Bendesarts

380 Reputation

10 Badges

10 years, 232 days

MaplePrimes Activity


These are questions asked by Bendesarts

Hello,

In the creation of a list, I would like to use the assume function twice.

Here it is a print screen of my issue.

The second part of the list is not taken into account.

Do you have ideas so that my list takes into account the second term ?

Thanks a lot for your feedback

Hello,

I would like to solve this equation :

tan(gamma0(t)) = tan(gamma[1](t)-theta[1](t)-psi[1](t)

I would like to select the solution of arctan by assuming the domain of variation of some variables. In my case, if -Pi/2 < gamma[1](t) - theta[1](t) - psi[1](t) < Pi/2, the arctan gives only one solution.

Can you help me to solve this equation ? 

eq:=tan(gamma0(t)) = tan(gamma[1](t)-theta[1](t)-psi[1](t))
solve(eq,gamma0(t)) assuming -Pi/2 < gamma[1](t) - theta[1](t) - psi[1](t) < Pi/2

I guess that I don't use properly the "assume" function.

The result that I would like to obain is quiet simple :

gamma0(t)) = gamma[1](t)-theta[1](t)-psi[1](t)

Thanks a lot for your help

 

Hello,

I would like to simplify a trigonometric equation that I obtain with a vectorial closure (in mechanics)

Here the equation that I would like to simplify 

eq_liaison :=(-sin(p(t)+g(t))*cos(a(t))-sin(b(t))*sin(a(t))*cos(p(t)+g(t)))*l2[1]+((-sin(p(t)+g(t))*cos(a(t))-sin(b(t))*sin(a(t))*cos(p(t)+g(t)))*cos(th(t))+(-cos(p(t)+g(t))*cos(a(t))+sin(a(t))*sin(b(t))*sin(p(t)+g(t)))*sin(th(t)))*l3[1] = 0

Do you have ideas so as to simplify again this expression ?

This expression can still be simplified. You can find here the result expected :

I find surprising that I have so many difficulties to make trigonometric simplications with the trigonometric functions.

Thank you for your help

PS : Sorry for duplicating posts. As I didn't receive any answer, I have tried to simplified my post to isolate the difficulty.

Hello,

I would like to simplify a trigonometric equation that I obtain with a vectorial closure (in mechanics)

Here the equation that I would like to simplify 

eq_liaison := (-sin(p(t)+g(t))*cos(a(t))-sin(b(t))*sin(a(t))*cos(p(t)+g(t)))*l2[1]+((-sin(p(t)+g(t))*cos(a(t))-sin(b(t))*sin(a(t))*cos(p(t)+g(t)))*cos(th(t))+(-cos(p(t)+g(t))*cos(a(t))+sin(a(t))*sin(b(t))*sin(p(t)+g(t)))*sin(th(t)))*l3[1]+(-sin(a(t))*sin(g(t))*sin(b(t))+cos(a(t))*cos(g(t)))*xb[1]+sin(a(t))*cos(b(t))*yb[1]+(sin(a(t))*sin(b(t))*cos(g(t))+cos(a(t))*sin(g(t)))*zb[1]+x(t)-xp(t) = 0

Do you have ideas so as to simplify again this expression ?

This expression can still be simplified. You can find here the result expected :

 

I find surprising that I have so many difficulties to make trigonometric simplications with the trigonometric functions.

I attached the code 

Download TrigoTransformVectorialEquations.mwTrigoTransformVectorialEquations.mw

Thank you for your help

 

 

 

 

 

 

Hello,

I receive this message when I try to store the package that I have created as a table

 

Do you have some ideas how I can correct my code so as to store efficiently my package ?

Thanks a lot for your help

First 8 9 10 11 12 13 14 Last Page 10 of 33