Items tagged with series

Feed

1.
tanh(1-x) = sum(p(ii)*x^q(ii), ii=0..infinity) or product(p*x^q(ii), ii=0..infinity) ?
2.
tanh(1-x)*1/(1-x) = sum(p(ii)*x^q(ii), ii=0..infinity) or product(p*x^q(ii), ii=0..infinity) ?
3.
tanh(x) = sum(p(ii)*x^q(ii), ii=0..infinity) or product(p*x^q(ii), ii=0..infinity) ?

Remark: it may not be possible to use diff to find p(ii)

update

series(tanh(1-x), x=0);
with(OrthogonalSeries):
Coefficients(series(1/(1-x), x=0));
coeffs(series(tanh(1-x), x=0));
coeffs(series(tanh(1-x), x=0),x);
Error, invalid arguments to coeffs;
 
and is it possible to find q(ii) only if assume p(ii) all are one?

It would be nice to have asymptotics for hypergeom that are valid around abs(z)=infinity for any value of argument(z):

limit(hypergeom([1, 1], [2, 2], I*z), z = infinity); # zero
      limit(hypergeom([1, 1], [2, 2], I z), z = infinity)

series and asympt can give the expansions for +infinity or -infinity, not necessarily valid for other directions. FunctionAdvisor gives only the expansion at +infinity (which in this case is valid for Re(z)>0). Changes of variables like z->-z or z->1/z seem to never work in FunctionAdvisor(asymptotic_expansion, ...).

Also the expansions around z=1:

limit(hypergeom([1, 1, 1], [1/2, 2], z)*(z-1), z = 1); # zero
          /         /           [1   ]   \               \
     limit|hypergeom|[1, 1, 1], [-, 2], z| (z - 1), z = 1|
          \         \           [2   ]   /               /

And on the branch cuts:

limit(hypergeom([1/3, 1/3], [1/2], 2+I*a), a = 0); # the directional limits are different
                            /[1  1]  [1]   \
                   hypergeom|[-, -], [-], 2|
                            \[3  3]  [2]   /

 

=

The results are in the reverse order that I would like to see them.

Is there a way to change this order???

series(1/(1-x), x=0);
can be express as sum(x^y,y=0..infinity)
 
series(tanh(x), x=0);
how to express tanh(x) and tanh(x+1)?
 
is there any function and procedure to generate x^y these kind of result?

What is the meaning of the "0" in the series expansion

series(x/(-x2-x+1), x = 0); ( this is the Maple command)
                   
              x + x2  + 2 x3  + 3 x4 + 5 x5  + O(x6)  This is the results

This is use in Maple I've seen quite a bit for series. I assume the the series continues on. But I am not sure

Also is there any listing of what some of the symbols that maple uses???
 

Consider a standard initial/boundary value problem for the heat equation on the interval x ∈ [0,1]:

restart;
pde := diff(u(x,t),t) = diff(u(x,t),x,x);
ic := u(x,0) = f(x);
bc := u(0,t)=0,  u(1,t)=0;

Then
pdsolve({pde, ic, bc});
produces the expected Fourier series solution.

However, if we change the interval to x ∈ [-1,1], as in:
bc := u(-1,t)=0,  u(1,t)=0;
pdsolve({pde, ic, bc});

then Maple fails to return a solution.  Why?


 

op(2, -(1/4)*z^2-(1/18*I)*z^3+(1/96)*z^4+(1/600*I)*z^5-(1/4320)*z^6-(1/35280*I)*z^7+(1/322560)*z^8+(1/3265920*I)*z^9-(1/36288000)*z^10-(1/439084800*I)*z^11+O(z^12))

-((1/18)*I)*z^3

(1)

op(2, series(Ei(I*z)-gamma-ln(z)-I*csgn(I*z)*Pi-I*z, z, 12))

2

(2)

series(Ei(I*z)-gamma-ln(z)-I*csgn(I*z)*Pi-I*z, z, 12)

series(-(1/4)*z^2-((1/18)*I)*z^3+(1/96)*z^4+((1/600)*I)*z^5-(1/4320)*z^6-((1/35280)*I)*z^7+(1/322560)*z^8+((1/3265920)*I)*z^9-(1/36288000)*z^10-((1/439084800)*I)*z^11+O(z^12),z,12)

(3)

is(series(Ei(I*z)-gamma-ln(z)-I*csgn(I*z)*Pi-I*z, z, 12) = -(1/4)*z^2-(1/18*I)*z^3+(1/96)*z^4+(1/600*I)*z^5-(1/4320)*z^6-(1/35280*I)*z^7+(1/322560)*z^8+(1/3265920*I)*z^9-(1/36288000)*z^10-(1/439084800*I)*z^11+O(z^12))

false

(4)

``


 

Download op_error.mw

Hello everyone.

