MaplePrimes Questions

in some equation i don't have problem but in a lot of them this problem is come up for me and i don't know how fix this issue?

restart

with(PDEtools)

undeclare(prime, quiet); declare(u(x, y, t), quiet); declare(f(x, y, t), quiet)

``

(1)

thetai := t*w[i]+y*l[i]+x

eqw := w[i] = (-1+sqrt(-4*b*beta*l[i]-4*a*beta+1))/(2*beta)

Bij := proc (i, j) options operator, arrow; -24*alpha*beta/(sqrt(1+(-4*b*l[j]-4*a)*beta)*sqrt(1+(-4*b*l[i]-4*a)*beta)-1+((2*l[i]+2*l[j])*b+4*a)*beta) end proc

NULL

theta1 := normal(eval(eval(thetai, eqw), i = 1)); theta2 := normal(eval(eval(thetai, eqw), i = 2))

eqf := f(x, y, t) = theta1*theta2+Bij(1, 2)

eqfcomplex := eval(eval(eval(eqf, l[2] = conjugate(l[1])), l[1] = lambda[1]+I*lambda[2]))

eq17 := u(x, y, t) = 2*(diff(f(x, y, t), x))/f(x, y, t); equ := simplify(eval(eq17, eqfcomplex))

u(x, y, t) = 8*(-(1/2)*(-4*b*beta*conjugate(lambda[1]+I*lambda[2])-4*a*beta+1)^(1/2)*(1+((-(4*I)*lambda[2]-4*lambda[1])*b-4*a)*beta)^(1/2)-b*beta*conjugate(lambda[1]+I*lambda[2])+1/2-(b*(lambda[1]+I*lambda[2])+2*a)*beta)*((1/2)*t*(1+((-(4*I)*lambda[2]-4*lambda[1])*b-4*a)*beta)^(1/2)+(1/2)*t*(-4*b*beta*conjugate(lambda[1]+I*lambda[2])-4*a*beta+1)^(1/2)+conjugate(lambda[1]+I*lambda[2])*y*beta+((lambda[1]+I*lambda[2])*y+2*x)*beta-t)/((1+((-(4*I)*lambda[2]-4*lambda[1])*b-4*a)*beta)^(1/2)*(-(-4*b*beta*conjugate(lambda[1]+I*lambda[2])-4*a*beta+1)^(1/2)*((2*y*((lambda[1]+I*lambda[2])*y+x)*beta+t*(b*t-y))*conjugate(lambda[1]+I*lambda[2])+2*x*((lambda[1]+I*lambda[2])*y+x)*beta+((b*(lambda[1]+I*lambda[2])+2*a)*t-(lambda[1]+I*lambda[2])*y-2*x)*t)+4*(I*lambda[2]-conjugate(lambda[1]+I*lambda[2])+lambda[1])*((1/2)*conjugate(lambda[1]+I*lambda[2])*b*y*beta+(a*y-(1/2)*b*x)*beta+(1/4)*b*t-(1/4)*y)*t)-4*t*(-4*b*beta*conjugate(lambda[1]+I*lambda[2])-4*a*beta+1)^(1/2)*(conjugate(lambda[1]+I*lambda[2])*(beta*(-y*((1/2)*b*(lambda[1]+I*lambda[2])+a)+(1/2)*b*x)-(1/4)*b*t+(1/4)*y)+(((I*lambda[1]*lambda[2]+(1/2)*lambda[1]^2-(1/2)*lambda[2]^2)*b+a*(lambda[1]+I*lambda[2]))*y-(1/2)*(lambda[1]+I*lambda[2])*b*x)*beta+(1/4)*(b*t-y)*(lambda[1]+I*lambda[2]))+4*y*beta*b*conjugate(lambda[1]+I*lambda[2])^2*(-((lambda[1]+I*lambda[2])*y+x)*beta+(1/2)*t)+conjugate(lambda[1]+I*lambda[2])*(-4*beta^2*(y^2*(b*(lambda[1]^2-lambda[2]^2+(2*I)*lambda[1]*lambda[2])+2*a*(lambda[1]+I*lambda[2]))+2*x*(b*(lambda[1]+I*lambda[2])+a)*y+b*x^2)+2*beta*(-4*b*(b*(lambda[1]+I*lambda[2])+a)*t^2+2*t*(y*(b*(lambda[1]+I*lambda[2])+a)+b*x)+y*((lambda[1]+I*lambda[2])*y+x))+b*t^2-t*y)+4*(-2*((I*lambda[1]*lambda[2]+(1/2)*lambda[1]^2-(1/2)*lambda[2]^2)*b+a*(lambda[1]+I*lambda[2]))*x*y-(lambda[1]+I*lambda[2])*x^2*b-2*a*x^2+12*alpha)*beta^2+2*beta*(-4*a*(b*(lambda[1]+I*lambda[2])+a)*t^2+t*(y*(b*(lambda[1]^2-lambda[2]^2+(2*I)*lambda[1]*lambda[2])+2*a*(lambda[1]+I*lambda[2]))+2*(b*(lambda[1]+I*lambda[2])+2*a)*x)+x*((lambda[1]+I*lambda[2])*y+x))+((b*(lambda[1]+I*lambda[2])+2*a)*t-(lambda[1]+I*lambda[2])*y-2*x)*t)

