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a b s t r a c t

Klein/Sine-Gordon equations are very important in that they can accurately model many
essential physical phenomena. In this paper, we propose a new spectral method using Leg-
endre wavelets as basis for numerical solution of Klein\Sine-Gordon Equations. Due to the
good properties of wavelets basis, the proposed method can obtain good spatial and spec-
tral resolution. Moreover, the presented method can save more memory and computation
time benefit from save more computation time benefit from the hierarchical scale struc-
ture of Legendre wavelets. 1D and 2D examples are included to demonstrate the validity
and applicability of the new technique. Numerical results show the exponential conver-
gence property and error characteristics of presented method.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Klein–Gordon equations can accurately model many essential phenomena in physical and chemical sciences. In this
paper, we concentrate on the nonlinear Klein–Gordon equation as follows:

utt − αuxx − βuyy + g (u) = f (x, y, t) , (x, y) ∈ Ω, t ≥ 0, (1.1)

where u is a function of x, y and t, g is a nonlinear function and f is a known analytic function. The type of Eq. (1.1)
depends on the forms of g(u). In the case of g (u) = sin u, Eq. (1.1) is the Sine-Gordon equation involving the d’Alembert
operator. The Sine-Gordon equations have been successfully applied to model many physical problems [1–3], including
applications in relativistic field theory, Josephson junctions or mechanical transmission lines [4]. It is known to all that
soliton solutions appear in the 1D and 2D Sine-Gordon equations [5]. A wide range of analytical/numerical methods [6–22]
have been proposed for the numerical solution of Klein–Gordon equations. Among these methods, the spectral methods [7,
8], radial basis functions methods [15,17] and wavelets methods [23,24] deserved a lot of attention in the literature.

Due to the advantages of wavelets, such as orthogonality, multiresolution analysis and computational efficiency, it has
made a lot of successes in many different fields of science and engineering [25–32]. Wavelets permit the accurate represen-
tation of a variety of functions and operators. Moreover, it can establish a connection with fast numerical algorithms [32].
The spectral method has the advantage of ‘‘exponential-convergence’’ property when smooth solutions are involved. There-
fore, it has been playing an important role in the numerical solution of partial differential equations. The choice of the basis
function is vitally important for spectral method. Orthogonal polynomials are usually chosen to be basis functions. The
wavelet basis can combine the advantages of both infinitely differentiable and small compact support [33] which inherit
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fromboth spectral and finite element basis. Further, the differentiationmatrices of the spectral collocationmethod are dense
in all dimensions, and it is generally complex and difficult to solve multi-dimensional problems by the Galerkin method. In
contrast to aforementioned methods, Legendre wavelets method is easy to extend to multi-dimensional problems and its
operational matrices are sparse, have lower dimension and equal on every subinterval [34]. Therefore, spectral collocation
methods based on Legendre wavelet basis can obtain good spatial and spectral resolution while still keeping high efficiency.

Recently, A. Karimi Dizicheh et al. [35] proposed an iterative spectral collocationmethod based on LegendreWavelets for
solving IVP on large intervals. Motivated and inspired by the ongoing research in these areas, we develop a new effective and
exponential convergent method, which combines the spectral method with the Legendre wavelets method, for numerical
solution of Klein/Sine-Gordon equations. The organization of the remainder of this paper is as follows: In Section 2 we
describe the basic formulation of Legendrewavelets and the operationalmatrices required for our subsequent development.
The Legendrewavelets spectral collocationmethod is described in Section 3. Somenumerical results of the proposedmethod
for three 1-D examples and one 2-D example are given in Section 4. Conclusions and summary are made in Section 5.

2. Basis function of spectral method for limited domains

2.1. One-dimensional Legendre wavelets

In this section, the definition and some properties of 1D Legendre wavelets, which are first given by Razzaghi, M., and
Yousefi, S., [32] are introduced here. For more details see Refs. [30,32].