Please I am trying to obtain series expansion of the expression below in u and v up to order 30 but encounter difficulties cum maple is slow to display solution. Can I get help on the code and what to do to optimize the displayed time of maple?

Thank you in anticipation of your quick and positive responses and suggestions.

convert(series(convert(series((y[n]+((-8 h u^2 v^2-4 u^3 sin(u) h+2 sin(2 u) h u^3+2 sin(2 v) h v^3-4 v^3 h sin(v)+2 v^3 h sin(2 u+v)+2 u^3 h sin(u-2 v)+2 u^3 h sin(u+2 v)-2 v^3 h sin(2 u-v)-u^3 h sin(2 u+2 v)-v^3 h sin(2 u+2 v)-u^3 h sin(2 u-2 v)+v^3 h sin(2 u-2 v)+4 h u^3 v^2 sin(2 u)+4 h u^2 v^3 sin(2 v)-4 h u^3 v^2 sin(u-v)+4 h u^2 v^3 sin(u-v)-4 h u^3 v^2 sin(u+v)-4 h u^2 v^3 sin(u+v)+4 h u^2 v^2 cos(u)+4 h u^2 v^2 cos(2 u)+4 h u^2 v^2 cos(2 v)+4 h u^2 v^2 cos(v)-4 h u^3 v cos(2 u-v)-2 h u^2 v^2 cos(2 u-v)+2 h u v^3 cos(2 u-v)+4 h u^3 v cos(2 u+v)-2 h u^2 v^2 cos(2 u+v)-2 h u v^3 cos(2 u+v)+2 h u^3 v cos(u-2 v)-2 h u^2 v^2 cos(u-2 v)-4 h u v^3 cos(u-2 v)-2 h u^3 v cos(u+2 v)-2 h u^2 v^2 cos(u+2 v)+4 h u v^3 cos(u+2 v)+4 h u^3 v cos(u-v)+4 h u v^3 cos(u-v)-4 h u^3 v cos(u+v)-4 h u v^3 cos(u+v)+4 u sin(u) v^2 h-2 sin(2 u) h u v^2-2 sin(2 v) h u^2 v+4 v h sin(v) u^2-2 v u^2 h sin(2 u+v)-2 u v^2 h sin(u-2 v)-2 u v^2 h sin(u+2 v)+2 v u^2 h sin(2 u-v)+v u^2 h sin(2 u+2 v)+u v^2 h sin(2 u+2 v)-v u^2 h sin(2 u-2 v)+u v^2 h sin(2 u-2 v)) f[n])/(-12 u^2 v^2+4 sin(u) u^3 v^2+4 sin(2 u) u^3 v^2+4 sin(2 v) u^2 v^3+4 sin(v) u^2 v^3-2 sin(2 u+v) u^3 v^2+2 sin(2 u+v) u^2 v^3-4 sin(u-v) u^3 v^2+4 sin(u-v) u^2 v^3-4 sin(u+v) u^3 v^2-4 sin(u+v) u^2 v^3+2 sin(u-2 v) u^3 v^2+2 sin(u-2 v) u^2 v^3+2 sin(u+2 v) u^3 v^2-2 sin(u+2 v) u^2 v^3-2 sin(2 u-v) u^3 v^2-2 sin(2 u-v) u^2 v^3+8 cos(u) u^2 v^2+4 cos(2 u) u^2 v^2+4 cos(2 v) u^2 v^2+8 cos(v) u^2 v^2-2 cos(2 u-v) u^3 v-4 cos(2 u-v) u^2 v^2-2 cos(2 u-v) u v^3+2 cos(2 u+v) u^3 v-4 cos(2 u+v) u^2 v^2+2 cos(2 u+v) u v^3-2 cos(u-2 v) u^3 