(2)

ans := solve({diff(rhs(equ), x), diff(rhs(equ), y)}, {x, y}, explicit)

 

``

Download critical-point.mw

I had this problem in Maple 2024.2 but not as bad as Maple 2025. In Maple 2024.2 the UI will shuffle every few hrs. Then I have to close Maple and restart it.

With Maple 2025, it now shuffle when I try to do anything. Basically I am not able to use Maple 2025 at all. 

I made sure my NVidia drivers are up to date.

I have two monitors. Both running at 2560x1080 (native). 60 HZ. Both are LG Electronics 32" wide.

 

 

Only Maple have this issue on my PC.

Here is a movie. Once I open any new menu or click on anything, the desktop goes bizzerick and Maple screen starts glitching randomly and move around with the mouse. I can;t even see the close button any more. In this case, I simply did this:

Open new Maple 2025.

Then just did FILE->Open->Browse and now it started to shuffle.

New installation of Maple 2025 today.

I never seen anything like this in all the  years I have been using windows apps except with Maple.

Here is another movie, where I start Maple 2025, and simply do insert executable section, then it starts to shuff. I have not typed anything. 

 

I will try to also reboot my PC to see if it helps, but I've done this before, but not after updating the drivers (even though it is not needed). (waiting for a script to finish, which can take few more hrs).

I will also try to remove one monitor to see if has anything to do with it.

The above Makes Maple 2025 completely not useable.

I called Maple customer support also and left my phone number to see if they can suggest something.

New PC (2 years), latest windows 10, 128 GB RAM.

The new user interface seems to made this shuffling problem worst than with Maple 2024.2

Any idea what else to try? 

Update

Rebooted PC. No effect.

Resinstaled NVidia drivers, and did clear installation, resetting to factory settings. No effect.

Removed one monitor. No effect.

Have no idea why Maple UI does this. 

Windows 10 pro, 22H2

Update 2

I've downloaded Maple 2025 trial for 15 days to try on Linux.

Installed OK and UI works great with no shuffling. All on same PC. Linux running inside Virtual box.

So the shuffling only happens on windows. 

I think I will go tommorrow buy a new PC and install Linux on it and just use Maple on Linux from now on. I've uninstalled Maple 2025 from windows since it is completely not useable for me.

Where is the tools->options  menu in Maple 2025? I can't find it. 

This is how it looks in Maple 2024:

 

I open new worksheet, but it is still uses math for input. I wanted to change that like I did in Maple 2024 to use Maple notation.

But do not see any options under tools in Maple 2025:

Windows 10.

 

Hey guys, 

From a former calculation I got a set of points as a implicit RootOf function for an intervall. Now I want to check, if these points are in a certain area. So i thougt I take the RootOf function, the intervall and the inequalities (which describe the target area) and use the solve command. But then I get the warning, solutions may have been lost and no solution. When you draw the implicit function you can see thats in the right area (above y=1 and below y=x). So there should be a clear anwer, giving me back the whole RootOf function in the intervall.

Download QUESTI~2.MW

Since there was an error uploading the picture here the code 

restart;
Sol := {x = RootOf(_Z^2 - y, index = real[2]) + 1, 1 < y, y < 2};
area := {1 < y, y < x};
Sol_area := solve(Sol union area);
print(Sol_area);

So why do I get this warning, the calculation seems quite easy? And is there a workaround? Or a diffrent kind of solve function? SemiAlgebraic is as far as i know only for polynomials. So I got an error as well. Since the websites are down I could start an own reasearch before. So thank you in advance. 

