MaplePrimes Questions

Can anyone explain this?
> if  3 = 0 mod 3 then print(good) else print(bad) end if;
                        bad

> if  0 = 3 mod 3 then print(good) else print(bad) end if;
                       good
 

Help me about Tabulate and append text below.

file help: text_and_tabulate.mw

Hello,

     The following system of ODEs is handled correctly by dsolve, but PDEtools:-Solve raises an error:

ranking := [{A(), B(x)}]:
eqn_sys := {D(B)(x) = 0, A()* D(B)(x) = 0}:
dsolve(eqn_sys, ranking);
# {A() = A(), B(x) = _C1}
PDEtools:-Solve(eqn_sys, ranking);
#Error, (in dsolve) found many possible indications of the solving variables as [{B(x)}, [{A(), B(x)}]]

In particular, it seems the error is raised when 1) the ranking is a nested list and 2) at least one of the ranking elements is a function without any arguments.

Admittedly, this is a very strange case, but I did run into this earlier today. Of course, the example here is contrived (the nested-list ranking is completely unnecessary for this example), but it illustrates the error.

As a workaround, I found replacing the function A() with its name A in the ranking solves this problem (it can be left as a function in the system of equations). Nevertheless, I thought I would point this out as it seems dsolve handles this just fine even without the workaround, and presumably PDEtools/Solve should be able to as well.

This seems similar to a previous bug; this bug was fixed in Maple 2018. Unfortunately, I haven't updated yet, so I can't verify if the patch solves this problem as well.

Hello,

     So, dsolve is able to pass arguments through to casesplit. Further, PDEtools/Solve is able to pass arguments through to dsolve. However, it appears PDEtools/Solve isn't able to pass arguments through dsolve to casesplit? For instance, consider the following differential equation:

eq := {diff(A(t),t) = A(t)*x}:
dsolve(eq, {A(t)}, ivars={x,t});
PDEtools:-Solve(eq, {A(t)}, ivars={x,t});

Here, I'm considering both x and t to be independent variables (hence, A(t) should not depend on x).

In that case, dsolve correctly gives the only solution as A(t) = 0. However, PDEtools/solve doesn't seem to pass-through the ivars option and incorrectly gives A(t) = _C1*exp(x*t) as a solution.

Is there another way to have PDEtools pass this option through to casesplit?

Thanks!

For example, 

f(x,t) = t^2 x^2 + t x + 2x - 1g(y,t) = t^2 y^3 + t y^2 + 2y - 1h(z,t) = 2t^2 z^3 + t z + 3z - t^2, 0 < t < 4.

I have an initial point on the curve corresponding to t=0.  The answer is a curve in space, or maybe several curves.  The real example that I care about is much more complex than this and has trig functions of t.

Dear Users!

Hope everyone is fine. I am want use the command of isolate only red color term. Then I need help to simplify the expression term by term like simplify the rational expressions, combine powers, simplify radicals etc..

x*c*(diff(f(eta), eta))*epsilon/(-epsilon*t+1)^2+(1/2)*x*c^2*(diff(f(eta), eta, eta))*y*epsilon/((-epsilon*t+1)^3*sqrt(c/(nu*(-epsilon*t+1)))*nu)+x*c^2*(diff(f(eta), eta))^2/(-epsilon*t+1)^2-sqrt(c*nu/(-epsilon*t+1))*f(eta)*x*c*(diff(f(eta), eta, eta))*sqrt(c/(nu*(-epsilon*t+1)))/(-epsilon*t+1) = a*x*epsilon/(-epsilon*t+1)^2+a^2*x/(-epsilon*t+1)^2+x*c^2*(diff(f(eta), eta, eta, eta))/(-epsilon*t+1)^2+sqrt(2)*GAMMA*x^2*c^3*(diff(f(eta), eta, eta))*sqrt(c/(nu*(-epsilon*t+1)))*(diff(f(eta), eta, eta, eta))/(-epsilon*t+1)^3+A*g*beta[T]*theta(eta)*T[w]-A*g*beta[T]*theta(eta)*T[infinity]+A*g*beta[C]*phi(eta)*C[w]-A*g*beta[C]*phi(eta)*C[infinity]-sigma*B^2*x*c*(diff(f(eta), eta))/(rho*(-epsilon*t+1))+sigma*B^2*a*x/(rho*(-epsilon*t+1))

I am waiting your postive answer on it.