v-4 cos(u-2 v) u^2 v^2-2 cos(u-2 v) u v^3+2 cos(u+2 v) u^3 v-4 cos(u+2 v) u^2 v^2+2 cos(u+2 v) u v^3-cos(2 u+2 v) u^3 v+2 cos(2 u+2 v) u^2 v^2-cos(2 u+2 v) u v^3+cos(2 u-2 v) u^3 v+2 cos(2 u-2 v) u^2 v^2+cos(2 u-2 v) u v^3+4 cos(u-v) u^3 v+4 cos(u-v) u v^3-4 cos(u+v) u^3 v-4 cos(u+v) u v^3)+((-8 h u^2 v^2+8 u^3 sin(u) h-4 sin(2 u) h u^3-4 sin(2 v) h v^3+8 v^3 h sin(v)-4 v^3 h sin(2 u+v)-4 u^3 h sin(u-2 v)-4 u^3 h sin(u+2 v)+4 v^3 h sin(2 u-v)+2 u^3 h sin(2 u+2 v)+2 v^3 h sin(2 u+2 v)+2 u^3 h sin(2 u-2 v)-2 v^3 h sin(2 u-2 v)+8 h u^3 v^2 sin(u)+8 h u^2 v^3 sin(v)-4 h u^3 v^2 sin(2 u+v)+4 h u^2 v^3 sin(2 u+v)+4 h u^3 v^2 sin(u-2 v)+4 h u^2 v^3 sin(u-2 v)+4 h u^3 v^2 sin(u+2 v)-4 h u^2 v^3 sin(u+2 v)-4 h u^3 v^2 sin(2 u-v)-4 h u^2 v^3 sin(2 u-v)+8 h u^2 v^2 cos(u)+8 h u^2 v^2 cos(v)+4 h u^3 v cos(2 u-v)-4 h u^2 v^2 cos(2 u-v)-8 h u v^3 cos(2 u-v)-4 h u^3 v cos(2 u+v)-4 h u^2 v^2 cos(2 u+v)+8 h u v^3 cos(2 u+v)-8 h u^3 v cos(u-2 v)-4 h u^2 v^2 cos(u-2 v)+4 h u v^3 cos(u-2 v)+8 h u^3 v cos(u+2 v)-4 h u^2 v^2 cos(u+2 v)-4 h u v^3 cos(u+2 v)-2 h u^3 v cos(2 u+2 v)+4 h u^2 v^2 cos(2 u+2 v)-2 h u v^3 cos(2 u+2 v)+2 h u^3 v cos(2 u-2 v)+4 h u^2 v^2 cos(2 u-2 v)+2 h u v^3 cos(2 u-2 v)-8 u sin(u) v^2 h+4 sin(2 u) h u v^2+4 sin(2 v) h u^2 v-8 v h sin(v) u^2+4 v u^2 h sin(2 u+v)+4 u v^2 h sin(u-2 v)+4 u v^2 h sin(u+2 v)-4 v u^2 h sin(2 u-v)-2 v u^2 h sin(2 u+2 v)-2 u v^2 h sin(2 u+2 v)+2 v u^2 h sin(2 u-2 v)-2 u v^2 h sin(2 u-2 v)) f[n+1])/(-12 u^2 v^2+4 sin(u) u^3 v^2+4 sin(2 u) u^3 v^2+4 sin(2 v) u^2 v^3+4 sin(v) u^2 v^3-2 sin(2 u+v) u^3 v^2+2 sin(2 u+v) u^2 v^3-4 sin(u-v) u^3 v^2+4 sin(u-v) u^2 v^3-4 sin(u+v) u^3 v^2-4 sin(u+v) u^2 v^3+2 sin(u-2 v) u^3 v^2+2 sin(u-2 v) u^2 v^3+2 sin(u+2 v) u^3 v^2-2 sin(u+2 v) u^2 v^3-2 sin(2 u-v) u^3 v^2-2 sin(2 u-v) u^2 v^3+8 cos(u) u^2 v^2+4 cos(2 u) u^2 v^2+4 cos(2 v) u^2 v^2+8 cos(v) u^2 v^2-2 cos(2 u-v) u^3 v-4 cos(2 u-v) u^2 v^2-2 cos(2 u-v) u v^3+2 cos(2 