MaplePrimes Questions

Maple program for extended Euclidean algorithm for polynomials with rational coefficients

54*x^3-54*x^2+84*x-48

-12*x^3-28*x^2+72*x-32

 

Hello
 

I have problem that Maple is not evaluating integral (I need equation for distance for Lissajous curve):

restart;
with(Physics);
with(LinearAlgebra);
with(IntegrationTools);

x := A*sin(a*t + d);
y := B*sin(b*t);

u := diff(x, t);
u2 := diff(y, t);
u3 := sqrt(u^2 + u2^2);

u5 := int(u3, t);

I am only getting:

 

Hi,

I tried to find the set of real parameters a1, a2, a3, a4 and u1, u2, u3 which make a subalgebra L an ideal of a finite real Lie algebra LieAlg. Unfortunately, the "Query" command with the "Ideal" argument returns an error message that I can't get around. What should I change in this command?

restart: 
with(DifferentialGeometry):
with(LieAlgebras):
#
DGsetup([x1,x2,x3],R3):
#
Lie_Generators := [D_x1*x1+D_x2*x2+D_x3*x3, D_x3*k^2*x1+D_x1*x3, -D_x1*x2+D_x2*x1, D_x3*k^2*x2+D_x2*x3, D_x1, D_x2, D_x3]:
#
LieAlg:=LieAlgebraData(Lie_Generators):
#
DGsetup(LieAlg):
#
L:= evalDG([e3+u2*e5-u1*e6,e2-u3*e5-k^2*u1*e7,e4-u3*e6-k^2*u2*e7,e1-u1*e5-u2*e6-u3*e7]);
Sub_Alg_L:=LieAlgebraData(L);
#
TrueFalse,Equations,Solutions,IdealList:=Query(L,{u1,u2,u3},"Ideal");
#
TrueFalse,Equations,Solutions,IdealList:=Query([DGzip([a1,a2,a3,a4], L, "plus")],{a1,a2,a3,a4,u1,u2,u3},"Ideal");

Thanks for your help.

 

Jaqr

Dear all

I would like to solve a fourth order PDEs, using fourier transform. 

How can I apply fourier transform to get solution of my problem

Fourier_transform.mw

Thank you 

Hi, 

Let's suppose 

f := piecewise(x < 1, x, -x)

Using 

discont(f, x)

says me x=1 is a discontinuity point.
But can I obtain that f is continuous over  these two intervals?

(-infinity, 1)
[1, +infinity)


Thanks in advance

PS: I'm sure I've seen this type of question here before, but I couldn't find them.


lign1 := S*`union`(T intersect R);
                 lign1 := S (`intersect`(R, T))

lign2 := (S union T) intersect (S union R);
       lign2 := `intersect`(`union`(R, S), `union`(S, T))

verify({lign1}, {lign2});

 

My textbook says the expression lign1 and lign2 should be the same, but it outputs false. I suspect it's because Maple is ignoring the parenthesis in the first expression.

 


I m Stucked with this step

restart; with(plots)

eq1 := 2*n*4^n*eta^((n+1)*(1/2))*(diff(f(eta), `$`(eta, 2)))^(n-1)*(diff(f(eta), `$`(eta, 3)))+4^n*(n+1)*eta^((n-1)*(1/2))*(diff(f(eta), `$`(eta, 2)))^n+4*f(eta)*(diff(f(eta), `$`(eta, 2)))-4*m*(diff(f(eta), eta))^2+m-2*M*(diff(f(eta), eta)) = 0;

2*n*4^n*eta^((1/2)*n+1/2)*(diff(diff(f(eta), eta), eta))^(n-1)*(diff(diff(diff(f(eta), eta), eta), eta))+4^n*(n+1)*eta^((1/2)*n-1/2)*(diff(diff(f(eta), eta), eta))^n+4*f(eta)*(diff(diff(f(eta), eta), eta))-4*m*(diff(f(eta), eta))^2+m-2*M*(diff(f(eta), eta)) = 0