 

Hi

I am trying to solve an inequality for the real parts of the solution to be less than 0. How do I do that? When trying to use solve, and specifying Re() Maple warns about lost solutions. I can see there are complex solutions to the equation, but i cannot make Maple calculate them. Maple gives me a range for the real solutions (6.1.11) and (6.1.12), but if I use a number out of the range the inequality is still met, the solutions is just complex, which does not matter. The variable a seems to be able to be between -8 and 3 for the real part of the solution to be less than 0.

Kind regards

Simon

I am considering a Fourier series

$cos (\alpha x) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty}a_k cos(kx)$ for x between -pi and pi.

I have also shown using a different Fourier series that cos (\alpha x) has an alternative representation:

\frac{cos(\alpha x)}{\sin \alpha \pi} = \frac{1}{\pi \alpha} (1 + \frac{(\alpha \ pi)^2}{6} - \frac{\alpha x^2}{2 \pi} + \frac{2*\alpha^3}{\pi}\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{k^2(k^2 - \alpha^2}*cos(kx)$.

To show that the second representation is a better approximation, I need to find the number of terms for this series and the original Fourier series needed for there to be a difference of 10^{-3} from the exact value of cos(\alpha \pi), assuming that \alpha = 0.75.  Could someone advise how I might do this?


 

Hello, when I write a large document block in maple and want to do some operations, maple shows wait cursor (hourglass) for 2-3 minutes again and again. I attached a sample file below. 

I found out when maple is installed , javaw.exe also instal and when I open bellow file, the javaw use 15% of cpu and this cause maple works slowly. 

the attached file is just an example for large document block and I undrestand that it can be simplified. I want to know how to handle large expressions generally?

K-Euler_Lagrange.mw

 

Dear all,

Trying to divide the function (f1) at its maximum and normalized it.. there is error on. the (proc)

could anyone help me on that PLEASE.

 

restart:
assume(Delta,real):assume(c,real):xr:=1:ao:=sqrt(1+c^2):theta:=arctan(c):a:=ao*exp(I*theta):b:=I*0.5*Delta-a*(k-1)*xr*0.5:no:=1:AA:=5:theta1:=0:Omega:=10:
f:=sqrt(Pi/ao)*exp(-I*0.5*theta)*sum(exp(b^2/a)*exp(-a*(k-1)^2*xr^2),k=1..1):alpha:=AA*exp(I*theta1):
f1:= AA^2+((Re(f))^2+(Im(f))^2)*Omega^2+2*Omega*Im(conjugate(alpha)*f):
P1:=plot3d((f1),Delta=-5..5,c=-5..5,axes=boxed,font=[1,1,18]):
Normalize:= proc(P::specfunc(anything, PLOT))
local A,Smax1;
A:= op([1,1], P);
Smax1:= max(A[..,2]);
if A::list then A:= Matrix(A) end if;
A[..,2]:= A[..,2]/Smax1;
subsop([1,1]= A, P)
end proc:
P1:= Normalize(P1):
display([P||(1..1)]);

 

Hi

 

Maple 2017.3 wont open, when I launch it. I've tried updating Maple, updating Java, updating my graphic driver and of course restarting my computer. It just keeps on the loading launcher at a completely empty loading bar.

 

I've also tried downloading Maple 2018.0, and the same problem appears. This is how it looks:

Do anyone know how to fix this?


 

restart;

Digits:=50;