u+v) u^3 v-4 cos(2 u+v) u^2 v^2+2 cos(2 u+v) u v^3-2 cos(u-2 v) u^3 v-4 cos(u-2 v) u^2 v^2-2 cos(u-2 v) u v^3+2 cos(u+2 v) u^3 v-4 cos(u+2 v) u^2 v^2+2 cos(u+2 v) u v^3-cos(2 u+2 v) u^3 v+2 cos(2 u+2 v) u^2 v^2-cos(2 u+2 v) u v^3+cos(2 u-2 v) u^3 v+2 cos(2 u-2 v) u^2 v^2+cos(2 u-2 v) u v^3+4 cos(u-v) u^3 v+4 cos(u-v) u v^3-4 cos(u+v) u^3 v-4 cos(u+v) u v^3)+((-8 h u^2 v^2-4 u^3 sin(u) h+2 sin(2 u) h u^3+2 sin(2 v) h v^3-4 v^3 h sin(v)+2 v^3 h sin(2 u+v)+2 u^3 h sin(u-2 v)+2 u^3 h sin(u+2 v)-2 v^3 h sin(2 u-v)-u^3 h sin(2 u+2 v)-v^3 h sin(2 u+2 v)-u^3 h sin(2 u-2 v)+v^3 h sin(2 u-2 v)+4 h u^3 v^2 sin(2 u)+4 h u^2 v^3 sin(2 v)-4 h u^3 v^2 sin(u-v)+4 h u^2 v^3 sin(u-v)-4 h u^3 v^2 sin(u+v)-4 h u^2 v^3 sin(u+v)+4 h u^2 v^2 cos(u)+4 h u^2 v^2 cos(2 u)+4 h u^2 v^2 cos(2 v)+4 h u^2 v^2 cos(v)-4 h u^3 v cos(2 u-v)-2 h u^2 v^2 cos(2 u-v)+2 h u v^3 cos(2 u-v)+4 h u^3 v cos(2 u+v)-2 h u^2 v^2 cos(2 u+v)-2 h u v^3 cos(2 u+v)+2 h u^3 v cos(u-2 v)-2 h u^2 v^2 cos(u-2 v)-4 h u v^3 cos(u-2 v)-2 h u^3 v cos(u+2 v)-2 h u^2 v^2 cos(u+2 v)+4 h u v^3 cos(u+2 v)+4 h u^3 v cos(u-v)+4 h u v^3 cos(u-v)-4 h u^3 v cos(u+v)-4 h u v^3 cos(u+v)+4 u sin(u) v^2 h-2 sin(2 u) h u v^2-2 sin(2 v) h u^2 v+4 v h sin(v) u^2-2 v u^2 h sin(2 u+v)-2 u v^2 h sin(u-2 v)-2 u v^2 h sin(u+2 v)+2 v u^2 h sin(2 u-v)+v u^2 h sin(2 u+2 v)+u v^2 h sin(2 u+2 v)-v u^2 h sin(2 u-2 v)+u v^2 h sin(2 u-2 v)) f[n+2])/(-12 u^2 v^2+4 sin(u) u^3 v^2+4 sin(2 u) u^3 v^2+4 sin(2 v) u^2 v^3+4 sin(v) u^2 v^3-2 sin(2 u+v) u^3 v^2+2 sin(2 u+v) u^2 v^3-4 sin(u-v) u^3 v^2+4 sin(u-v) u^2 v^3-4 sin(u+v) u^3 v^2-4 sin(u+v) u^2 v^3+2 sin(u-2 v) u^3 v^2+2 sin(u-2 v) u^2 v^3+2 sin(u+2 v) u^3 v^2-2 sin(u+2 v) u^2 v^3-2 sin(2 u-v) u^3 v^2-2 sin(2 u-v) u^2 v^3+8 cos(u) u^2 v^2+4 cos(2 u) u^2 v^2+4 cos(2 v) u^2 v^2+8 cos(v) u^2 v^2-2 cos(2 u-v) u^3 v-4 cos(2 u-v) u^2 v^2-2 cos(2 u-v) u v^3+2 cos(2 u+v) u^3 v-4 cos(2 u+v) u^2 v^2+2 cos(2 u+v) u v^3-2 cos(u-2 v) u^3 v-4 