MaplePrimes Questions

pellsolve := proc (D::posint) local P, Q, a, A, B, i; if type(sqrt(D), integer) then error "D must be a nonsquare integer" end if; P := 0; Q := 1; a := floor(sqrt(D)); A := 1, a; B := 0, 1; for i do P := a*Q-P; Q := (D-P^2)/Q; a := floor((P+sqrt(D))/Q); A := A[2], a*A[2]+A[1]; B := B[2], a*B[2]+B[1]; if Q = 1 and `mod`(i, 2) = 0 then break end if end do; return A[1], B[1] end proc;
pellsolve(107);
                            962, 93
isolve(x^2-107*y = 13);
       /                             2             \   
      { x = 21 - 107 _Z1, y = 107 _Z1  - 42 _Z1 + 4 }, 
       \                                           /   

         /                             2               \ 
        { x = 86 - 107 _Z1, y = 107 _Z1  - 172 _Z1 + 69 }
         \                                             / 
genpellsolve := proc (D::posint, N::integer) local t, u, L1, L2, sols, x, y; if type(sqrt(D), integer) then error "D must be a nonsquare integer" end if; t, u := pellsolve(D); if 0 < N then L1 := 0; L2 := floor(sqrt((1/2)*N*(t-1)/D)) elif N < 0 then L1 := ceil(sqrt(-N/D)); L2 := floor(sqrt(-(1/2)*N*(t+1)/D)) else return {[0, 0]} end if; sols := {}; for y from L1 to L2 do x := sqrt(N+D*y^2); if type(x, integer) then sols := sols union {[x, y]}; if `mod`(x^2+D*y^2, N) <> 0 or `mod`(2*x*y, N) <> 0 then sols := sols union {[-x, y]} end if end if end do; DEBUG(); return sols end proc;

Debug inefficace

I have converted a single large worksheet into a workbook comprising many worksheets.  One of the worksheets contains start-up code.  Is that start-up code (which includes numerous subroutines/functions) automatically available/accessible/executable by all the other worksheets in the workbook?  

Melvin

 

Hello,

Is there any formula in maple to find simplex multipliers vector?

Thank you

I have this animation that displays a particle's position after reflection from a shock (the blue plane). I want to add a line that shows the particle coming in and reflecting and have them animate sequentially, but I cannot figure out how. The line should travel along the b axis, but offset in the xi axis to end where the helix begins. Here is the code for the helix animation:

 

restart; with(VectorCalculus); with(Student[LinearAlgebra]); with(plots);
v[i] := 145000; thetabn := (1/8)*Pi; thetavn := (1/6)*Pi; k := 10; omegac := .5;
v[b] := cos(2*thetabn)/cos(thetabn); v[g] := sin(2*thetabn)/cos(thetabn);
n := `<,>`(k*cos(thetabn), k*sin(thetabn), 0);
vr:=
[v[b]*t, v[g]*sin(omegac*t)/omegac, v[g]*cos(omegac*t)/omegac];

lambda := v[i]*cos(thetavn)/cos(thetabn);
shockplot := PlanePlot(n, caption = "", planeoptions = [colour = blue, transparency = .5], normaloptions = [shape = cylindrical_arrow, colour = red]);

t1 := textplot3d([k*cos(thetabn), k*sin(thetabn), 0, 'n'], align = above);

display(plots[animate](plot3d, [[v[b]*t, v[g]*sin(omegac*t)/omegac, v[g]*cos(omegac*t)/omegac], t = 0 .. x], x = 0 .. 6*Pi, axes = normal, colour = red, labels = ["b", zeta, xi], thickness = 2, paraminfo = false), shockplot, t1, scaling = constrained, tickmarks = [0, 0, 0]);

 

The Question: 

'Produce a list of the primes p between 2000 and 3000 for which both 2 and 3 generate Fpx ' 

I have my code for producing the list of primes between 2000 and 3000:

p:=nextprime(2000):
primes:=[]:
while p<=3000 do
  primes:=[primes[],p];
  p:=nextprime(p);
end do:
 

I also have  code for finding the order of a number in Fpx


findOrderOf:=proc(g,p)
 local gpwr, i;
  gpwr:=1:
for i from 1 to p-1 do
  gpwr:=gpwr*g mod p; 
if (gpwr = 1) then:
return i;
end if:
end do:
end proc:
 

 

but I don't know how to relate them or how to create the overall code - any advice would be very helpful!!
 

how to solve ((√1 + y′ ² )/dy')

Hello pdsolve experts:  

Using Maple 2018.2.1 and Physics 292 on windows 10.

pde := diff(w(x,y),x)+ (arccot(x)^n *y^2 + y-  arccot(x)^n )*diff(w(x,y),y) = 0;
pdsolve(pde,w(x,y));

When I try

PDEtools:-charstrip(pde,w(x,y))

It does not generate error.

Should pdsolve have generated this error message instead of returning no solution?

