MaplePrimes Questions

I created a user library and added a component that I had created from a shared subsystem and this worked fine.

I edited the component in the library to add some additional functionality and saved it.  I then had to reload the library in Maplesim but now I get this error everytime I try to run the simulation:

Cannot resolve `ControlLogix.PIDE` in model `Main`; there is no `ControlLogix` visible

Yet I dragged and dropped the component PIDE from the ControlLogix library.

Can anyone help me to resolve this?

Thanks

I have specified the problem in the red comments of the worksheet i am uploading:


 

restart

with(FileTools):

currentdir("H:\\USB 1 BACKUP\\ESD-USB\\maple_library"):

["ArithmeticMean_Display_Definition.txt", "BinomialCoefficient_PadicOrder.txt", "Binomial_coefficent_p_adic_valuation_Display_Definition.txt", "CompareGeometricMean.txt", "CompareHarmonicMean.txt", "CompareMean.txt", "Compare_Arithmetic_Mean_Description.txt", "Compare_Mean_Description.txt", "ConsistencyCompareGeometricMean.txt", "ConsistencyCompareHarmonicMean.txt", "ConsistencyCompareMean.txt", "delta.txt", "delta_Display_Definition.txt", "digit_base_conversion.txt", "EulerProduct.txt", "GeometricMean_Display_Definition.txt", "HarmonicMean_Display_Definition.txt", "Mobius.txt", "MultiplicitySet.txt", "omega.txt", "p_adic_valuation.txt", "p_adic_valuation_Display_Definition.txt", "RationalParition.txt", "SquareFreeCount.txt", "WilsonTheoremLemma.txt", "WilsonTheoremLemma1_Display_Definition.txt", "WilsonTheoremLemma2_Display_Definition.txt", "WilsonTheoremLemma3_Display_Definition.txt"]

(1)

with(StringTools):

L := map(StringTools:-Has, FunctionList, "_Display_Definition"):

S[display] := {}:

for k to nops(L) do if L[k] = true then S[display] := `union`(S[display], {FunctionList[k]}) else S[procedure] := `union`(S[procedure], {FunctionList[k]}) end if end do;

for t to nops(S[display]) do read S[display][t] end do;

``

S[display]

{"p_adic_valuation.txt", "Compare_Mean_Description.txt", "delta_Display_Definition.txt", "digit_base_conversion.txt", "ArithmeticMean_Display_Definition.txt", "BinomialCoefficient_PadicOrder.txt", "Compare_Arithmetic_Mean_Description.txt", "GeometricMean_Display_Definition.txt", "HarmonicMean_Display_Definition.txt", "p_adic_valuation_Display_Definition.txt", "WilsonTheoremLemma1_Display_Definition.txt", "WilsonTheoremLemma2_Display_Definition.txt", "WilsonTheoremLemma3_Display_Definition.txt", "Binomial_coefficent_p_adic_valuation_Display_Definition.txt"}

(2)

read S[display][5]

`The Arithmetic Mean for the multiset:`

 

[a[j]][j = 1 .. n]

 

mu[A] = (sum(a[j], j = 1 .. n))/n

(3)

read S[display][7]

`CompareArithmeticMean(L,N) will return output informing you of what percentage of N random`

 

`natural number multisets of the same length as the multiset L and same range=[min(L),max(L)]`

 

`have a lower arithmetic mean than L, equal to L, and greater than L.`

(4)

``


 

Download possible_string_tools_bug.mw

Can someone explain the content and detail of this message:

com.maplesoft.mathdoc.model.plot.PlotException: Unrecognized option in COLOR: RGBA

Have quadrature detected time domain complex data arrays.  Trying to fft array to get frequency domain arrays.  Arrays returned are always sinusoidal in nature rotating between + and - y axis.  Can not phase correct these sinusoidal frequency arrays.  Any ideas how to pretreat time domain arrays before fft or posttreat frequency domain arrays after fft in order to determine phase correction angles that will allow combination of real and imaginary frequency domain data points that are only in + y axis.