cos(u-2 v) u^2 v^2-2 cos(u-2 v) u v^3+2 cos(u+2 v) u^3 v-4 cos(u+2 v) u^2 v^2+2 cos(u+2 v) u v^3-cos(2 u+2 v) u^3 v+2 cos(2 u+2 v) u^2 v^2-cos(2 u+2 v) u v^3+cos(2 u-2 v) u^3 v+2 cos(2 u-2 v) u^2 v^2+cos(2 u-2 v) u v^3+4 cos(u-v) u^3 v+4 cos(u-v) u v^3-4 cos(u+v) u^3 v-4 cos(u+v) u v^3)+((-6 u^2 h^2-6 v^2 h^2-4 cos(2 u) h^2 u^2 v^2-4 cos(2 v) h^2 u^2 v^2+8 v^2 u^2 h^2 cos(u-v)+8 v^2 u^2 h^2 cos(u+v)+8 u sin(u) v^2 h^2+8 sin(2 u) h^2 u v^2+8 sin(2 v) h^2 u^2 v+8 v h^2 sin(v) u^2+4 v u^2 h^2 sin(2 u+v)-4 u v^2 h^2 sin(2 u+v)+8 v u^2 h^2 sin(u-v)-8 sin(u-v) h^2 u v^2-8 v u^2 h^2 sin(u+v)-8 sin(u+v) h^2 u v^2+4 v u^2 h^2 sin(u-2 v)+4 u v^2 h^2 sin(u-2 v)-4 v u^2 h^2 sin(u+2 v)+4 u v^2 h^2 sin(u+2 v)-4 v u^2 h^2 sin(2 u-v)-4 u v^2 h^2 sin(2 u-v)-4 u v h^2 cos(2 u-v)+4 u v h^2 cos(2 u+v)-4 u v h^2 cos(u-2 v)+4 u v h^2 cos(u+2 v)-2 u v h^2 cos(2 u+2 v)+2 u v h^2 cos(2 u-2 v)+8 cos(u-v) h^2 u v-8 cos(u+v) h^2 u v-8 v^2 u^2 h^2+8 h^2 cos(u) u^2-2 cos(2 u) h^2 u^2+6 cos(2 u) h^2 v^2+6 cos(2 v) h^2 u^2-2 cos(2 v) h^2 v^2+8 h^2 cos(v) v^2-4 v^2 h^2 cos(2 u-v)-4 v^2 h^2 cos(2 u+v)-4 u^2 h^2 cos(u-2 v)-4 u^2 h^2 cos(u+2 v)+u^2 h^2 cos(2 u+2 v)+v^2 h^2 cos(2 u+2 v)+u^2 h^2 cos(2 u-2 v)+v^2 h^2 cos(2 u-2 v)) g[n])/(-12 u^2 v^2+4 sin(u) u^3 v^2+4 sin(2 u) u^3 v^2+4 sin(2 v) u^2 v^3+4 sin(v) u^2 v^3-2 sin(2 u+v) u^3 v^2+2 sin(2 u+v) u^2 v^3-4 sin(u-v) u^3 v^2+4 sin(u-v) u^2 v^3-4 sin(u+v) u^3 v^2-4 sin(u+v) u^2 v^3+2 sin(u-2 v) u^3 v^2+2 sin(u-2 v) u^2 v^3+2 sin(u+2 v) u^3 v^2-2 sin(u+2 v) u^2 v^3-2 sin(2 u-v) u^3 v^2-2 sin(2 u-v) u^2 v^3+8 cos(u) u^2 v^2+4 cos(2 u) u^2 v^2+4 cos(2 v) u^2 v^2+8 cos(v) u^2 v^2-2 cos(2 u-v) u^3 v-4 cos(2 u-v) u^2 v^2-2 cos(2 u-v) u v^3+2 cos(2 u+v) u^3 v-4 cos(2 u+v) u^2 v^2+2 cos(2 u+v) u v^3-2 cos(u-2 v) u^3 v-4 cos(u-2 v) u^2 v^2-2 cos(u-2 v) u v^3+2 cos(u+2 v) u^3 v-4 cos(u+2 v) u^2 v^2+2 cos(u+2 v) u v^3-cos(2 u+2 v) u^3 v+2 cos(2 u+2 v) u^2 v^2-cos(2 u+2 v) u v^3+cos(2 