(1)

eq2 := 2*eta*(diff(theta(eta), `$`(eta, 2)))+2*(diff(theta(eta), eta))+Pr*(f(eta)*(diff(theta(eta), eta))-s*(diff(f(eta), eta))*theta(eta))+Nb*(diff(theta(eta), eta))*(diff(phi(eta), eta))+Nt*(diff(theta(eta), `$`(eta, 2)))^2 = 0;

2*eta*(diff(diff(theta(eta), eta), eta))+2*(diff(theta(eta), eta))+Pr*(f(eta)*(diff(theta(eta), eta))-s*(diff(f(eta), eta))*theta(eta))+Nb*(diff(theta(eta), eta))*(diff(phi(eta), eta))+Nt*(diff(diff(theta(eta), eta), eta))^2 = 0

(2)

eq3 := 2*eta*(diff(phi(eta), `$`(eta, 2)))+2*(diff(phi(eta), eta))+Sc*(f(eta)*(diff(phi(eta), eta))-s*(diff(f(eta), eta))*phi(eta))+Nb*(2*eta*(diff(theta(eta), `$`(eta, 2)))+2*(diff(theta(eta), eta)))/Nt = 0;
``

2*eta*(diff(diff(phi(eta), eta), eta))+2*(diff(phi(eta), eta))+Sc*(f(eta)*(diff(phi(eta), eta))-s*(diff(f(eta), eta))*phi(eta))+Nb*(2*eta*(diff(diff(theta(eta), eta), eta))+2*(diff(theta(eta), eta)))/Nt = 0

(3)

eq4 := 2*eta*(diff(chi(eta), `$`(eta, 2)))+2*(diff(chi(eta), eta))+Lb*(f(eta)*(diff(chi(eta), eta))-s*(diff(f(eta), eta))*chi(eta))-Pe*(2*eta*chi(eta)*(diff(phi(eta), `$`(eta, 2)))+2*chi(eta)*(diff(phi(eta), eta))+2*eta*(diff(chi(eta), `$`(eta, 2)))*(diff(phi(eta), `$`(eta, 2)))) = 0;

2*eta*(diff(diff(chi(eta), eta), eta))+2*(diff(chi(eta), eta))+Lb*(f(eta)*(diff(chi(eta), eta))-s*(diff(f(eta), eta))*chi(eta))-Pe*(2*eta*chi(eta)*(diff(diff(phi(eta), eta), eta))+2*chi(eta)*(diff(phi(eta), eta))+2*eta*(diff(diff(chi(eta), eta), eta))*(diff(diff(phi(eta), eta), eta))) = 0

(4)

bcs := (D(f))(a) = 0, f(a) = 2*s*a*(D(phi))(a)/Sc, theta(a) = 1, phi(a) = 1, chi(a) = 1, (D(f))(10) = 1/2, theta(10) = 0, phi(10) = 0, chi(10) = 0;

(D(f))(a) = 0, f(a) = 2*s*a*(D(phi))(a)/Sc, theta(a) = 1, phi(a) = 1, chi(a) = 1, (D(f))(10) = 1/2, theta(10) = 0, phi(10) = 0, chi(10) = 0

(5)

params := {Lb = .1, M = .1, Nb = .6, Nt = .2, Pe = 5, Pr = 6.2, Sc = .1, a = 0.1e-1, m = 1/3, n = 1, s = .1};

{Lb = .1, M = .1, Nb = .6, Nt = .2, Pe = 5, Pr = 6.2, Sc = .1, a = 0.1e-1, m = 1/3, n = 1, s = .1}

(6)

sol := dsolve(eval([eq1, eq2, eq3, eq4, bcs], params), numeric, output = listprocedure, maxmesh = 1024)

Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system

 

odeplot(sol, [[eta, f(eta)][eta, phi(eta)], [eta, theta(eta)], [eta, chi(eta)]], eta = eval(c, params) .. 10)

Error, invalid subscript selector

 

NULL


 

Download Pblm2.mw

Hello. I want to solve a 2X2 system using Maple. I have written this code but I do not get expected results.

restart;
with(DEtools);
with(plottools);
with(plots);
with(Algebraic);

F := -1 - y - exp(x);
G := x^2 + y*(exp(x) - 1);

sol1 := eliminate({F, G}, {x, y});

sol1 := [{x = RootOf(-exp(_Z)^2 + _Z^2 + 1), y = -exp(RootOf(-exp(_Z)^2 + _Z^2 + 1)) - 1}, {}]

But, the solutions are x=0 and y=-2 (I have solved the system by hand).