How can I set the alpha for the plot symbols? I would like to add some alpha for blending purposes(will help with the visual in my case).

 

Idealy I would like to plot a 2d "guassian" fade.

A warm greeting for all

How to import a figure from Mathematica to Maple.

Amr

I have a dependent and independent variables u(x),v(x),w(x),....diff( u(x),x$n)=U(k),diff( v(x),x$n)=V(k)......

Is it possible to create, diff(     , x$n)  is an operator or any differentiable function?

I'm having trouble connecting from Maple on Windows 10 to MSQL Server. I tried Microsoft recommended drivers such as sqljdbc_6.4.0.0, did (as I thought) all required steps. The only invariable result I get is "Cannot load driver". I was wandering if anyone had implemented such a construction. Driver name & version , connection string and Java version would be greatly appreciated. Another option is to have any driver, which connects to any of standard databases (Oracle, MySQL).  The only limitation is- it must be from Windows 7 or 10.
          Thanks.
           A.B.


The results should be the same, right?

50/3.(Vector(2, {(1) = .72, (2) = 0.6e-1})) = Vector[column](%id = 18446745399574633758)NULL

NULLNULL

``

50/3*.72 = 12.00000000

50/3*0.6e-1 = 1.000000000NULL

``


 

Download test.mw

I am trying to compare time taken in minutes for each iterative model(Jacobi, Gauss-Seidel and SOR) to complete, so as to figure out the iterativre model with a faster time of convergence but i don't know the command to initiate.

Hello,

I want to evaluate the change of temperature and energy loss during the flow through an expansion valve.

But the command fsolve this does not work with CoolProp.

The following command is just repeated, but gives no result.

fsolve({ThermophysicalData:-Property("D", "H2", "temperature" = TTT, "pressure" = ppp) = 31.13, ThermophysicalData:-Property("H", "H2", "temperature" = TTT, "pressure" = ppp) = 4.098640000*10^6}, {TTT, ppp})

Regards,

Andreas

Hi!

Assume that we have, in the cube C:=[-1,1]^N, for a fixed integer N>=2, a point X1  and   cosider the (closed) ball centered at X1 and radius R1:=0.6. Fixed an integer m>2, Somebody can indicate me how to compute the centers (belonging to C) and the radius of m disjoint balls with the above ball?

That is to say, compute points X2,...,Xm (in C) and positive numbers R2,...,Rm such that the intersection of the (closed) balls B(Xj,Rj) for j=1,...,m be empty. 

Some suggestion?

Many thanks in advance for your comments.

If i have a function like: f(d) = 1- inf { a \in [0,1]: a = e^{d(a-1)} } how can i plot it in maple?

Or simple one function with a maximum over an intervall in it?

Hello,

I have a problem in solving an integral in maple. I can't solve the below integral in maple and it returns the integral itself to me. I also attach an image from the integral if here is not clearly shown. I want maple to return me just a number. can anyone help me in this?

Thank you

int(sin(beta)*(-0.4447569104e-1*beta(10)^3+1.846983291*beta(10)^2+78.88888890*beta(10)+620.4645491)/(9.+.6366197724*beta(10))^2, beta = 0 .. (1/2)*Pi)

 

 

 

 

restart;
T := mu+lambda*H(xi)+(v-1)*H(xi)^2;
                                                2
               mu + lambda H(xi) + (v - 1) H(xi) 
u[0] := a[0]+a[1]*(d+H(xi))+a[2]/(d+H(xi))+a[3]*(d+H(xi))^2+a[4]/(d+H(xi))^2;
                                a[2]                      2
    a[0] + a[1] (d + H(xi)) + --------- + a[3] (d + H(xi)) 
                              d + H(xi)                    

             a[4]    
       + ------------
                    2
         (d + H(xi)) 
diff(u[0], xi);
                            / d        \
                       a[2] |---- H(xi)|
        / d        \        \ dxi      /
   a[1] |---- H(xi)| - -----------------
        \ dxi      /                2   
                         (d + H(xi))    

