MaplePrimes Questions

I am studying the Julia sets. I have tried the following two codes to generate Julia Sets. The first one I found in Maple Help, and the second one from http://ftp.informatik.rwth-aachen.de/maple/mfrjulfn.htm. I am wondering if there exists another code to generate the Julia set. My question is just for educational purposes, because those two codes work fine.
 

with(Fractals:-EscapeTime); with(ImageTools); bl, ur := -2.0-1.5*I, 2.0+1.5*I; c := -1; J := Julia(700, bl, ur, c, cutoff = 4, iterationlimit = 6000, output = layer1); Embed(J)

restart; julfn_zsqrd := proc (x, y) local c, z, m; c := evalf(0); z := evalf(x+I*y); for m from 0 to 50 while abs(z) < 2 do z := -z^2+z end do; m end proc; plot3d(0, -1.0 .. 2.0, -2.0 .. 2.0, style = patchnogrid, orientation = [-90, 0], grid = [250, 250], scaling = constrained, color = julfn_zsqrd)

 

NULL


 

Download Julia_Sets.mw

With the new Maple-2025 the GUI-fonts are tiny and more or less not readable on a 5K Monitor. The old solution using this options here:

JVM_OPTIONS="-Dsun.java2d.pmoffscreen=false -Djogamp.gluegen.UseTempJarCache=false -Dswing.plaf.metal.userFont=\"Tahoma-36\" -Dswing.plaf.metal.controlFont=\"Tahoma-36\" "

does not change the GUI fonts, as it has worked up to Maple 2024. 

Is there a single-source fractional calculus toolbox, or collection of tools, available for Maple ? There appears to be the odd routine for fractional derivatives or DE's, but nothing of a systemic nature.

Hello,

Is there a special command in Maple (whatever the version) which returns all functions available?

ex: ?*sol* which at least will return solve,dsolve etc.

Thank you and kind regards to everyone.

Jean-Michel

As I was numerically investigating this recent question I incidentally discovered a strange behaviour of Maple 2015 (which maybe exists in more recent versions?)

The attached worksheet presents an erratic behaviour (plus a remanance isssue because saving it, and opening it again changes the displays).
Note that this strange behaviour seems to occur only when tickmarks use the atomic name `#mo("2")`.

display_issue.mw

Here is a pdf print of this same worksheet: as I hope you will see (because I don't know what you are about to see when opening the attached worksheet) its content differs from the worksheet's. 

display_issue.pdf

Here are 3 screen captures which show what MY worksheet looks like

PAGE 1


PAGE 2
There is a typo in the comment below: read "void" instead of "coid", sorry for the mistake.


PAGE 3


Is this a Maple 2015 issue which has been fixed in earlier versions?
Is there a way to fix these issues?

The attached file "test" asks for the largest power of two contained as a factor in a term. This is easily solved using "simplify." How can this be achieved using factorization?

test.mw

I'm updating to Maple 2025. Are there any feature differences between Linux and Windows versions?

Thanks.

Thanks for the help with the recursion problem, here's a very challenging problem for the weekend ;-). It should be solvable in Maple, at least for examples. I only know of one very theoretical, unfinished solution that I'm still working on:
Given a closed convex curve in the Euclidean plane. It is multiply continuously differentiable, and the curvature is also continuous.
Then there are at least three pairs of points on the curve with the following property:
The tangents at the points of each pair are parallel to each other, and the curvatures are equal.

A lot of time i finded but i have a dubt about this why this is happen each time number of equation for finding parameter a_12 is 4 but this time is 28 which i thoght some thing must be mistake also the author of paper use  u=2(ln(f))_xx which is wronge and not satisfy but i try to find R which is strange again is not number contain parameter but is satisfy also in equation 14 i don't know each i is 2 or 1 or it can be i remain itself?

thanks for any help ?

t1.mw

According to the attached file "test" I would like to determine the limit of the function f(n,x) for n-->00 as an exercise. I'm asking for advice on using "rsolve". I also want to calculate the limit of sqrt((n/3))*f(n,x) for n-->00 using f(n,x) from the file "test". I also need help with this. (This isn't a school assignment ;-).)

test.mw

How can I upload and attach a file here?