 

Any help?!

Hi,how to separate the letters with commas, to put them in a set like { a,b,c,d} instead of {abcd} ?

Thanks

 CAP13CombinatoireQuestion.mw?

When I try to solve this problem above error displays

Here is the file
 

Download Main.mw

Hi,

When I do large computations in a worksheet and that I manually save it, I get a message in a pop-up window which asks me if I want to save these calculations too:

  1. What is it that is really saved if I answer "YES" 
  2. As I always answer "NO" how can I force MAPLE to ApplyGlobally this answer (I wasn't capable to fin it out in the Preferences>Interface menu).
  3. is this preference accounted for during AutoSaving?

Always in the goal to save only the necessary informations (in a mw format, export to mpl format could of course be a solution), how can I remove all the outpouts (and more specifically all the plots) in the current worksheet?
Presently I'm doing this and, before my last  saving, I turn TF to false and rexecute all _display commands ... not very practical, I agree

restart

_display := proc(tf, graph)
if tf then print(graph) end if:
end proc;

TF := true: # or false if no plot is required

# for each plot:
p := display( something ):
_display(TF, p)



Thanks in advance

How to represent this function in maple?

h(x) is sin(x)/x

I use the product() but do not how to represent the step here like 1,3,5,7.... And also the integral term not working. Making Maple frozen

 

Thank you!

Dear all

I have two matrices represent ( f(x[i],y[j])  and  g(x[i],y[j]) of a  given two dimensional functions.

How can I use thoses values of matrices to compute the largest distance between the two curves.

Many thanks

 

 

 


When i try to solve the problem i got error like this 

Please help me get the solution

restart

with(plots):

eq1 := (2*(eta*(diff(f(eta), `$`(eta, 3)))+diff(f(eta), `$`(eta, 2))))/((1-phi[1])^2.5*(1-phi[2])^2.5)+((1-phi[2])*(1-phi[1]+phi[1]*rho[s1]/rho[f])+phi[2]*rho[s2]/rho[f])*f(eta)*(diff(f(eta), `$`(eta, 2)))-sigma[hnf]*M*(diff(f(eta), eta))/(sigma[f]*(m^2+1)) = 0;

2*(eta*(diff(diff(diff(f(eta), eta), eta), eta))+diff(diff(f(eta), eta), eta))/((1-phi[1])^2.5*(1-phi[2])^2.5)+((1-phi[2])*(1-phi[1]+phi[1]*rho[s1]/rho[f])+phi[2]*rho[s2]/rho[f])*f(eta)*(diff(diff(f(eta), eta), eta))-sigma[hnf]*M*(diff(f(eta), eta))/(sigma[f]*(m^2+1)) = 0

(1)

eq2 := k[hnf]*(eta*(diff(theta(eta), `$`(eta, 2)))+diff(theta(eta), eta))/k[f]+(1/2)*Pr*((1-phi[2])*(1-phi[1]+phi[1]*`&rho;C`[p][s1]/`&rho;C`[p][f])+phi[2]*`&rho;C`[p][s2]/`&rho;C`[p][f])*f(eta)*(diff(theta(eta), eta)) = 0;

k[hnf]*(eta*(diff(diff(theta(eta), eta), eta))+diff(theta(eta), eta))/k[f]+(1/2)*Pr*((1-phi[2])*(1-phi[1]+phi[1]*`&rho;C`[p][s1]/`&rho;C`[p][f])+phi[2]*`&rho;C`[p][s2]/`&rho;C`[p][f])*f(eta)*(diff(theta(eta), eta)) = 0

(2)

eq3 := 2*(1-phi[1])^2.5*(1-phi[2])^2.5*(eta*(diff(chi(eta), `$`(eta, 2)))+diff(chi(eta), eta))+Sc*f(eta)*(diff(chi(eta), eta))-beta*Sc*(1+delta*theta(eta))^n*exp^(-E/(1+delta*theta(eta)))*chi(eta) = 0;