Regards

Felix

I found this version after Maple 2025 installation in Windows programs menu. It looks like a fully functional Maple version using the old GUI.

Why is it called "for screen readers"? I do not understand the link to persons with disabilites (I assume that the icon stands for it)?
In which respect is the new GUI less suited for visually impaired(?) people? I think the readabilty of the new GUI is at least as good as the old GUI.

In case Maple 2025 for Screen Readers is a fully functional Maple version, I give two thumbs up to Maplesoft. Smart move not to immediately impose a "disruptive" new GUI with allot of potential for new users to everyone.

Hey guys, 

I have a problem with the solve command. And since the websites are down, I cant help myself. I have a function x(y) and an intervall for y. This function or the set of points described by the function should now be transformed to another area of the plane. So now I can get a(x,y)=1/y and b(x,y)=x/(x+y-1) with just plugging in, then everything depeends from the y Invtervall. But I want to get the form b(a) and an intervall for a. So that I can see the function directly. So i thought I just put everything into the solve command and than ask for a solution for {a,b} and expected to get what I want. (Uploading the script here gives an error)
 

restart;
Sol := solve({a = 1/y, b = x/(x + y - 1), x = (y - 1)^2, 1 < y, y < 5/4});
Sol_ab := solve({a = 1/y, b = x/(x + y - 1), x = (y - 1)^2, 1 < y, y < 5/4}, {a, b});

#expected (or wanted) solution
#with y = 1/a and the inequalities we get 4/5 < a and a < 1 with y
#with y = we get x(a)/a and y(a) and reach b = 1/a - 1
#all together: Sol={b=1/a - 1, 4/4<a, a<1};

THe problem is, that I get an empty set which is obviously wrong. So I somehow make an error when making the variables I want concrete with adding {a,b}. What do I do wrong? Or is there a better command for what I want to achieve? In this case I can solve the problem via hand, but I have more complex tranformations and mor ecomplex functions x(y), so thats why I ask for general help with my problem. 

Thank ypu in advance

Felix

Download QUESTI~1.MW

On Ubuntu 24.04 or LinuxMint 22.1 (based on Ubuntu 24.04) I have the problem with(Matlab) funtions functionality

Matlab[openlink]();
Error, (in Matlab:-openlink) There was a problem initializing the Matlab engine. Refer to ?Matlab,setup for help configuring your system to work with the Matlab-link.  The error was: Maple/Matlab Link: Can't start Matlab engine; environment variable $MATLAB_BASEDIR not set

+ other error mesages from CLI:

starting mmatlink
In connectToMatlab
/bin/csh: /opt/MATLAB/R2024b/bin/glnxa64/libbsd.so.0: version `LIBBSD_0.7' not found (required by /bin/csh)

MATLAB R2024b using obsolete libbsd ver. 0.4.2 !!! So this is probably the problem...

$MATLAB_BASEDIR is properly defined at maple script:

# In order to link to MATLAB from within Maple, correct the following path
# and uncomment the next four lines, or define the environment variable,
# $MATLAB_BASEDIR outside this script.
if [ -z "$MATLAB_BASEDIR" ] ; then
MATLAB_BASEDIR=/opt/MATLAB/R2024b
export MATLAB_BASEDIR
fi

# C-shell is required for link to MATLAB (sudo apt install csh)

Any help???

Good day, all.

Please, I am working on the following code but found out that the command solve is not displaying any result. Your assistance and suggestions would be appreciated. Thank you, and best regards.

 

restart;
NULL;
t := sum(a[j]*q^j, j = 0 .. 9);
H := diff(t, q);
F := diff(t, q $ 2);
p1 := simplify(eval(t, q = x)) = y[n];
p2 := simplify(eval(F, q = x)) = f[n];
p3 := simplify(eval(F, q = x + h/4)) = f[n + 1/4];
p4 := simplify(eval(F, q = x + h/2)) = f[n + 1/2];
p5 := simplify(eval(F, q = x + (3*h)/4)) = f[n + 3/4];
p6 := simplify(eval(F, q = x + h)) = f[n + 1];
p7 := simplify(eval(F, q = x + (5*h)/4)) = f[n + 5/4];
p8 := simplify(eval(F, q = x + (3*h)/2)) = f[n + 3/2];
p9 := simplify(eval(F, q = x + (7*h)/4)) = f[n + 7/4];
p10 := simplify(eval(F, q = x + 2*h)) = f[n + 2];
r := seq(a[i], i = 0 .. 9);
s := p || (1 .. 10);