2.1.1. The definition of one-dimensional Legendre wavelets
Legendre wavelets are derived from the shifted Legendre polynomials by dilation and translation, and have four argu-

ments n̂ = 2n− 1, k can assume any positive integer,m is the order for Legendre polynomials and t is the normalized time.
They are defined on the interval [0, 1) as follows:

ψnm (t) =


m + 1/22

k
2 Lm


2kt − n̂


, for

n̂ − 1
2k

≤ t ≤
n̂ + 1
2k

,

0, otherwise
(2.1)

wherem = 0, 1, 2, . . . , M −1, n = 1, 2, . . . , 2k−1. The coefficient
√
m + 1/2 is for orthonormality, the dilation parameter

a = 2−k and the translation parameter b = n̂2−k. Here, Lm (t) are the well-known Legendre polynomials of orderm.
A function f (t) defined over [0, 1)may be expanded by Legendre wavelet series as

f (t) =

+∞
n=1

+∞
m=0

cnmψnm (t) , (2.2)

where

cnm = ⟨f (t) , ψnm (t)⟩, (2.3)

in Eq. (2.3), ⟨·, ·⟩ denotes the inner product.
If the infinite series in Eq. (2.2) is truncated, then it can be rewritten as

f (t) =

2k−1
n=1

M−1
m=0

cnmψnm (t) = CT9 (t) , (2.4)

where C and 9(t) are 2k−1M × 1 matrices defined as

C =

c10, c11, . . . , c1M−1, c20, . . . , c2M−1, . . . , c2k−10, . . . , c2k−1M−1

T (2.5)

and

9 (t) =

ψ10 (t) , ψ11 (t) , . . . , ψ1M−1 (t) , . . . , ψ2k−10 (t) , . . . , ψ2k−1M−1 (t)

T
. (2.6)

2.1.2. Operational matrix of derivative
One dimensional Legendre wavelets operational matrix of derivative was derived by F. Mohammadi [30]. In this section,

we just list the theorem and corollary as follows.
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Theorem 1. Let 9 (t) be the Legendre wavelets vector defined in (2.6), then we have

d9 (t)
dt

= D9 (t) , (2.7)

where D is 2k (M + 1) operational matrix of derivative defined as follows:

D =


F O · · · O
O F · · · O
...

...
. . .

...
O O · · · F

 , (2.8)

in which O is an (M + 1) (M + 1) zeros matrix, F is an (M + 1) (M + 1)matrix and its (r, s)th element is defined as follows:

Fr,s =


2k+1


(2r − 1) (2s − 1) r = 2, . . . , (M + 1) , s = 1, . . . , r − 1 and (r + s) odd

0 otherwise.

Corollary. By using Eq. (2.7) the operational matrix for nth derivative can be derived as

dn9 (t)
dtn

= Dn9 (t) , (2.9)

where Dn is the nth power of matrix D.

2.2. Two-dimensional Legendre wavelets

In this section, we give the definition and list some theorems of 2D Legendre wavelets which are first introduced by
Nanshan Liu [34]. See Refs. [24,34] for more details.

2.2.1. The definition of two-dimensional Legendre wavelets
Two-dimensional Legendre wavelets in L2(R) over the [0, 1]× [0, 1] in terms of one-dimensional Legendre wavelets can

be expressed as [34]:

Ψn,m,n′,m′(x, y) =

Ψnm(x)Ψn′m′(y),
n − 1
2k−1

≤ x ≤
n

2k−1
,
n′

− 1
2k′−1

≤ y ≤
n′

2k′−1
;

0, otherwise,
(2.10)

where n = 1, 2, . . . , 2k−1, n′
= 1, 2, . . . , 2k′−1,m = 0, 1, . . . ,M − 1 and m′

= 0, 1, . . . ,M ′
− 1.

The function u(x, y) ∈ L2(R) defined over [0, 1] × [0, 1] may be expanded as

u(x, y) = X(x)Y (y) ∼=

∞
n=1

∞
m=0

∞
n′=1

∞
m′=0

cn,m,n′,m′Ψn,m,n′m′(x, y). (2.11)

If the infinite series in (2.11) is truncated, then it can be rewritten as

u(x, y) = X(x)Y (y) ∼=

2k−1
n=1

M−1
m=0

2k
′
−1

n′=1

M ′
−1

m′=0

cn,m,n′,m′Ψn,m,n′,m′(x, y), (2.12)

where cn,m,n′,m′ =
 1
0

 1
0 X(x)Y (y)Ψn,m,n′,m′(x, y)dxdy.