                                                 / d        \
                                          2 a[4] |---- H(xi)|
                           / d        \          \ dxi      /
      + 2 a[3] (d + H(xi)) |---- H(xi)| - -------------------
                           \ dxi      /                 3    
                                             (d + H(xi))     
collect(%, diff(H(xi), xi));
/           a[2]                               2 a[4]   \ / d       
|a[1] - ------------ + 2 a[3] (d + H(xi)) - ------------| |---- H(xi
|                  2                                   3| \ dxi     
\       (d + H(xi))                         (d + H(xi)) /           

   \
  )|
   /
d[1] := (a[1]-a[2]/(d+H(xi))^2+2*a[3]*(d+H(xi))-2*a[4]/(d+H(xi))^3)*T;
 /           a[2]                               2 a[4]   \ /  
 |a[1] - ------------ + 2 a[3] (d + H(xi)) - ------------| \mu
 |                  2                                   3|    
 \       (d + H(xi))                         (d + H(xi)) /    

                                  2\
    + lambda H(xi) + (v - 1) H(xi) /
diff(d[1], xi);
/       / d        \                                / d        \\ 
|2 a[2] |---- H(xi)|                         6 a[4] |---- H(xi)|| 
|       \ dxi      /          / d        \          \ dxi      /| 
|------------------- + 2 a[3] |---- H(xi)| + -------------------| 
|              3              \ dxi      /                 4    | 
\   (d + H(xi))                                 (d + H(xi))     / 

  /                                 2\   /           a[2]    
  \mu + lambda H(xi) + (v - 1) H(xi) / + |a[1] - ------------
                                         |                  2
                                         \       (d + H(xi)) 

                             2 a[4]   \ /       / d        \
   + 2 a[3] (d + H(xi)) - ------------| |lambda |---- H(xi)|
                                     3| \       \ dxi      /
                          (d + H(xi)) /                     

                     / d        \\
   + 2 (v - 1) H(xi) |---- H(xi)||
                     \ dxi      //
collect(%, diff(H(xi), xi));
//   2 a[2]                  6 a[4]   \ /                 
||------------ + 2 a[3] + ------------| \mu + lambda H(xi)
||           3                       4|                   
\\(d + H(xi))             (d + H(xi)) /                   

                  2\   /           a[2]                         
   + (v - 1) H(xi) / + |a[1] - ------------ + 2 a[3] (d + H(xi))
                       |                  2                     
                       \       (d + H(xi))                      

        2 a[4]   \                           \ / d        \
   - ------------| (lambda + 2 (v - 1) H(xi))| |---- H(xi)|
                3|                           | \ dxi      /
     (d + H(xi)) /                           /             
d[2] := ((2*a[2]/(d+H(xi))^3+2*a[3]+6*a[4]/(d+H(xi))^4)*(mu+lambda*H(xi)+(v-1)*H(xi)^2)+(a[1]-a[2]/(d+H(xi))^2+2*a[3]*(d+H(xi))-2*a[4]/(d+H(xi))^3)*(lambda+(2*(v-1))*H(xi)))*T;
//   2 a[2]                  6 a[4]   \ /                 
||------------ + 2 a[3] + ------------| \mu + lambda H(xi)
||           3                       4|                   
\\(d + H(xi))             (d + H(xi)) /                   

                  2\   /           a[2]                         
   + (v - 1) H(xi) / + |a[1] - ------------ + 2 a[3] (d + H(xi))
                       |                  2                     
                       \       (d + H(xi))                      

        2 a[4]   \                           \ /                 
   - ------------| (lambda + 2 (v - 1) H(xi))| \mu + lambda H(xi)
                3|                           |                   
     (d + H(xi)) /                           /                   