solve({s}, {r});

in a lot of paper i see that they just use the Auxiliary function without mention any detail but now i have to find out how i can reach this function, always i used u=Rdiff(ln(f),x#1,2) or u=Rdiff(ln(f),y,x)  (eq17) in mw. and it is answer for me untill now without knowing finding, but i have to figure out how they reach this in more than 1000 paper i didn't see any explanation about that they just used just in one of the paper mentioned something  like a series which i think they used this series but again is so complicated for undrestanding , i will put some problem picture and now i want to know how find them  eq17 for any equation based on the series in last picture mentioned

 

second example

third example which is so  different from other and i don't know how author reach this point 

i have to find this auxiliary function by using something like series  as mentioned in other question? how i can use this series for finding my auxiliary function u= u_0+R*diff(ln(f),x)  


 

#picture one

NULL

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(2)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(3)

pde := diff(diff(u(x, y, z, t), t)+6*u(x, y, z, t)*(diff(u(x, y, z, t), x))+diff(u(x, y, z, t), `$`(x, 3)), x)+diff(alpha*(diff(u(x, y, z, t), x))+beta*(diff(u(x, y, z, t), y))+delta*(diff(u(x, y, z, t), z)), x)+mu*(diff(u(x, y, z, t), `$`(t, 2)))

diff(diff(u(x, y, z, t), t), x)+6*(diff(u(x, y, z, t), x))^2+6*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))+diff(diff(diff(diff(u(x, y, z, t), x), x), x), x)+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))+mu*(diff(diff(u(x, y, z, t), t), t))

(4)

pde_linear, pde_nonlinear := selectremove(proc (term) options operator, arrow; not has((eval(term, u(x, y, z, t) = a*u(x, y, z, t)))/a, a) end proc, expand(pde))

diff(diff(u(x, y, z, t), t), x)+diff(diff(diff(diff(u(x, y, z, t), x), x), x), x)+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))+mu*(diff(diff(u(x, y, z, t), t), t)), 6*(diff(u(x, y, z, t), x))^2+6*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))

(5)

thetai := k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i]; eval(pde_linear, u(x, y, z, t) = exp(thetai)); eq15 := isolate(%, w[i])

k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i]

 

k[i]^2*w[i]*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+k[i]^4*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+alpha*k[i]^2*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+beta*k[i]^2*l[i]*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+delta*k[i]^2*r[i]*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+mu*k[i]^2*w[i]^2*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])

 

w[i] = (1/2)*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu

(6)

eqf := f(x, y, z, t) = 1+eval(exp(thetai), eq15)

f(x, y, z, t) = 1+exp(k[i]*((1/2)*t*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu+y*l[i]+z*r[i]+x)+eta[i])

(7)

eq17 := u(x, y, z, t) = R*(diff(ln(f(x, y, z, t)), `$`(x, 2)))

u(x, y, z, t) = R*((diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2)

(8)

eval(eq17, eqf); simplify(eval(pde, %)); sort([solve(%, R)]); eq17 := eval(eq17, R = simplify(%[2]))

u(x, y, z, t) = R*(k[i]^2*exp(k[i]*((1/2)*t*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu+y*l[i]+z*r[i]+x)+eta[i])/(1+exp(k[i]*((1/2)*t*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu+y*l[i]+z*r[i]+x)+eta[i]))-k[i]^2*(exp(k[i]*((1/2)*t*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu+y*l[i]+z*r[i]+x)+eta[i]))^2/(1+exp(k[i]*((1/2)*t*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu+y*l[i]+z*r[i]+x)+eta[i]))^2)

 

12*R*k[i]^6*exp(((1+(-4*beta*l[i]-4*delta*r[i]-4*k[i]^2-4*alpha)*mu)^(1/2)*t*k[i]+((2*y*l[i]+2*z*r[i]+2*x)*mu-t)*k[i]+2*eta[i]*mu)/mu)*(exp(((1+(-4*beta*l[i]-4*delta*r[i]-4*k[i]^2-4*alpha)*mu)^(1/2)*t*k[i]+((2*y*l[i]+2*z*r[i]+2*x)*mu-t)*k[i]+2*eta[i]*mu)/mu)-3*exp((1/2)*((1+(-4*beta*l[i]-4*delta*r[i]-4*k[i]^2-4*alpha)*mu)^(1/2)*t*k[i]+((2*y*l[i]+2*z*r[i]+2*x)*mu-t)*k[i]+2*eta[i]*mu)/mu)+1)*(R-2)/(1+exp((1/2)*((1+(-4*beta*l[i]-4*delta*r[i]-4*k[i]^2-4*alpha)*mu)^(1/2)*t*k[i]+((2*y*l[i]+2*z*r[i]+2*x)*mu-t)*k[i]+2*eta[i]*mu)/mu))^6