u-2 v) u^3 v+2 cos(2 u-2 v) u^2 v^2+cos(2 u-2 v) u v^3+4 cos(u-v) u^3 v+4 cos(u-v) u v^3-4 cos(u+v) u^3 v-4 cos(u+v) u v^3)+((6 u^2 h^2+6 v^2 h^2+4 cos(2 u) h^2 u^2 v^2+4 cos(2 v) h^2 u^2 v^2-8 v^2 u^2 h^2 cos(u-v)-8 v^2 u^2 h^2 cos(u+v)-8 u sin(u) v^2 h^2-8 sin(2 u) h^2 u v^2-8 sin(2 v) h^2 u^2 v-8 v h^2 sin(v) u^2-4 v u^2 h^2 sin(2 u+v)+4 u v^2 h^2 sin(2 u+v)-8 v u^2 h^2 sin(u-v)+8 sin(u-v) h^2 u v^2+8 v u^2 h^2 sin(u+v)+8 sin(u+v) h^2 u v^2-4 v u^2 h^2 sin(u-2 v)-4 u v^2 h^2 sin(u-2 v)+4 v u^2 h^2 sin(u+2 v)-4 u v^2 h^2 sin(u+2 v)+4 v u^2 h^2 sin(2 u-v)+4 u v^2 h^2 sin(2 u-v)+4 u v h^2 cos(2 u-v)-4 u v h^2 cos(2 u+v)+4 u v h^2 cos(u-2 v)-4 u v h^2 cos(u+2 v)+2 u v h^2 cos(2 u+2 v)-2 u v h^2 cos(2 u-2 v)-8 cos(u-v) h^2 u v+8 cos(u+v) h^2 u v+8 v^2 u^2 h^2-8 h^2 cos(u) u^2+2 cos(2 u) h^2 u^2-6 cos(2 u) h^2 v^2-6 cos(2 v) h^2 u^2+2 cos(2 v) h^2 v^2-8 h^2 cos(v) v^2+4 v^2 h^2 cos(2 u-v)+4 v^2 h^2 cos(2 u+v)+4 u^2 h^2 cos(u-2 v)+4 u^2 h^2 cos(u+2 v)-u^2 h^2 cos(2 u+2 v)-v^2 h^2 cos(2 u+2 v)-u^2 h^2 cos(2 u-2 v)-v^2 h^2 cos(2 u-2 v)) g[n+2])/(-12 u^2 v^2+4 sin(u) u^3 v^2+4 sin(2 u) u^3 v^2+4 sin(2 v) u^2 v^3+4 sin(v) u^2 v^3-2 sin(2 u+v) u^3 v^2+2 sin(2 u+v) u^2 v^3-4 sin(u-v) u^3 v^2+4 sin(u-v) u^2 v^3-4 sin(u+v) u^3 v^2-4 sin(u+v) u^2 v^3+2 sin(u-2 v) u^3 v^2+2 sin(u-2 v) u^2 v^3+2 sin(u+2 v) u^3 v^2-2 sin(u+2 v) u^2 v^3-2 sin(2 u-v) u^3 v^2-2 sin(2 u-v) u^2 v^3+8 cos(u) u^2 v^2+4 cos(2 u) u^2 v^2+4 cos(2 v) u^2 v^2+8 cos(v) u^2 v^2-2 cos(2 u-v) u^3 v-4 cos(2 u-v) u^2 v^2-2 cos(2 u-v) u v^3+2 cos(2 u+v) u^3 v-4 cos(2 u+v) u^2 v^2+2 cos(2 u+v) u v^3-2 cos(u-2 v) u^3 v-4 cos(u-2 v) u^2 v^2-2 cos(u-2 v) u v^3+2 cos(u+2 v) u^3 v-4 cos(u+2 v) u^2 v^2+2 cos(u+2 v) u v^3-cos(2 u+2 v) u^3 v+2 cos(2 u+2 v) u^2 v^2-cos(2 u+2 v) u v^3+cos(2 u-2 v) u^3 v+2 cos(2 u-2 v) u^2 v^2+cos(2 u-2 v) u v^3+4 cos(u-v) u^3 v+4 cos(u-v) u v^3-4 cos(u+v) u^3 v-4 cos(u+v) u v^3)),u=0,32),polynom),v=0,32),polynom);