A11:= 1.0000000000000000000000000000000000000000000000000*10^(-7)*(-2.5371361080198636732473763516755733087783841018170*10^8515*y^52-2.5682916864364461018876089817027829349729972598145*10^8511*y^118-8.4747208167823896652789620415242113024646500383584*10^8475*y^156-7.0973392025624720825652840212522978368268373080519*10^8514*y^110-8.8052634112991425064821529334897431676429996585193*10^8504*y^31-1.6472736182931730318373390809274526418048821840783*10^8515*y^109-3.4915488631639337623561469549167018169698449760097*10^8516*y^105-1.8648897040502425673332564918257100737272347061207*10^8504*y^30-1.7350350044631380327296789440528743348277795652204*10^8506*y^33-2.4402743405185212194691411556528521403537441901346*10^8516*y^55-4.0714341045744099661015191696314839899399825641016*10^8491*y^15-1.2448510727169172443541597142261710648571818634985*10^8490*y^146-2.2769347278615925887334921880003704106200930647502*10^8518*y^98-4.1875154960616508784147371031658177346824585674863*10^8493*y^17-6.8908510205423224604237562530919308400658046098227*10^8518*y^65-8.0705757255759766519585958706737861776653196868557*10^8515*y^107-2.1234522662689238596130937707990549717374387500852*10^8494*y^142-4.6757486544282170861175940883663855408524031383409*10^8513*y^113-5.6256767384686469294547974274654974293947541346854*10^8487*y^148-2.3667794156402717849832357737043058826502430856228*10^8501*y^134-1.1955708738478973602304171305150038469305944735032*10^8513*y^46-1.2229433916279605188228472869508020737406276934003*10^8482*y^7-1.0359942900497464263463322634590397630995748789812*10^8519*y^66-7.3577937250552680213618842893731191171017237168564*10^8502*y^28-1.6780317940142468912677977158676729074792728705946*10^8520*y^79-1.0188879426769871779634856274674561388204588547021*10^8499*y^23-8.3834163867972974773322872823619870147258375964774*10^8498*y^137-8.7167696030066179229415400068223274105756753084368*10^8473*y^157-2.5423845331789200034600726713334929841949530920620*10^8479*y^154-3.8400819852144312141390565045108971739848198770878*10^8494*y^18-1.5967261576416053607752429820872991323335743262311*10^8520*y^78-1.0175740692585689531634424955890114976014444308933*10^8518*y^61-2.4285179995148629407580354176987125130661349445523*10^8501*y^26-9.9591230938294084010283929867041070209088721794711*10^8519*y^74-1.5124785750379412355186078281009850256857725039212*10^8509*y^38-1.3696257334801547432715188212364024825978277580525*10^8518*y^99-2.5043379550164697208863253414438885954940319418237*10^8510*y^120-2.6305035680296659521217994891132781709179981823953*10^8519*y^92-6.4633168857441661801397078657885868645527618896321*10^8512*y^115-5.4017137062835482229400862860704710101104939466346*10^8477*y^155-1.3319332479266630416544055381399156457205375789742*10^8520*y^76-1.1229179453936158801565711524134745656617998399217*10^8515*y^51-2.1072238939760510496168542795319210517882197759574*10^8509*y^122-7.4202951194571591382703904653143254672490997668970*10^8483*y^151-3.8070289285557325159584243346313284671324915495170*10^8500*y^135-1.1039925581103150720522042406500486542915736245074*10^8520*y^86-5.6617914522620010790945778522914661973615369528464*10^8510*y^41-1.6087035160973756036538832079523009248794530721987*10^8491*y^145-1.4850201031906675776350324581492012684281688447293*10^8498*y^22-1.5146247410262645573925305579471723277055334370925*10^8519*y^67-4.7211130001373051878950913154719403710636491284680*10^8480*y^6-1.6530002518788994941149248059829590520008440377562*10^8520*y^82-1.7047076469980128563965847960657802574607166189462*10^8516*y^106-2.1535689236782065779546222373046347806024179149085*10^8519*y^68-1.7663207202025704123021189232952843065338109601207*10^8511*y^42-2.0054000346149665950873656769091881277646008431218*10^8514*y^49-8.7980985658203695061909911148317791080293037920173*10^8518*y^95-6.6382089342334567702605185897161035295052107532885*10^8499*y^24-5.2423518701418206080645845528109724107178201134724*10^8519*y^71-2.5005223984780390224009659120569911266411465016141*10^8517*y^102-2.9166995984685295180483355964884005809318120438676*10^8507*y^35-5.5605332423183301781370124657024028252864513225132*10^8515*y^53-4.2088985508608984037637955818873668034650441141989*10^8508*y^37-1.5359069780830356990