 

[0, 2]

 

u(x, y, z, t) = 2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2

(9)

eq19 := eval(eq17, eqf)

u(x, y, z, t) = 2*k[i]^2*exp(k[i]*((1/2)*t*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu+y*l[i]+z*r[i]+x)+eta[i])/(1+exp(k[i]*((1/2)*t*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu+y*l[i]+z*r[i]+x)+eta[i]))-2*k[i]^2*(exp(k[i]*((1/2)*t*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu+y*l[i]+z*r[i]+x)+eta[i]))^2/(1+exp(k[i]*((1/2)*t*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu+y*l[i]+z*r[i]+x)+eta[i]))^2

(10)

simplify(eq19)

u(x, y, z, t) = 2*k[i]^2*exp((1/2)*((1+(-4*beta*l[i]-4*delta*r[i]-4*k[i]^2-4*alpha)*mu)^(1/2)*t*k[i]+((2*y*l[i]+2*z*r[i]+2*x)*mu-t)*k[i]+2*eta[i]*mu)/mu)/(1+exp((1/2)*((1+(-4*beta*l[i]-4*delta*r[i]-4*k[i]^2-4*alpha)*mu)^(1/2)*t*k[i]+((2*y*l[i]+2*z*r[i]+2*x)*mu-t)*k[i]+2*eta[i]*mu)/mu))^2

(11)

pdetest(eq19, pde)

0

(12)

#second example

NULL

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

``

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(13)

declare(u(x, y, t))

u(x, y, t)*`will now be displayed as`*u

(14)

declare(f(x, y, t))

f(x, y, t)*`will now be displayed as`*f

(15)

pde := diff(u(x, y, t), x, t)+alpha*(diff(u(x, y, t), `$`(x, 4))+6*(diff(u(x, y, t), x))*(diff(u(x, y, t), `$`(x, 2))))+beta*(diff(u(x, y, t), `$`(y, 2)))+a*(diff(u(x, y, t), `$`(x, 2)))+b*(diff(u(x, y, t), x, y))

diff(diff(u(x, y, t), t), x)+alpha*(diff(diff(diff(diff(u(x, y, t), x), x), x), x)+6*(diff(u(x, y, t), x))*(diff(diff(u(x, y, t), x), x)))+beta*(diff(diff(u(x, y, t), y), y))+a*(diff(diff(u(x, y, t), x), x))+b*(diff(diff(u(x, y, t), x), y))

(16)

oppde := [op(expand(pde))]; u_occurrences := map(proc (i) options operator, arrow; numelems(select(has, [op([op(i)])], u)) end proc, oppde); linear_op_indices := ListTools:-SearchAll(1, u_occurrences); pde_linear := add(oppde[[linear_op_indices]]); pde_nonlinear := expand(simplify(expand(pde)-pde_linear))

diff(diff(u(x, y, t), t), x)+alpha*(diff(diff(diff(diff(u(x, y, t), x), x), x), x))+beta*(diff(diff(u(x, y, t), y), y))+a*(diff(diff(u(x, y, t), x), x))+b*(diff(diff(u(x, y, t), x), y))

 

6*alpha*(diff(u(x, y, t), x))*(diff(diff(u(x, y, t), x), x))

(17)

thetai := k[i]*(t*w[i]+y*l[i]+x)+eta[i]; eval(pde_linear, u(x, y, t) = 1+exp(thetai)); eq15 := isolate(%, w[i])

k[i]*(t*w[i]+y*l[i]+x)+eta[i]

 

k[i]^2*w[i]*exp(k[i]*(t*w[i]+y*l[i]+x)+eta[i])+alpha*k[i]^4*exp(k[i]*(t*w[i]+y*l[i]+x)+eta[i])+beta*k[i]^2*l[i]^2*exp(k[i]*(t*w[i]+y*l[i]+x)+eta[i])+a*k[i]^2*exp(k[i]*(t*w[i]+y*l[i]+x)+eta[i])+b*k[i]^2*l[i]*exp(k[i]*(t*w[i]+y*l[i]+x)+eta[i])