 


I found that when lambda2 take a small value this integration cannot be evaluated by maple is there any command to solve this problem 

``

lambda1 := 0.733e-1; lambda2 := 5.3344; alpha := 4.8492

X[6] := evalf(int((Z^(lambda2/lambda1))^2*ln(Z)^2/((Z-1+alpha)^2*(Z^(lambda2/lambda1)-1+alpha)^3), Z = 1 .. infinity, numeric));

``

``


 

Download ask.mw

Good day everyone,

I have a problem building the code attached below. The series is not substituting F[0](eta) and T[0](eta). 

Please, anyone with useful information should contact.

Thanks

HAM_build.mw

i have a problem to solve this system ?

The program was written in 2004 with maple 6. Now i'am working by maple 18. And i did'nt launch the program. painleve_test.zip

Thank you for your interest in advance.

Hi everybody:
I have 12 equations with 12 unknowns(c(1),c(2),...,c(12) and omega), I want to obtain c(1),c(2),...,c(12) and omega, how can I do it? The Maple file(solve.mw) is attached.
with regards...

solve.mw

Hello my friends

I want to solve first order non-linear differential equation by maple 2018 but it does not give me the explicit form for a(t) as the function of time t.

this is my equation where z,k,c, and w are non zero constants 

3*a(t)-a(t)^2-3*z*(diff(a(t), t))^2+k*c*a(t)+w/a(t) = 0

please guide me.

with the best regard

Hi

I would like to designate AU as currency for my application, rather than the USD.

I can do it to a degree, but when I use combine I have problems. Compare output 8 and 9 to 17 and 18. help?

 

CURRENCY.mw

I'm presently interested in PDE and I have just discovered the impressive work Nasser Abbasi,has done, and keeps doing, concerning the solution of PDE benchmarks with Maple and Mathematica.
https://www.12000.org/my_notes/pde_in_CAS/pdse3.htm

It seems that the result Maple returns for the test case below is not the general solution.

  • 4.19 first order PDE of three unknowns
    problem number 19
    (from example 3.5.4, p 212, nonlinear ode’s by Lokenath Debnath, 3rd edition)


It is rather simple to see that any spherical function u(x, y, z) =f(x^2+y^2+z^2) is a solution of the PDE.
Then any function of the form u(x, y, z) = f(x^2+y^2+z^2) * exp(x+y+z) *C1 (C1 being any constant) is also a solution.
Maple returns only the solution u(x, y, z) = exp(C2*(x^2+y^2+z^2)) * exp(x+y+z) * C1


 

restart:

u := (x, y, z) -> f(x^2+y^2+z^2)

proc (x, y, z) options operator, arrow; f(x^2+y^2+z^2) end proc

(1)

expr := (y-z)*diff(u(x, y, z), x)+(z-x)*diff(u(x, y, z), y)+(x-y)*diff(u(x, y, z), z)

2*(y-z)*(D(f))(x^2+y^2+z^2)*x+2*(z-x)*(D(f))(x^2+y^2+z^2)*y+2*(x-y)*(D(f))(x^2+y^2+z^2)*z

(2)

simplify(%);

0

(3)

u := (x, y, z) -> C*f(x^2+y^2+z^2)*exp(x+y+z)

proc (x, y, z) options operator, arrow; C*f(x^2+y^2+z^2)*exp(x+y+z) end proc

(4)

expr := (y-z)*diff(u(x, y, z), x)+(z-x)*diff(u(x, y, z), y)+(x-y)*diff(u(x, y, z), z)

(y-z)*(2*C*(D(f))(x^2+y^2+z^2)*x*exp(x+y+z)+C*f(x^2+y^2+z^2)*exp(x+y+z))+(z-x)*(2*C*(D(f))(x^2+y^2+z^2)*y*exp(x+y+z)+C*f(x^2+y^2+z^2)*exp(x+y+z))+(x-y)*(2*C*(D(f))(x^2+y^2+z^2)*z*exp(x+y+z)+C*f(x^2+y^2+z^2)*exp(x+y+z))

(5)

simplify(%);

0

(6)

pdsolve((y-z)*diff(U(x, y, z), x)+(z-x)*diff(U(x, y, z), y)+(x-y)*diff(U(x, y, z), z)=0, U(x,y,z),'build')

U(x, y, z) = exp((1/2)*x^2*_C2)*exp(_C1*x)*exp((1/2)*y^2*_C2)*exp(_C1*y)*_C3*_C5*_C4*exp((1/2)*z^2*_C2)*exp(_C1*z)

(7)

combine(rhs(%), exp)

exp((1/2)*x^2*_C2+_C1*x+(1/2)*y^2*_C2+_C1*y+(1/2)*z^2*_C2+_C1*z)*_C3*_C5*_C4

(8)

 


 

Download Problem_19.mw

First 576 577 578 579 580 581 582 Last Page 578 of 2279