250444855818636390995287737421*10^8487*y^11-4.8195822055982315209243519558327594854332125953476*10^8514*y^50-7.4019159776239374282920917712985331824056305640757*10^8509*y^121-1.1824401371065279253129270148658783843985808299790*10^8516*y^54-5.7699445263820038176602320228433347310150065071114*10^8518*y^96-4.8887240826161304314145695217669095642625562448079*10^8516*y^56-9.3168096457369483705678128915607768202734995258500*10^8519*y^87-7.6483335053880959242217872221711779939205126053655*10^8519*y^88-2.8022165140012359383220386299165583012323933610511*10^8518*y^63-8.7913174849933209946633264469576789417889752795771*10^8488*y^147-6.1070602577931150981002852101247677893073469678402*10^8519*y^89-6.6735204940436023143379559279002699661221027971978*10^8519*y^72-3.7038607578150625427768021537592932141372135512900*10^8515*y^108+5.5995397939405705863936427820385249633853690301901*10^8421*y^159-4.3799087536966483665257287911378520187315931817599*10^8512*y^45-9.4337845613405718940130376244112818126880382165350*10^8480*y^153-4.4016195590145096005766570015038486034582368219020*10^8471*y^158-1.4784004951305251483287425910074636246579062530163*10^8520*y^77-1.1676033897795360110462286752509022111562435500029*10^8520*y^75-4.7427135181787991184688543830207217422380205833472*10^8519*y^90-3.5818759543146989618794907784153306342212103904257*10^8519*y^91-2.8768350368005885940563302395281705469054862585455*10^8482*y^152-3.6771857043660158298381532799555738376579808022118*10^8518*y^97-5.7742267895039022888493018177602123584240907866086*10^8508*y^123-1.5218640168300510004670286762333676500821162581119*10^8508*y^124-6.9363266130432307646160571603392977489800453447226*10^8516*y^104-3.8549456737127999631950059294088326187118239169420*10^8507*y^125-1.3038646941427179585479412972113396840849763203455*10^8519*y^94-9.3769183236089634533707582015234272852123699634161*10^8506*y^126-2.1883460511492724399923503091958445837748647554809*10^8506*y^127-4.8952355695591150781154733643349486659924454852842*10^8505*y^128-1.0485551218896142863897772812320674499053506074930*10^8505*y^129-2.1483004849606144673542914705607906743103507356628*10^8504*y^130-1.5494046860190940893117310239564235431335253582146*10^8479*y^5-4.2050892248314891927169507900332495837852587131883*10^8503*y^131-7.8538509212710903676476053761137885299117479777654*10^8502*y^132-1.7679296011804914111899945823594272494083899795581*10^8513*y^114-1.3977330303040222916262119370925154156250920192924*10^8502*y^133-2.2836218310348946748292247113705163976110465439789*10^8512*y^116-1.6533707860628046530984037048564661559444860961959*10^8485*y^150-1.7738267900460782472328912396328729755803273367139*10^8496*y^140-1.3676977983447018389059938263870520777868757472621*10^8502*y^27-1.7532220610894821901402812335568196588780524656718*10^8510*y^40-2.9516667478247717303744755604240227679518544503104*10^8489*y^13-2.0078485219641074088681384788655152200468572797253*10^8495*y^141-7.2534968017593560796900029165663885808889467407042*10^8506*y^34-1.8782944849703674516724096576717626326317341794424*10^8519*y^93-2.0907666515043372491230443764285994608560169686906*10^8493*y^143-2.6808899325124839556461459330466132992445220875319*10^8496*y^20-1.7962835711332494336805796222040147543604919397749*10^8517*y^58-5.4474384367082808317163737539358816103803871321611*10^8484*y^9-1.5571340726161882570376111526003454631767695961990*10^8520*y^83-3.2958720940671047883146026860724984669547118316376*10^8517*y^59-1.4687727415575590757685715836381595286522117449742*10^8497*y^139-1.5344448441567496276049482049576739361813653354745*10^8472*y-4.0062327156227432382072256857028086598174510645193*10^8519*y^70-2.2256208759316108462191745825128758956786705696656*10^8488*y^12-1.7128080720010109342300618533017903391406104656571*10^8518*y^62-1.4488310233892170018677437784196556238400754716621*10^8474*y^2-4.4566101716291020698717085074274573116469890550923*10^8518*y^64-4.2029603531877473602300653127904760668035481584082*10^8477*y^4-1.7159339796472553785782565251223997167618655958886*10^8520*y^80-8.0018392438184895700350129431383523489160676243144*10^8517*y^100-1.1431132947377835933677909314512473142342468129873*10^8498*y^138-1.5528557895104117505629838315428185662885043206