MaplePrimes Questions

Hello !

I want to plot its steamlines and Isotherms for different parameters. Anyone can help me for this issue.

eq1:=diff(f(eta),eta,eta,eta)+f(eta)*diff(f(eta),eta,eta)-(diff(f(eta),eta)^2)-M*diff(f(eta),eta)=0:
eq2:=(1+R)*1/Pr*diff(theta(eta),eta,eta)+f(eta)*diff(theta(eta),eta)=0:
bc:=D(f)(0)=1,(f)(0)=0,(D)(f)(N)=0,theta(0)=0,theta(N)=1:
Pr:=1:R:=0.5:M:=0.5:N:=10:


 

Hello World (again);

For your edification, look at  a file.

L

fine_semiprime_2.mw

For what it's worth

Regards,

Matt

 

Can anyone explain the reasoning that went into the programming decisions that led Maple to give these results?

restart:
is(-infinity, complex); #expected: false
                             false 
is(-infinity-I*infinity, complex); #expected: false
                              true
exp(-infinity - I) = limit(exp(x-I), x= -infinity); #expected: 0=0
                         infinity*I = 0
is(exp(x)<>0) assuming x::complex; #expected: true
                             false
is(exp(x)<>0) assuming x::real; #expected: true
                              true
coulditbe(exp(x)=0) assuming x::complex; #expected: false
                              true

 

I got my maplet and there error occurs when I try to display it - Error, (in Maplets:-Display) BoxCell contains an element (_Maplets_reference_1235) that cannot be placed in a layout.
Please correct Maplet definition.

How to fix it?

with(Maplets[Elements]);

mpt := Maplet(Window("Точка выше или ниже прямой", [[[ToggleButton[TB1]("Tt", 'group' = 'tb1')], [ToggleButton[TB2]("Tt", 'group' = 'tb1')]], ButtonGroup['tb1']()]));

Display(mpt);

Hi I want to generate dihedral group of order 8.I have given the commands
with (GroupTheory):

GroupTheory(DihedralGroup);

DihedralGroup(8, s);
                              D[8]
Elements(DihedralGroup(8, s));
{(), (12345678), (14725836), (16385274), (18765432), 

  (1357)(2468), (1753)(2864), (13)(48)(57), (15)(24)(68), 

  (17)(26)(35), (28)(37)(46), (12)(38)(47)(56), (14)(23)(58)(67), 

  (15)(26)(37)(48), (16)(25)(34)(78), (18)(27)(36)(45)}
but I need symmetric and rotation matrices like 

R0=[1,0;0 1],R1=[0,-1;1,0], R2=[-1,0;0,1], R3=[0 1;-1,0],S0=[1 0;0 -1], S1=[0 1 ;1 0], S2=[-1,0;0,1]; S3=[0,-1;-1,0]
 Can any one help me how to generate these matrices

I am trying to check to see if two equations are equivalent, subject to rearrangment and scalar multiplication. For example, I would to have a procedure that would determine that each of the following equations are the equivalent:

(a) (1/2)*y*exp(-y)+2*y^3 - x*ln(x) +x^2 = 10
(b) (1/2)*y*exp(-y)+2*y^3 +x^2 = 10 + x*ln(x)

(c) y*exp(-y)+4*y^3 - 2*x*ln(x) +2*x^2 = 20

Is there a systematic way to go about doing this? Thanks!

I have a vector v= [1 ,1,0]
M=[1 2 3; 5 4 3; 7 9 0];

c=v.M

whats wrong with this. error is in the last statement

Hi

I have a solution obtained using

sol:=pdsolve(PDE,BC);

"sol" is a function depend on variable x,

how can I differentiate this sol ( which a function ) then plot it

many thanks

 

How to find 

a:=[8, 9 ,9 ,7 ,9 ,10 ,5]-1 mod 11

Hello I want to multiply two vectors like

X=[x,x2,...x10]

G=[g1,g2,...g10]

y=[x1*g1,x2*g2, ........, x10*g10]

How to perform this transformation in maple?

Thanks

 

with(Maplets);
with(Elements);
with(plots);
with(DocumentTools);

 I use GetProperty("d", value) = "true"  to check if checkbox is checked but it does not work. How can I check if checkbox is checked?

 


workk := proc(g)

if GetProperty("d", value) = "true" then

print("true");

else print("False");

end if;

end proc;

 

 

mpt := Maplet(Window("aaaa", [[Plotter[f]()],

["Scalar", CheckBox[d]()],

[Button("Add", Evaluate(f = 'workk(1)')),

Button("OK", Shutdown())]]));

Display(mpt);
 