Either a worksheet or a text file?

"Approximation of ODE's with Cubic Splines.mw"

or

package "ODECSplines.mpl"

I encountered this bizarre inconsistency issue that Maple18 generates different outputs when executing the same command:

test_res2:= factor( simplify( expand( value( subs( Perturbation_Sol, EQ_PX2_order_7 ) ) ) ) )

'EQ_PX2_order_7' is a rational expression in sin(i0), cos(i0), sin(uL), and cos(uL) with rational coefficient terms. It also has inert differentiation terms Diff( * , uL ).

'Perturbation_Sol' is a set of 171 elements in the form of 'parameter_name = expression'.

My goal is to check if substituting 'Perturbation_Sol' into 'EQ_PX2_order_7' yields 0. Since 'EQ_PX2_order_7' has inert differentiation terms, I've applied 'value' after using 'subs'. Then I apply 'expand', 'simplify', and 'factor' to reduce the result to the simplest form.

However, Maple18 generates different outputs when I just execute this repeatedly. Please see the worksheet "test.mw" for details. Any insight will be greatly appreciated! Also, I wonder if the same issue would happen when the worksheet is executed with newer versions of Maple.

EQN_SOL_test1.mla

test.mw

 

 

I encountered the problem with .m files originally. But MaplePrimes doesn't allow uploading .m files, so I had to save the expressions into the file "EQN_SOL_test1.mla", which is included in this question. Below we load the expressions from the .mla file first, and then save them into a .m file in order to recreate the problem that I encountered.

restart;

>

 

read "EQN_SOL_test1.mla":

# Load 'EQ_PX2_order_7' and 'Perturbation_Sol'

 

save

EQ_PX2_order_7,
Perturbation_Sol,

"EQN_SOL_test1_m.m";

# Save the expressions into a .m file

 

Now we demonstrate the inconsistency problem with .m files. Notice that Maple generates 3 possible outputs:

test_res2 := 0

test_res2 := -(1/4)*rho0^2*a0^2*Be^2*cos(uL)*J2re*R_earth^2*(5*cos(i0)^2*cos(uL)^2-7*cos(i0)^2-5*cos(uL)^2+4)/sha

 

test_res2 := -(1/8)*rho0^2*a0^2*Be^2*cos(uL)*J2re*R_earth^2*(5*cos(i0)^2*cos(uL)^2-7*cos(i0)^2-5*cos(uL)^2+4)/sha

 

The last 2 outputs cannot be reduced to 0 since 5*cos(i0)^2*cos(uL)^2-7*cos(i0)^2-5*cos(uL)^2+4 is nonzero as shown below.

 

 

plot3d( 5*cos(i0)^2*cos(uL)^2-7*cos(i0)^2-5*cos(uL)^2+4 , uL=0..2*Pi, i0=0..2*Pi );

 
 

restart;

 

read "EQN_SOL_test1_m.m":

 

length( EQ_PX2_order_7 );

939346

(1)

length( Perturbation_Sol );

2082306

(2)

numelems( Perturbation_Sol );

171

(3)

Perturbation_Sol[1..5];

# Just to give an example of what the elements in 'Perturbation_Sol' look like

{PX1[1] = 0, PX1[2] = 0, PX1[3] = -(1/4)*rho0*a0*Be, PX1[4] = (1/2)*rho0*a0*Be*WEra*cos(i0)-(3/16)*R_earth^2*a0*rho0*(3*cos(i0)^2-1)*J2re*Be/sha+(1/4)*Be*a0*rho0*X10[3]/sha, PX1[5] = (1/4)*rho0*a0*X10[4]*Be/sha-(1/256)*R_earth^4*a0*rho0*(163*cos(i0)^4-110*cos(i0)^2+19)*J2re^2*Be/sha^2+(3/16)*R_earth^2*a0*rho0*(3*cos(i0)^2-1)*J2re*Be*X10[3]/sha^2+(3/8)*cos(i0)*R_earth^2*WEra*a0*rho0*(3*cos(i0)^2-1)*J2re*Be/sha-(1/48)*Be^3*a0^3*rho0^3*s1/sha^2-(1/8)*Be*a0*rho0*X10[3]^2/sha^2-(1/2)*cos(i0)*WEra*a0*rho0*Be*X10[3]/sha-(1/16)*rho0*a0*(3*cos(i0)^2+1)*Be*WEra^2-(1/32)*Be^2*J2re*R_earth^2*a0^2*rho0^2*sin(i0)^2*sin(2*uL)/sha^2}