980*10^8512*y^44-5.3259299922124925079252469156846992302211340211063*10^8511*y^43-1.1961940078561649410725379838699228379084312338078*10^8514*y^112-8.2650702947572812374443391862411033157750240871144*10^8519*y^73-3.6038519328959043764932476220790958383056626568968*10^8490*y^14-5.8750222885796028432029457209659433624366593508487*10^8517*y^60-2.9782247314797054440053943823121072327807111764507*10^8519*y^69-1.4271577212742115454194606820736918306650395799998*10^8520*y^84-5.2419710499572071559459392125912520936103065428996*10^8509*y^39-9.0470847079462863373002288403969299088803805903436*10^8475*y^3-1.7073689675569899357965868260045611920484368126906*10^8520*y^81-2.7490545183768481300696110547122587420207975070651*10^8483*y^8-8.0870222079134394054578641820960280470472182895804*10^8513*y^48-9.5092124980645835527948721888861109860959780909706*10^8516*y^57-1.9088786071022477512000956890347726124864762562306*10^8492*y^144-8.1665400133683419929504658676911027201350987281122*10^8510*y^119-7.7940149703420578302211347620617495161349846282540*10^8511*y^117-1.2726020138589118131640895055500859385419846765556*10^8520*y^85-4.1137060724962539927628645399979725855947084575515*10^8500*y^25-2.9613776979262276712567720748534124677278327491945*10^8514*y^111-3.9886813366620949017604872009396705017047367343796*10^8505*y^32-9.6339764896810740918288183849113614094086813551150*10^8485*y^10-4.5397243965554587696124387458818609498482834229720*10^8517*y^101-8.0610496604773945424526841585659432841153157298199*10^8469-3.1595859599995844431190300667470894936598803935830*10^8513*y^47-5.8069799798859938188773381248178913031371004331946*10^8499*y^136-3.3066505703809297774777128515048686047829738531131*10^8495*y^19-1.1289228780398689439823389755153400672408049690863*10^8508*y^36-4.2748301589688548612528628462694982603680131567960*10^8492*y^16-2.0515105530842760733607137620543330754932084577092*10^8497*y^21-1.3368969018951640582663135748352287399549274065000*10^8517*y^103-3.7856405631183749770547245709288279462381186137537*10^8503*y^29-3.2342616324171613158346212734129357416916941462362*10^8486*y^149)/(1.0275320415803315156196412938338297681984560269404*10^8497*y^142+7.2074738611024839760485010033121948546764089498432*10^8518*y^104+2.6344438538915235729584862169224178942113917471059*10^8510*y^124+7.7269427784996328753131864828788890154577015432686*10^8517*y^54+4.7966099112549557496065971311467469066323121080261*10^8521*y^72+1.6436508656270743624235442722662834838296535349398*10^8498*y^20+5.9824900435438360423741179078260472329081981399211*10^8521*y^73+2.2098453249044266402295296299205061265834207600204*10^8492*y^14+3.3626028213644035385119266184572602921456492299404*10^8513*y^43+8.8921037481327278629779623137100880211832513990260*10^8497*y^141+3.6945739111819195537576336659929529415396506770667*10^8518*y^105+3.7941538977962517035078446396214257700633494829187*10^8512*y^120+1.0541972911293401511194135342970822107799699817148*10^8521*y^67+3.7085701075566606251056192363279443498764949476841*10^8489*y^149+4.9979182196421627680361556344726038720598428302025*10^8471+3.1047310225787945050404664917181829065483165557314*10^8516*y^50+1.8104804085503941007388809493822301053732738117012*10^8491*y^13+7.7733956025329698702125971974426483871941166399221*10^8519*y^100+1.3099563433049268843432208209963728307431666384118*10^8520*y^99+9.2432144294312316337701603700407799123041506911315*10^8492*y^146+4.0186134326152853844568075500234225284493692059100*10^8521*y^90+1.2003957641549743643238011718197752112074303760662*10^8513*y^119+2.8410138724121332923328140261773053008121154044396*10^8521*y^70+1.8120729667637843979231000903077339813711665016491*10^8509*y^35+9.7664977715290799289625191591367315212861368134672*10^8505*y^131+4.7565647016520711836685914813771702731486825295248*10^8506*y^130+7.2310841481197099276130489747226712991769831922515*10^8498*y^140+2.1450670719313925617992560870512326526851079332332*10^8520*y^98+7.1685445687757441212253327263089295436292976190471*10^8520*y^66+2.7795704224406471877575269914403802745252444667200*10^8514*y^45+8.5065099316590626530904280547438369500879248936853*10^8514*y^115+1.0819026411423377435552369695725582377091055605334*10^8514*y^117+1.0979097119