2*(1-phi[1])^2.5*(1-phi[2])^2.5*(eta*(diff(diff(chi(eta), eta), eta))+diff(chi(eta), eta))+Sc*f(eta)*(diff(chi(eta), eta))-beta*Sc*(1+delta*theta(eta))^n*exp^(-E/(1+delta*theta(eta)))*chi(eta) = 0

(3)

bcs := f(c) = (1/2)*lambda*c, (D(f))(c) = (1/2)*lambda, theta(c) = 1, chi(c) = 1, (D(f))(10) = (1-lambda)*(1/2), theta(10) = 0, chi(10) = 0;

f(c) = (1/2)*lambda*c, (D(f))(c) = (1/2)*lambda, theta(c) = 1, chi(c) = 1, (D(f))(10) = 1/2-(1/2)*lambda, theta(10) = 0, chi(10) = 0

(4)

params := {E = .5, M = .1, Pr = 6.2, Sc = .5, beta = .5, c = .1, delta = .5, lambda = -1, m = .5, n = .1, k[f] = .6130, k[hnf] = 1.039626683, phi[1] = .1, phi[2] = .1, rho[f] = 997.1, rho[s1] = 5180, rho[s2] = 1800, sigma[f] = 0.5e-1, sigma[hnf] = 0.8888888337e-1, `&rho;C`[p][f] = 4.1668809*10^6, `&rho;C`[p][s1] = 3470600, `&rho;C`[p][s2] = 1290600};

{E = .5, M = .1, Pr = 6.2, Sc = .5, beta = .5, c = .1, delta = .5, lambda = -1, m = .5, n = .1, k[f] = .6130, k[hnf] = 1.039626683, phi[1] = .1, phi[2] = .1, rho[f] = 997.1, rho[s1] = 5180, rho[s2] = 1800, sigma[f] = 0.5e-1, sigma[hnf] = 0.8888888337e-1, `&rho;C`[p][f] = 4166880.900, `&rho;C`[p][s1] = 3470600, `&rho;C`[p][s2] = 1290600}

(5)

ODEs := [eq1, eq2, eq3]

[2*(eta*(diff(diff(diff(f(eta), eta), eta), eta))+diff(diff(f(eta), eta), eta))/((1-phi[1])^2.5*(1-phi[2])^2.5)+((1-phi[2])*(1-phi[1]+phi[1]*rho[s1]/rho[f])+phi[2]*rho[s2]/rho[f])*f(eta)*(diff(diff(f(eta), eta), eta))-sigma[hnf]*M*(diff(f(eta), eta))/(sigma[f]*(m^2+1)) = 0, k[hnf]*(eta*(diff(diff(theta(eta), eta), eta))+diff(theta(eta), eta))/k[f]+(1/2)*Pr*((1-phi[2])*(1-phi[1]+phi[1]*`&rho;C`[p][s1]/`&rho;C`[p][f])+phi[2]*`&rho;C`[p][s2]/`&rho;C`[p][f])*f(eta)*(diff(theta(eta), eta)) = 0, 2*(1-phi[1])^2.5*(1-phi[2])^2.5*(eta*(diff(diff(chi(eta), eta), eta))+diff(chi(eta), eta))+Sc*f(eta)*(diff(chi(eta), eta))-beta*Sc*(1+delta*theta(eta))^n*exp^(-E/(1+delta*theta(eta)))*chi(eta) = 0]

(6)

``

sol := dsolve(eval([ODES, bcs], params), numeric, output = listprocedure)

Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations

 

``


 

Download 1.mw
 

 

 

 

I am doing the first interactive plot in Tutorial 9:  Dynamic Applications.    The first part is Exploration Assistant.   This is mostly going OK but I don't want to have it rescale the y-axis to the data extents.   So I uncheck the box and type in my min & max values as shown below.    But when I drag the slider for coefficient a or b, the plot reverts back to using data extents.   How do I override this so that the axis range stays fixed when I drag the sliders?

First 325 326 327 328 329 330 331 Last Page 327 of 2282