 

w[i] = -alpha*k[i]^2-beta*l[i]^2-b*l[i]-a

(18)

eqf := f(x, y, t) = 1+eval(exp(thetai), eq15)

f(x, y, t) = 1+exp(k[i]*((-alpha*k[i]^2-beta*l[i]^2-b*l[i]-a)*t+l[i]*y+x)+eta[i])

(19)

eq17 := u(x, y, t) = R*(diff(ln(f(x, y, t)), x))

u(x, y, t) = R*(diff(f(x, y, t), x))/f(x, y, t)

(20)

eval(eq17, eqf); simplify(eval(pde, %)); sort([solve(%, R)]); eq17 := eval(eq17, R = simplify(%[2]))

[0, 2]

 

u(x, y, t) = 2*(diff(f(x, y, t), x))/f(x, y, t)

(21)

eq19 := eval(eq17, eqf)

u(x, y, t) = 2*k[i]*exp(k[i]*((-alpha*k[i]^2-beta*l[i]^2-b*l[i]-a)*t+l[i]*y+x)+eta[i])/(1+exp(k[i]*((-alpha*k[i]^2-beta*l[i]^2-b*l[i]-a)*t+l[i]*y+x)+eta[i]))

(22)

M := eval(rhs(eq19), i = 1)

2*k[1]*exp(k[1]*(t*(-alpha*k[1]^2-beta*l[1]^2-b*l[1]-a)+y*l[1]+x)+eta[1])/(1+exp(k[1]*(t*(-alpha*k[1]^2-beta*l[1]^2-b*l[1]-a)+y*l[1]+x)+eta[1]))

(23)

simplify(eq19)

u(x, y, t) = 2*k[i]*exp(-alpha*t*k[i]^3+((-beta*l[i]^2-b*l[i]-a)*t+y*l[i]+x)*k[i]+eta[i])/(1+exp(-alpha*t*k[i]^3+((-beta*l[i]^2-b*l[i]-a)*t+y*l[i]+x)*k[i]+eta[i]))

(24)

pdetest(eq19, pde)

0

(25)

#third example which is so different and really i don't know how the author reach this point? which is diff(arctan(f),x)?

NULL

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(26)

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(27)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(28)

pde := diff(u(x, y, z, t), t)+6*u(x, y, z, t)^2*(diff(u(x, y, z, t), x))+diff(u(x, y, z, t), `$`(x, 3))+alpha*(diff(u(x, y, z, t), x))+beta*(diff(u(x, y, z, t), y))+delta*(diff(u(x, y, z, t), z))+lambda*(diff(u(x, y, z, t), x, t))+mu*(diff(u(x, y, z, t), `$`(t, 2)))

diff(u(x, y, z, t), t)+6*u(x, y, z, t)^2*(diff(u(x, y, z, t), x))+diff(diff(diff(u(x, y, z, t), x), x), x)+alpha*(diff(u(x, y, z, t), x))+beta*(diff(u(x, y, z, t), y))+delta*(diff(u(x, y, z, t), z))+lambda*(diff(diff(u(x, y, z, t), t), x))+mu*(diff(diff(u(x, y, z, t), t), t))

(29)

pde_linear, pde_nonlinear := selectremove(proc (term) options operator, arrow; not has((eval(term, u(x, y, z, t) = a*u(x, y, z, t)))/a, a) end proc, expand(pde))

diff(u(x, y, z, t), t)+diff(diff(diff(u(x, y, z, t), x), x), x)+alpha*(diff(u(x, y, z, t), x))+beta*(diff(u(x, y, z, t), y))+delta*(diff(u(x, y, z, t), z))+lambda*(diff(diff(u(x, y, z, t), t), x))+mu*(diff(diff(u(x, y, z, t), t), t)), 6*u(x, y, z, t)^2*(diff(u(x, y, z, t), x))

(30)

thetai := k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i]; eval(pde_linear, u(x, y, z, t) = exp(thetai)); eq15 := isolate(%, w[i])

k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i]