                  2\
   + (v - 1) H(xi) /

eq := (2*k*k)*w*beta*d[2]-(2*alpha*k*k)*d[1]-2*w*u[0]+k*u[0]*u[0];
   2        //   2 a[2]                  6 a[4]   \ /  
2 k  w beta ||------------ + 2 a[3] + ------------| \mu
            ||           3                       4|    
            \\(d + H(xi))             (d + H(xi)) /    

                                 2\   /           a[2]    
   + lambda H(xi) + (v - 1) H(xi) / + |a[1] - ------------
                                      |                  2
                                      \       (d + H(xi)) 

                             2 a[4]   \                          
   + 2 a[3] (d + H(xi)) - ------------| (lambda + 2 (v - 1) H(xi)
                                     3|                          
                          (d + H(xi)) /                          

   \ /                                 2\            2 /    
  )| \mu + lambda H(xi) + (v - 1) H(xi) / - 2 alpha k  |a[1]
   |                                                   |    
   /                                                   \    

         a[2]                               2 a[4]   \ /  
   - ------------ + 2 a[3] (d + H(xi)) - ------------| \mu
                2                                   3|    
     (d + H(xi))                         (d + H(xi)) /    

                                 2\       /    
   + lambda H(xi) + (v - 1) H(xi) / - 2 w |a[0]
                                          |    
                                          \    

                          a[2]                      2
   + a[1] (d + H(xi)) + --------- + a[3] (d + H(xi)) 
                        d + H(xi)                    

         a[4]    \     /                            a[2]   
   + ------------| + k |a[0] + a[1] (d + H(xi)) + ---------
                2|     |                          d + H(xi)
     (d + H(xi)) /     \                                   

                     2       a[4]    \  
   + a[3] (d + H(xi))  + ------------|^2
                                    2|  
                         (d + H(xi)) /  
value(%);
   2        //   2 a[2]                  6 a[4]   \ /  
2 k  w beta ||------------ + 2 a[3] + ------------| \mu
            ||           3                       4|    
            \\(d + H(xi))             (d + H(xi)) /    

                                 2\   /           a[2]    
   + lambda H(xi) + (v - 1) H(xi) / + |a[1] - ------------
                                      |                  2
                                      \       (d + H(xi)) 

                             2 a[4]   \                          
   + 2 a[3] (d + H(xi)) - ------------| (lambda + 2 (v - 1) H(xi)
                                     3|                          
                          (d + H(xi)) /                          

   \ /                                 2\            2 /    
  )| \mu + lambda H(xi) + (v - 1) H(xi) / - 2 alpha k  |a[1]
   |                                                   |    
   /                                                   \    

         a[2]                               2 a[4]   \ /  
   - ------------ + 2 a[3] (d + H(xi)) - ------------| \mu
                2                                   3|    
     (d + H(xi))                         (d + H(xi)) /    

                                 2\       /    
   + lambda H(xi) + (v - 1) H(xi) / - 2 w |a[0]
                                          |    
                                          \    

                          a[2]                      2
   + a[1] (d + H(xi)) + --------- + a[3] (d + H(xi)) 
                        d + H(xi)                    

         a[4]    \     /                            a[2]   
   + ------------| + k |a[0] + a[1] (d + H(xi)) + ---------
                2|     |                          d + H(xi)
     (d + H(xi)) /     \                                   

                     2       a[4]    \  
   + a[3] (d + H(xi))  + ------------|^2
                                    2|  
                         (d + H(xi)) /  
expr := simplify(%);
Error, (in simplify) too many levels of recursion
temp := algsubs(d+H(xi) = freeze(d+H(xi)), numer(expr));
                              expr
thaw(collect(temp, freeze(d+H(xi)))/denom(expr));
                              expr
collect(%, H(xi));
 

First 581 582 583 584 585 586 587 Last Page 583 of 2364