284617833685450821856738351400471178695*10^8503*y^135+2.5275577823614247543384564872692369233334811410927*10^8502*y^25+6.0524534823776202410765271166756707959326406239820*10^8485*y^152+9.5016865118190072974349026904388235385173314551993*10^8473*y+2.3537052432857573642087675584528278486338092168194*10^8496*y^18+1.2011260673965961157678046451268643439535656115324*10^8522*y^78+6.8559785692320127923934091076443163243297733806306*10^8519*y^61+1.4931717305679235382204313601714427892359329573002*10^8503*y^26+7.2611516234013660704887268529525715768505841891315*10^8521*y^74+3.9392773616453875295022066077873404994159597961433*10^8519*y^60+2.0984767769519903504457345197792883639123300524168*10^8521*y^69+3.5406511839848893315250048897056467446289985089317*10^8516*y^111+8.3005918410147984589715785219696067523000663580617*10^8516*y^110+2.5938519642259676919395942297323864800231598895776*10^8479*y^4+3.6199522318931850871132044809426211103701628911392*10^8517*y^53+2.1996317650667973324413185153557592503934210114469*10^8519*y^59+4.4815194705296061179749323920109151590200406543259*10^8519*y^101+3.4036731316363395134433986501641371998250934597991*10^8511*y^122+3.4137807356717198819905753805294505715589603344067*10^8520*y^97+6.9231381528206205275504939041809637733465286868266*10^8509*y^125+2.6203111139728421961105970771308512942641685230453*10^8494*y^16+8.9483839713345256189519376133794905552649446494345*10^8521*y^86+1.0209248652370776293535300104667332313758445264337*10^8522*y^85+5.5399377255048165810477683124597258614642830258662*10^8499*y^139+3.5977605850912099796035195620407722716854980172752*10^8504*y^133+3.0494823097799289792703915275798781836769876102014*10^8520*y^64+4.7411309382792058998933459781265135885941311822752*10^8520*y^65+1.9178874156536490997317738637809129304845933985707*10^8505*y^132+3.5579613504222455233778530562551513807743559313230*10^8512*y^41+1.1252777152344925161272215786999893685637524934365*10^8495*y^144+3.7423139100265445428376966713621559765838165224834*10^8521*y^71+7.2581939877238253461285429597636828288378753215357*10^8516*y^51+2.4673712478186244222706213348009578633571053812535*10^8507*y^32+9.8288363037702820352859372803690272741574768297768*10^8513*y^44+1.6456894435440850658132474743354962225072115888013*10^8517*y^52+2.2646876458404861436283294587774176880990906994146*10^8488*y^150+8.5767750424729333610942330083836124591623720785213*10^8521*y^75+4.5314184478372590521573509046449359583606526167416*10^8504*y^28+7.4425166109529191193610700414644269162537659530512*10^8491*y^147+1.2247680159291484198326128501009567353449812523225*10^8522*y^83+4.4994769543565358222700988404272035883696791246800*10^8508*y^34+3.6666868538377650157945270695147354903612610250699*10^8513*y^118+9.4459956116496298167719675594215836122403939438439*10^8510*y^38+7.6081883818184656560271083922421172801856887214631*10^8514*y^46+1.2418952730347433284886011597905633927433886046207*10^8487*y^151+1.1335068553516361573539198312896033204049596934866*10^8522*y^84+3.2802157029332176918284621595346028285744073633154*10^8511*y^39+2.6237575992674271949172743197804944766724045455994*10^8510*y^37+9.4287726018893849207301211294752648772510718653650*10^8488*y^11+2.0269429215413387783133914986924474229891894935076*10^8497*y^19+7.0252466943446900380908915724593033693782135003392*10^8509*y^36+2.2363532434813158648131520688137066789398018028374*10^8474*y^159+1.1030750375033038764413326740132666331679335603480*10^8522*y^77+1.7809307769583624288811821533648490114451346289466*10^8502*y^136+9.1101698040516934751828427450818017439068241205251*10^8499*y^22+8.4158500402942200364452790976478268511672719572183*10^8503*y^27+9.5527967836685984998760066014663912712543569817831*10^8480*y^5+3.0851785965928879932810683819172748836008297716393*10^8514*y^116+5.5004929506311425165226677875477147739795447324754*10^8490*y^148+3.2202726296840308889492066139169825865962128583293*10^8518*y^56+1.2729436822330691813383520842185827599720877360344*10^8522*y^79+5.4400914385970619894575068231890907627662062051147*10^8506*y^31+2.7437948525440440137673417702536528754184324864036*10^8501*y^137+8.9608602503957842737264640694924739962139585100348*10^8475*y^2+4.0762093528286484193149238561357820472521958