 

k[i]*w[i]*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+k[i]^3*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+alpha*k[i]*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+beta*k[i]*l[i]*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+delta*k[i]*r[i]*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+lambda*k[i]^2*w[i]*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+mu*k[i]^2*w[i]^2*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])

 

w[i] = (1/2)*(-lambda*k[i]-1+(-4*beta*mu*k[i]*l[i]-4*delta*mu*k[i]*r[i]+lambda^2*k[i]^2-4*mu*k[i]^3-4*alpha*mu*k[i]+2*lambda*k[i]+1)^(1/2))/(mu*k[i])

(31)

eqf := f(x, y, z, t) = 1+eval(exp(thetai), eq15)

f(x, y, z, t) = 1+exp(k[i]*((1/2)*(-lambda*k[i]-1+(-4*beta*mu*k[i]*l[i]-4*delta*mu*k[i]*r[i]+lambda^2*k[i]^2-4*mu*k[i]^3-4*alpha*mu*k[i]+2*lambda*k[i]+1)^(1/2))*t/(mu*k[i])+l[i]*y+r[i]*z+x)+eta[i])

(32)

eq17 := u(x, y, z, t) = R*(diff(ln(f(x, y, z, t)), x))

u(x, y, z, t) = R*((diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)-(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2)

(33)

eval(eq17, eqf); simplify(eval(pde, %)); sort([solve(%, R)]); eq17 := eval(eq17, R = simplify(%[2]))


 

Download F-series.mw

Thanks for any help!

Hi,

Ideas to remove the rank column (i.e., the first column displaying indices 1, 2, 3, ...) from my DataFrame?

Thanks

Q_DataFrame.mw

I'm no mechanical engineer, but are there any good failure analysis for stresses on different shapes of material in either maple or maplesim?  

I recall something, maybe, in maplesim or maple, possibly an application where I think I saw a graph with force increasing and then levelling off indicating the material broke?  I'm not exactly sure.  Maybe there are some posts somewhere but can't seem to find any. 

Hi

does anyone know when Maple Online Help will be up again?

Regards

Henning

Does Maple 2025 have a dark theme or GUI color customization?

Does this happen in Maple 2025?

Why when adding Physics:-Setup(assumingusesAssume = true): now Maple gives internal exception which can not even be cought?

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1849 and is the same as the version installed in this computer, created 2025, March 12, 12:37 hours Pacific Time.`

restart;

ode:=diff(y(x),x) = (ln(y(x))^2+2*_C1)^(1/2)*y(x);
sol:=y(x) = exp((-2*_C1)^(1/2))

diff(y(x), x) = (ln(y(x))^2+2*_C1)^(1/2)*y(x)

y(x) = exp((-2*_C1)^(1/2))

odetest(sol,ode) assuming positive;

-(ln(exp(I*2^(1/2)*_C1^(1/2)))^2+2*_C1)^(1/2)*exp(I*2^(1/2)*_C1^(1/2))

restart;

ode:=diff(y(x),x) = (ln(y(x))^2+2*_C1)^(1/2)*y(x);
sol:=y(x) = exp((-2*_C1)^(1/2)) ;

diff(y(x), x) = (ln(y(x))^2+2*_C1)^(1/2)*y(x)

y(x) = exp((-2*_C1)^(1/2))

Physics:-Setup(assumingusesAssume = true):

odetest(sol,ode) assuming positive;

Error, (in type/evalc/cx) too many levels of recursion

restart;

ode:=diff(y(x),x) = (ln(y(x))^2+2*_C1)^(1/2)*y(x);
sol:=y(x) = exp((-2*_C1)^(1/2)) ;

diff(y(x), x) = (ln(y(x))^2+2*_C1)^(1/2)*y(x)

y(x) = exp((-2*_C1)^(1/2))

Physics:-Setup(assumingusesAssume = false):

odetest(sol,ode) assuming positive;

-(ln(exp(I*2^(1/2)*_C1^(1/2)))^2+2*_C1)^(1/2)*exp(I*2^(1/2)*_C1^(1/2))

 

 

Download ode_test_with_physics_march_25_2025.mw

Dear Maple users

I have an Interactive Planck Curve working great in Maple 2023, but not in Maple 2024 and 2025. Can you explain why? When I drag in the Temperature slider it fails with the window: (in plottools:-getdata) range out of bounds. 

Is it a bug or has some command changed?

File attached.

Kind regards,

Erik

Planck_Curve.mw

First 18 19 20 21 22 23 24 Last Page 20 of 2421