu v a[1] + 2 k  mu a[1]/ d + 3 \12

2  2                         2  2
alpha  k  lambda v a[1] - 12 alpha  k  lambda a[1]

2                    2            \  2   /
- 3 k  lambda v a[1] + 3 k  lambda a[1]/ d  + \
2  2  2                2  2                 2  2
-8 alpha  k  v  a[2] + 16 alpha  k  v a[2] - 8 alpha  k  a[2]

2  2           2             2     \
+ 2 k  v  a[2] - 4 k  v a[2] + 2 k  a[2]/ d

2  2                         3          4
+ 4 alpha  k  lambda v a[2] + 2 L a[0]  - 4 alpha  a[0]

2                         2  2
- 48 L alpha  a[0] a[1] a[2] + 4 alpha  k  lambda mu a[1]

2  2                2
- 4 alpha  k  lambda a[2] - k  lambda v a[2]

2                                         2
- k  lambda mu a[1] + 12 L a[0] a[1] a[2] + k  lambda a[2]

2     3                              2
- 8 L alpha  a[0]  - 12 a[0] a[1] a[2] - 4 alpha  beta a[0]

2                          3         /          2     3
+ alpha  a[0] + beta a[0] - 2 a[0]  = 0, 15 \-8 L alpha  a[1]

3         3\  4
+ 2 L a[1]  - 2 a[1] / d

/           2          2                2              2\
+ 10 \-24 L alpha  a[0] a[1]  + 6 L a[0] a[1]  - 6 a[0] a[1] /

3     /           2     2                  2     2
d  + 6 \-24 L alpha  a[0]  a[1] - 24 L alpha  a[1]  a[2]

4                2                2
- 4 alpha  a[1] + 6 L a[0]  a[1] + 6 L a[1]  a[2]

2                  2              2
- 4 alpha  beta a[1] + alpha  a[1] - 6 a[0]  a[1]

2                 \  2   /        2  2
- 6 a[1]  a[2] + beta a[1]/ d  + \12 alpha  k  lambda v a[1]

2  2                  2
- 12 alpha  k  lambda a[1] - 3 k  lambda v a[1]

2            \  3     /       2  2
+ 3 k  lambda a[1]/ d  + 3 \4 alpha  k  lambda mu a[1]

2     3             2
- 8 L alpha  a[0]  - 48 L alpha  a[0] a[1] a[2]

4         2                          3
- 4 alpha  a[0] - k  lambda mu a[1] + 2 L a[0]

2                  2
+ 12 L a[0] a[1] a[2] - 4 alpha  beta a[0] + alpha  a[0]

3                                \       /       2  2
- 2 a[0]  - 12 a[0] a[1] a[2] + beta a[0]/ d + 3 \4 alpha  k

2               2  2                    2  2
lambda  a[1] + 8 alpha  k  mu v a[1] - 8 alpha  k  mu a[1]

2       2           2                2        \  2   /
- k  lambda  a[1] - 2 k  mu v a[1] + 2 k  mu a[1]/ d  + \
2  2                         2  2
-12 alpha  k  lambda v a[2] + 12 alpha  k  lambda a[2]

2                    2            \
+ 3 k  lambda v a[2] - 3 k  lambda a[2]/ d

2  2                   2                   2
+ 8 alpha  k  mu v a[2] - 6 a[0]  a[2] - 6 a[1] a[2]

4               2  2       2
- 4 alpha  a[2] + 4 alpha  k  lambda  a[2]

2  2              2
- 8 alpha  k  mu a[2] - 2 k  mu v a[2]

2     2                  2          2
- 24 L alpha  a[0]  a[2] - 24 L alpha  a[1] a[2]

2       2           2                   2
- k  lambda  a[2] + 2 k  mu a[2] + 6 L a[0]  a[2]

2          2                  2
+ 6 L a[1] a[2]  - 4 alpha  beta a[2] + alpha  a[2]

2  2  2                 2     3
+ beta a[2] = 0, 8 alpha  k  v  a[1] - 8 L alpha  a[1]

2  2                 2  2           2  2
- 16 alpha  k  v a[1] + 8 alpha  k  a[1] - 2 k  v  a[1]

3      2             2              3    \
+ 2 L a[1]  + 4 k  v a[1] - 2 k  a[1] - 2 a[1]  = 0 },
/

\
{alpha, a[0], a[1], a[2]}|
/

## Problem to export .dat file...

Dear Users!

Hope you would be fine. I want to export .dat file from 2D plots in attached file. But facing some problem. Please have a look and try to fix it.

Many thanks

2._SP_alpha_varies.mw

Special request:

@Carl Love

@acer

@Kitonum

## Is it possible to obtain a simpler solution to thi...

Maple is very good in solving PDE's. But this specific solution seems way too complicated when compared to Matematica solution, which I verified using Maple pdetest to be correct.

Is there a way to make Maple produce the simpler solution to this pde? simplify does nothing on the solution. May be by using a good HINT or such other option?

 > restart;
 > pde:=(a*y+b*x+c)*diff(w(x,y),x)-(b*y+k*x+s)*diff(w(x,y),y)=0;

 > sol:=pdsolve(pde,w(x,y))

 > mma_solution := w(x,y)= _F1( (2*s*x+k*x^2+2*c*y+2*b*x*y+a*y^2)/a );

 > pdetest(mma_solution,pde)

 >

Here is screen shot showing the other solution