182258*10^8501*y^24+6.2902888314336454706498764394967942193011934023575*10^8518*y^57+1.3130127461826903678468576710850676252639231742988*10^8522*y^80+5.1150660995145144164515512914458391377087209573272*10^8521*y^89+1.6512694019675846646896369400167762107103346503986*10^8521*y^93+1.8858809652312525161093008362677460265731835707425*10^8517*y^109+1.3656609738974251164173996772033917600693168819339*10^8490*y^12+1.1597889143796090923973421771091781880297909710802*10^8520*y^62+1.6009226631427703061997032007753629978783291798093*10^8518*y^55+1.5415117389448964562781648660869805458937159828479*10^8478*y^157+1.9072637806168205018646653245201082653632823343413*10^8520*y^63+5.2809149250741208119144719573104453976441542132832*10^8520*y^96+1.8379824248114010276251322234410231911325783706753*10^8518*y^106+1.7498103785744154782034654828699275349303713253374*10^8509*y^126+6.3343222005333053453383203465110576681321347673540*10^8521*y^88+9.8594601638024021649514742294579378703873138654051*10^8521*y^76+1.3649022207876381276274745466840784658363572679454*10^8519*y^103+4.0078910351917299979823538947299589976156333591206*10^8500*y^138+2.5096781351045862251530908985101998092618054337366*10^8519*y^102+3.0714206772721181022712123271929076700264359749755*10^8521*y^91+5.5892566283611823400295522611435334084941322616829*10^8477*y^3+1.3181553417574193846454100528651841315451358605821*10^8522*y^81+2.9081536634637798678413746274705142738881885540116*10^8482*y^6+1.2879456712573791936105153983633547417235850936543*10^8522*y^82+1.5079930947895303179227714550055067345256686409380*10^8521*y^68+1.6906990036177003100932766018730939708326260693080*10^8485*y^8+5.1765436875141541654448593354680931722725190769576*10^8515*y^48+1.2581077823445390958296709827798258816658964133691*10^8499*y^21+5.9173519544570613927641307851335252490263615584906*10^8487*y^10+9.9128536441906719553305522214653622743244111341774*10^8507*y^128+1.1508458912062016184942568224431060106404407254938*10^8506*y^30+2.9811912504739566440260503946632074689766792788518*10^8481*y^155+3.3479462154460389206042397307690166340488983707216*10^8486*y^9+1.1571959974318628153577689242830343408240072481709*10^8512*y^121+2.5666208688642699675598307281903655949038342503711*10^8495*y^17+1.1934237003867097853029496941368825337755466368182*10^8519*y^58+1.1126031073836656908626482231451365583917808606282*10^8496*y^143+7.6384475840158124348329311316470647123934931323763*10^8479*y^156+2.2687771700563513529295953149038498940322333074518*10^8515*y^114+5.8557395412076321882119163497430089066891894347034*10^8515*y^113+1.4631595518927878296068106446107229549978736863399*10^8516*y^112+2.2834997392331659980851239366426290132977771581594*10^8521*y^92+7.5269376713605583845118113670284137902756151728226*10^8483*y^7+6.2532756388309742865553911299573565063259994385706*10^8500*y^23+2.0164246688802714718084594080461770911781785325594*10^8515*y^47+9.5544260649966913099435662829778503430999793934915*10^8482*y^154+4.1537080254350054854816761895314871309145992976382*10^8517*y^108+8.8716419753677731379982195802139147245523336407415*10^8517*y^107+2.2946302162430477400169519696558605097579171348735*10^8476*y^158+1.0993620549982798650933760574381939319316641367135*10^8512*y^40+1.0747235963274405899956074421648477654447087494663*10^8508*y^33+6.4389149200392426079107685289469750462283336842779*10^8503*y^134+1.0592646945465765033746586511207237258110401365522*10^8494*y^145+7.9419141887633594211221581043736001603573511979057*10^8520*y^95+1.0682870557789215831858735810482028286163225383669*10^8472*y^160+9.6487248698864223321065544988263891762436297686770*10^8510*y^123+7.6322938220989725411633523154165343131737763980327*10^8521*y^87+1.1612963162708548642944927465260222081789100774591*10^8521*y^94+2.3336970919234164775881104793312250836490336865026*10^8505*y^29+1.1125223740087102854670048695994301971764951365104*10^8513*y^42+2.2180167924495251774028369170270990768283882635699*10^8507*y^129+2.4960008754258160642458955406877861116816308381931*10^8493*y^15+2.5881241389016227353803719520763808027645200941600*10^8484*y^153+1.2876747669917078755139780993325314786408188080132*10^8516*y^49+4.2502164133706408795384785345737206936179170745107*10^8508*y^127):

