You had two problems with your post, causing the Maple code to not appear correctly.First, you chose the "Plain text" input format, which cause MaplePrimes to ignore all tags including Second, the code that you did insert between the tags is very long. There is a limit to the length of what you can put in there. If you want to post large pieces of Maple code and math, it is best to upload a worksheet. Below I reproduce your post using a worksheet:

Hi folks,I'm using the IntegralTools(Change) function to change the variables of integration in a double integral to lower the order of a polynomial under a radical prior to integration (praise to Axel!). The result contains exponents under the radical and in the limits of integration that seem to defy Maple's numerical integration routines.

**> Int(70871722182849/100000000000000000*Int((20.6066600725-0.164853280580e-1*sqrt(1.562500*(RealDomain[`^`])(10, 6)+7.58249999999*(RealDomain[`^`])(10, 6)*(RealDomain[`^`])(xi[2], 99999999999999939/100000000000000000)-3.35631780000*(RealDomain[`^`])(10, 7)*(RealDomain[`^`])(xi[1], .10000000000000)*(RealDomain[`^`])(xi[2], 99999999999999939/100000000000000000)+9.19908900000*(RealDomain[`^`])(10, 6)*(RealDomain[`^`])(xi[1], .20000000000000)+9.19908899998*(RealDomain[`^`])(10, 6)*(RealDomain[`^`])(xi[2], 99999999999999939/50000000000000000)+7.58250000000*(RealDomain[`^`])(10, 6)*(RealDomain[`^`])(xi[1], .10000000000000))+50.0000000000*(RealDomain[`^`])(xi[1], .10000000000000)+50.0000000000*(RealDomain[`^`])(xi[2], 99999999999999939/100000000000000000))*(RealDomain[`^`])(xi[2], 0.70163004961021e-1), xi[1] = (RealDomain[`^`])(c, 1000) .. (RealDomain[`^`])(d, 1000))/(RealDomain[`^`])(xi[2], 99929128277817151/100000000000000000), xi[2] = (RealDomain[`^`])(a, 100000000000000000/70871722182849) .. (RealDomain[`^`])(b, 100000000000000000/70871722182849));**

If I try to evaluate this expression, no cigar. But if I manually change those powers, as in

**> Int(70871722182849/100000000000000000*Int((20.6066600725-0.164853280580e-1*sqrt(1.562500*(RealDomain[`^`])(10, 6)+7.58249999999*(RealDomain[`^`])(10, 6)*(RealDomain[`^`])(xi[2], 99999999999999939/100000000000000000)-3.35631780000*(RealDomain[`^`])(10, 7)*(RealDomain[`^`])(xi[1], .10000000000000)*(RealDomain[`^`])(xi[2], 99999999999999939/100000000000000000)+9.19908900000*(RealDomain[`^`])(10, 6)*(RealDomain[`^`])(xi[1], .20000000000000)+9.19908899998*(RealDomain[`^`])(10, 6)*(RealDomain[`^`])(xi[2], 99999999999999939/50000000000000000)+7.58250000000*(RealDomain[`^`])(10, 6)*(RealDomain[`^`])(xi[1], .10000000000000))+50.0000000000*(RealDomain[`^`])(xi[1], .10000000000000)+50.0000000000*(RealDomain[`^`])(xi[2], 99999999999999939/100000000000000000))*(RealDomain[`^`])(xi[2], 0.70163004961021e-1), xi[1] = (RealDomain[`^`])(c, 1000) .. (RealDomain[`^`])(d, 1000))/(RealDomain[`^`])(xi[2], 99929128277817151/100000000000000000), xi[2] = (RealDomain[`^`])(a, 100000000000000000/70871722182849) .. (RealDomain[`^`])(b, 100000000000000000/70871722182849));**

then the answer pops right out:

**> evalf(eval(%, {a = 0, b = 1, c = 0, d = 1}));**

The trouble is, this integration is occuring in the middle of evaluating an objective function being called by NLPSolve, so I don't want to do it manually a zillion times. I can't reverse the order of evaluation without dramatically increasing the cost of evaluation.It seems like simplify, or convert, or combine, or SOMETHING should do this, but I've been rummaging through the help files for hours, and I can't seem to shake it out of the box. Could some kind soul please point me in the right direction?Many thanks,- Jimmy

____

William Spaetzel

Marketing Engineer, Maplesoft

This post generated using the online HTML conversion tool

Download the original worksheet
View worksheet on MapleNET