(4)

 

 

for j from 1 to 50 do
    test_res2:= factor( simplify( expand( value( subs( Perturbation_Sol, EQ_PX2_order_7 ) ) ) ) );
end do;

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

0

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

0

 

0

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

0

 

0

 

0

 

0

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

0

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

0

 

0

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

0

 

0

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

0

(5)

 

 

It seems that with .mla files the problem occurs in a different way! With "EQN_SOL_test1.mla", the outputs for all 50 iterations stay the same as

test_res2 := -(1/4)*rho0^2*a0^2*Be^2*cos(uL)*J2re*R_earth^2*(5*cos(i0)^2*cos(uL)^2-7*cos(i0)^2-5*cos(uL)^2+4)/sha               (A)

 

but they may all change to the following different result after retarting many times:

test_res2 := -(1/8)*rho0^2*a0^2*Be^2*cos(uL)*J2re*R_earth^2*(5*cos(i0)^2*cos(uL)^2-7*cos(i0)^2-5*cos(uL)^2+4)/sha               (B)

 

In particular, after a large number of test runs (i.e., open the file "test.mw", execute the worksheet, close the file, and repeat), the result (B) has only occured twice. The second appearance is saved here for you to view. Once you re-execute this worksheet, most likely all outputs below will change back to (A), and (B) will only reappear after a large number of reruns.

 

restart;

 

read "EQN_SOL_test1.mla":

# Load 'EQ_PX2_order_7' and 'Perturbation_Sol'

 

 

for j from 1 to 50 do
    test_res2:= factor( simplify( expand( value( subs( Perturbation_Sol, EQ_PX2_order_7 ) ) ) ) );
end do;

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

(6)

 

Download test.mw

Only for my understanding:
Why is the concatenation operator not working in this assignment on the righthand side

for i to 5 do
  x_ || i := x_ ||(i-1); 
end do;
                           x_1 := x_0

                           x_2 := x_0

                           x_3 := x_0

                           x_4 := x_0

                           x_5 := x_0

Somehow i in (i-1) equals always 1
Why do I have to use

for i to 5 do      
  x_ || i := cat(x_,i-1);  
end do;  
                           x_1 := x_0

                           x_2 := x_1

                           x_3 := x_2

                           x_4 := x_3

                           x_5 := x_4

 

I’m trying to simplify the results I obtained from two scenarios. In the first scenario, I have results labeled g1,g2,g3​, and in the second scenario, I have g_1, g_2, g_3​. The issue is that the expressions are quite lengthy, and I want to shorten them by identifying and substituting common sub-expressions.

Is there a method or syntax that can help me automatically detect repeated terms and substitute them with a variable to improve readability?

For example:

Let’s say:

x=2f+3d+4(d+h+k)j+f

y=1(d+h+k)+hf+4d

Here, the expression d+h+k appears in both x and y, so I can define a new variable:

A=d+h+k

and substitute it into the equations to make them more concise and readable.

Attaching the sheet: Difference_two_model.mw

Historically, when the Maple program is open and I double-click on a Maple document in my file manager (Windows), the document appears in a new tab of the open program.

With version 2025.0, I performed a completely clean install, deleting files and inheriting no properties from 2024. Now, when I repeat this process, a new window/program is created with the document appearing there. The document does not appear in another tab of the original window/program. Changing the option of sharing the same Maple math engine does not affect this unexpected behavior. 

Do others observe this behavior? Is there an option in one of the "Maple.ini" files that I could change? Or is this a bug?

I should note that this behavior is identical on multiple Windows 11 machines. The 2nd one was not a clean install. 

First 10 11 12 13 14 15 16 Last Page 12 of 2416