 

factor(A11);

Warning,  computation interrupted

 

 

50

(1)

 

 

``


 

Download factor_puz.mw

Dear Maple users,

I am struck with a polynomial. Is there a way to factor it ?

work sheet is attached.

 

regards,

 

Hi every body: 

How can I solve this equation with maple? assuming x>0

eq:=-44.51913564*sinh(sqrt(x))*x^5*sin(sqrt(x))*cos(0.6232678986e-1*x)+5.872275982*x^(11/2)*cosh(sqrt(x))*sin(sqrt(x))*cos(0.6232678986e-1*x)+5.872295982*x^(11/2)*sinh(sqrt(x))*cos(sqrt(x))*cos(0.6232678986e-1*x)-0.1e-5*x^6*sinh(sqrt(x))*sin(sqrt(x))*cos(0.6232678986e-1*x)+11465.08352*x^6*cosh(sqrt(x))*cos(sqrt(x))*cos(0.6232678986e-1*x)-0.10000e-4*x^(11/2)*sin(sqrt(x))*cos(sqrt(x))*cos(0.6232678986e-1*x)+.1246535797*cosh(sqrt(x))*x^4*cos(sqrt(x))*cos(0.6232678986e-1*x)+158.9969129*x^(9/2)*sinh(sqrt(x))*cos(sqrt(x))*cos(0.6232678986e-1*x)-94.84329962*cosh(sqrt(x))*x^5*cos(sqrt(x))*sin(0.6232678986e-1*x)-0.2e-2*x^7*sinh(sqrt(x))*sin(sqrt(x))*sin(0.6232678986e-1*x)+0.4000e-2*x^(13/2)*cosh(sqrt(x))*sin(0.6232678986e-1*x)*sinh(sqrt(x))+0.10000e-4*x^(11/2)*cosh(sqrt(x))*sinh(sqrt(x))*cos(0.6232678986e-1*x)-158.9969129*cosh(sqrt(x))*x^(9/2)*sin(sqrt(x))*cos(0.6232678986e-1*x)+38209.64552*sinh(sqrt(x))*x^6*sin(sqrt(x))*sin(0.6232678986e-1*x)-3761.932636*x^(13/2)*cosh(sqrt(x))*sin(sqrt(x))*sin(0.6232678986e-1*x)-3761.924636*x^(13/2)*sinh(sqrt(x))*cos(sqrt(x))*sin(0.6232678986e-1*x)-0.4000e-2*x^(13/2)*sin(sqrt(x))*cos(sqrt(x))*sin(0.6232678986e-1*x)-2.*10^(-7)*x^(13/2)*cosh(sqrt(x))*sin(sqrt(x))*cos(0.6232678986e-1*x)-11465.08352*x^6*cos(0.6232678986e-1*x)+.1246535797*x^4*cos(0.6232678986e-1*x)-94.84329962*x^5*sin(0.6232678986e-1*x)+0.1e-5*x^6*cosh(sqrt(x))^2*cos(0.6232678986e-1*x)-0.1e-5*x^6*cos(sqrt(x))^2*cos(0.6232678986e-1*x)+0.3e-5*cosh(sqrt(x))^2*x^6*sin(0.6232678986e-1*x)-0.2e-2*x^7*cos(sqrt(x))^2*sin(0.6232678986e-1*x)+0.2e-2*x^7*cosh(sqrt(x))^2*sin(0.6232678986e-1*x)+2.*10^(-7)*x^(13/2)*sinh(sqrt(x))*cosh(sqrt(x))*cos(0.6232678986e-1*x)+2.*10^(-7)*x^(13/2)*cos(sqrt(x))*sin(sqrt(x))*cos(0.6232678986e-1*x)-2.*10^(-7)*x^(13/2)*sinh(sqrt(x))*cos(sqrt(x))*cos(0.6232678986e-1*x)+1.159305284*10^5*cosh(sqrt(x))*x^(11/2)*sin(sqrt(x))*sin(0.6232678986e-1*x)-1.159305284*10^5*x^(11/2)*sinh(sqrt(x))*cos(sqrt(x))*sin(0.6232678986e-1*x)-8.359616334*10^6*x^7*cosh(sqrt(x))*cos(sqrt(x))*sin(0.6232678986e-1*x)+8.359616334*10^6*x^7*sin(0.6232678986e-1*x) = 0

tnx ... 

Hello people in mapleprimes,
I have two files: a batchfile named test.command, and a mpl file,
both in <<my home directory>>.

And, the codes written there are, for the test.command,

/Library/Frameworks/Maple.framework/Versions/2017/bin/maple test.mpl > output.txt

And, for the mpl file,

1+1;
diff(x^2,x);
int(x^3,x);

The test.command was made executable with chmod u+x  test.command, in advance.

From my home directory, I can run the test.command, and obtain output.txt with the result of the calculation of 
the mpl file. The above things have no problem. 

My question is a following.

When I moved the two files, the batch file and the mpl file, to /Users/myname/Desktop/maple_test, 
I cannot get maple to exhaust the appropriate output.txt but an error message, saying it could not read the mpl file.
What should be done to the contents of two files?

I hope you will teach me about this.

Thanks in advance.

taro

 

 

 

First 570 571 572 573 574 575 576 Last Page 572 of 2155