In some cases, maple is able to return a series expansion when line A is called but fails to do so when line B is called, and in the help page for asympt it defines them to be identical procedures:

A: asympt(f,z)

B:

this has generally occured when ever the function f is of the form:

where g(z) has an asymptotic expansion and when asympt(f,z) is called, maple provides this expansion divided by the exponential function, however line B as prescribed above returns an error. 

 

So, my question is, which line in showstat(asympt) is responsible for catching the error which line B as above encounters?

Lee := (-1+Int(exp(LambertW(1/(-1+t))*(-1+t)), t=1..x))/(Int(exp(LambertW(1/(-1+t))*(-1+t)), t=1..x));
sum(unknown, n=1..infinity) = Lee
 
how to find unknown?

The image is an extract from the help page on the function "series" my question is in regard to how a method is selected, ie either it be a taylor or laurent series expansion, or as it defines in the passage attached "a more generalised series".

im just curious to know what procedure maple uses to make this choice when the series function is called, and im also finding it hard to replicate and understand the procedure of computing coeffiecents as described in the extract for a generalised series.

 

Thanks.
 

Good morning sirs,

Anyone with the idea(s) on how to convert series back to its original form should please share with me. 

Take for example

a-(1/2)*beta*a^2*y^2+(1/24)*beta^2*a^3*y^4-(1/720)*beta^3*a^4*y^6+(1/40320)*beta^4*a^5*y^8-(1/3628800)*beta^5*a^6*y^10+(1/479001600)*beta^6*a^7*y^12-(1/87178291200)*beta^7*a^8*y^14+O(y^16)

is a series for a*cos(sqr(a*beta)*y)

Thanking you in anticipation for your answer.

Hey guys,

I have the following occurence:

ii_inf:=x^(2-s)*(x^(-s)*GAMMA(3-s)*GAMMA(2-2*s)/(GAMMA(2-s)*GAMMA(3-2*s))+x^(s-2)*GAMMA(3-s)*GAMMA(2*s-2)/GAMMA(s))/(2-s)+(1/2)*(2*s*x-x+1)*(x+1)/(((x+1)^s)^2*(2*s^2-3*s+1))+x^(1-s)*(x^(-s)*GAMMA(2-s)*GAMMA(-2*s+1)/(GAMMA(1-s)*GAMMA(2-2*s))+x^(-1+s)*GAMMA(2-s)*GAMMA(2*s-1)/GAMMA(s))/(1-s)+(x+1)/((2*s-1)*((x+1)^s)^2)+x/((-1+s)*x^s)-(x+1)/((-1+s)*(x+1)^s);

ii_inf=simplify(ii_inf);

asympt(ii_inf,x,3);

Multiseries:-asympt(ii_inf,x,1);
gives different results...the last one however seems to be the correct one...

What is happening here?

 

theta := a-(1/2)*beta*a*y^2+(1/24)*beta^2*a*y^4-(1/720)*beta^3*a*y^6+(1/40320)*beta^4*a*y^8-(1/3628800)*beta^5*a*y^10+(1/479001600)*beta^6*a*y^12-(1/87178291200)*beta^7*a*y^14+(1/20922789888000)*beta^8*a*y^16-(1/6402373705728000)*beta^9*a*y^18+(1/2432902008176640000)*beta^10*a*y^20-(1/1124000727777607680000)*beta^11*a*y^22+(1/620448401733239439360000)*beta^12*a*y^24

Pls, anyone with useful informations on how to convert a series just like the one above to trigonometry or hyperbolic form. Need response as soon as possible. Thankin you in anticipation for your favorable response. 

I am trying to calculate the integral

where

Maple cannot calculate the integral. I tried to expand theta in the series form and substitute in the integral, still cannot calculate it.

any suggestion to tackle this problem whould be helpful.

Thank you

 

1 2 3 4 5 6 7 Page 1 of 8