Hey,

Is anyone of you capable of simplifying this expression

f1:=(-3*sin(8*x) + 3*sin(8*x + 2*y) - 3*sin(8*x + 6*y) + 3*sin(8*y + 8*x) + 3*sin(8*y + 6*x) + 3*sin(8*y) - 18*sin(8*y + 4*x) + 3*sin(8*y + 2*x) - 45*sin(6*y + 6*x) + 87*sin(4*y + 6*x) - 3*sin(6*x - 2*y) - 87*sin(6*x + 2*y) + 18*sin(4*x - 4*y) - 93*sin(4*x + 4*y) + 93*sin(4*x + 6*y) - 51*sin(2*x - 4*y) - 342*sin(2*x + 4*y) - 3*sin(-6*y + 2*x) + 51*sin(6*y + 2*x) - 93*sin(-2*y + 4*x) + 342*sin(-2*y + 2*x) + 639*sin(2*x + 2*y) - 639*sin(2*x) + 45*sin(6*x) + 93*sin(4*x) + 231*sin(4*y) - 225*sin(2*y) - 63*sin(6*y) - 57*sqrt(3)*cos(2*x) - 375*sqrt(3)*cos(2*y) + sqrt(3)*cos(8*y + 8*x) - 5*sqrt(3)*cos(8*x + 6*y) - 7*sqrt(3)*cos(8*y + 6*x) + sqrt(3)*cos(8*x) + 192*sqrt(3)*cos(2*y + 4*x) + 43*sqrt(3)*cos(-2*y + 4*x) - 7*sqrt(3)*cos(6*x + 2*y) + 7*sqrt(3)*cos(-6*y + 2*x) - 5*sqrt(3)*cos(6*y) - 149*sqrt(3)*cos(4*x + 4*y) - 149*sqrt(3)*cos(4*x) - 65*sqrt(3)*cos(6*y + 2*x) + 126*sqrt(3)*cos(2*x + 4*y) - 65*sqrt(3)*cos(2*x - 4*y) - 5*sqrt(3)*cos(8*x + 2*y) - sqrt(3)*cos(8*y) + 7*sqrt(3)*cos(8*y + 2*x) + 6*sqrt(3)*cos(8*x + 4*y) - 57*sqrt(3)*cos(2*x + 2*y) + 125*sqrt(3)*cos(4*y) + 126*sqrt(3)*cos(-2*y + 2*x) - 7*sqrt(3)*cos(6*x - 2*y) + 19*sqrt(3)*cos(6*x) + 43*sqrt(3)*cos(4*x + 6*y) + 19*sqrt(3)*cos(6*y + 6*x) - 7*sqrt(3)*cos(4*y + 6*x) + 246*sqrt(3))/(2*(-261*sin(4*x + y) - 297*sin(2*x + 3*y) - 48*sin(5*y + 6*x) + 126*sin(5*y + 2*x) + 9*sin(5*y + 8*x) + 12*sin(7*y + 6*x) - 9*sin(7*y + 4*x) - 36*sin(5*y + 4*x) + 261*sin(3*y + 4*x) + 9*sin(-3*y + 4*x) + 297*sin(-y + 2*x) - 135*sin(3*y) - 21*sin(5*y) - 147*cos(y)*sqrt(3) - 9*sqrt(3)*cos(7*y + 4*x) - 3*sqrt(3)*cos(5*y + 8*x) - 3*sqrt(3)*cos(3*y + 8*x) + 54*sqrt(3)*cos(6*x + 3*y) + 5*sqrt(3)*cos(-5*y + 2*x) + 5*sqrt(3)*cos(7*y + 2*x) - 2*sqrt(3)*cos(6*x - y) - 20*sqrt(3)*cos(6*x + y) - 69*sqrt(3)*cos(4*x + y) + 68*sqrt(3)*cos(4*x - y) + 2*sqrt(3)*cos(8*x + y) + 2*sqrt(3)*cos(7*y + 8*x) - 20*sqrt(3)*cos(5*y + 6*x) - 2*sqrt(3)*cos(7*y + 6*x) + 68*sqrt(3)*cos(5*y + 4*x) - 9*sqrt(3)*cos(-3*y + 4*x) - 69*sqrt(3)*cos(3*y + 4*x) - 171*sqrt(3)*cos(2*x + 3*y) - 35*sqrt(3)*cos(5*y) + 171*sqrt(3)*cos(3*y) - 171*sqrt(3)*cos(-y + 2*x) + 354*sqrt(3)*cos(2*x + y) + sqrt(3)*cos(7*y) + 639*sin(y) - 9*sin(3*y + 8*x) - 12*sin(6*x - y) + 3*sin(7*y) - 9*sin(7*y + 2*x) + 9*sin(-5*y + 2*x) + 48*sin(6*x + y) + 36*sin(4*x - y) - 126*sin(2*x - 3*y)))

 

into

 

cos(y-Pi/3).

 

PS: Actually I managed by expanding the thing out and converting to exp then expanding again and using radnormal. In essence I leave the question, because maybe somebody can explain to me why radnormal seems to be superior (sometimes) to simplify which I thought of as the USEALL choice. Thanks


 

StringTools['Explode']("1&le; n&le;m")

["1", "&", "l", "e", ";", " ", "n", "&", "l", "e", ";", "m"]

(1)

``


 

Download q1stringtool.mw

Does Maplesoft provide success percentage of this toolbox on benchmark functions?. I cannot see much options in the global solve command (from maple help page) other than population size etc. 

First 320 321 322 323 324 325 326 Last Page 322 of 2120