The truncated version of Eq. (2.12) can be expressed as the vector–matrix form

u(x, y) = CT9(x, y), (2.13)

where C and 9(x, y) (see to [34] for more details) are coefficients matrix and wavelets vector–matrix respectively. The
number of dimensions of C and 9(x, y) are 2k−12k′−1MM ′

× 1, and given by

C = [c1,0,1,0, . . . , c1,0,1,M ′−1, c1,0,2,0, . . . , c1,0,2,M ′−1, . . . , c1,0,2k′−1,0, . . . , c1,0,2k′−1,M ′−1, . . . ,

c1,M−1,1,0, . . . , c1,M−1,1,M ′−1, c1,M−1,2,0, . . . , c1,M−1,2,M ′−1, . . . , c1,M−1,2k′−1,0, . . . , c1,M−1,2k′−1,M ′−1, . . . ,

c2,0,1,0, . . . , c2,0,1,M ′−1, c2,0,2,0, . . . , c2,0,2,M ′−1, . . . , c2,0,2k′−1,0, . . . , c2,0,2k′−1,M ′−1, . . . ,

c2,M−1,1,0, . . . , c2,M−1,1,M ′−1, c2,M−1,2,0, . . . , c2,M−1,2,M ′−1, . . . , c2,M−1,2k′−1,0, . . . , c2,M−1,2k′−1,M ′−1, . . . ,

c2k−1,0,1,0, . . . , c2k−1,0,1,M ′−1, c2k−1,0,2,0, . . . , c2k−1,0,2,M ′−1, . . . , c2k−1,0,2k′−1,0, . . . , c2k−1,M−1,2k′−1,M ′−1]
T (2.14)
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and
9 = [Ψ1,0,1,0, . . . ,Ψ1,0,1,M ′−1,Ψ1,0,2,0, . . . ,Ψ1,0,2,M ′−1, . . . ,Ψ1,0,2k′−1,0, . . . ,Ψ1,0,2k′−1,M ′−1, . . . ,

Ψ1,M−1,1,0, . . . ,Ψ1,M−1,1,M ′−1,Ψ1,M−1,2,0, . . . ,Ψ1,M−1,2,M ′−1, . . . ,Ψ1,M−1,2k′−1,0, . . . ,Ψ1,M−1,2k′−1,M ′−1, . . . ,

Ψ2,0,1,0, . . . ,Ψ2,0,1,M ′−1, c2,0,2,0, . . . ,Ψ2,0,2,M ′−1, . . . ,Ψ2,0,2k′−1,0, . . . ,Ψ2,0,2k′−1,M ′−1, . . . ,

Ψ2,M−1,1,0, . . . ,Ψ2,M−1,1,M ′−1,Ψ2,M−1,2,0, . . . ,Ψ2,M−1,2,M ′−1, . . . ,Ψ2,M−1,2k′−1,0, . . . ,Ψ2,M−1,2k′−1,M ′−1, . . . ,

Ψ2k−1,0,1,0, . . . ,Ψ2k−1,0,1,M ′−1,Ψ2k−1,0,2,0, . . . ,Ψ2k−1,0,2,M ′−1, . . . ,Ψ2k−1,0,2k′−1,0, . . . ,Ψ2k−1,M−1,2k′−1,M ′−1]
T .

(2.15)

2.2.2. Operational matrices of derivative
Two-dimensional Legendre wavelets operational matrices of derivative were derived by Yin [24]. In this section, we just

list the theorems and corollary as follows.

Theorem 2. Let 9 (x, y) be the two-dimensional Legendre wavelets vector defined in Eq. (2.15), we have

∂9 (x, y)
∂x

= Dx9 (x, y) , (2.16)

where Dx is 2k−12k′−1MM ′
× 2k−12k′−1MM ′ and has the form as follows:

Dx =


D O′

· · · O′

O′ D · · · O′

...
...

. . .
...

O′ O′
· · · D


in which O′ and D is a 2k′−1MM ′

× 2k′−1MM ′ matrix and the element of D is defined as follows:

Dr,s =


2k

(2r − 1) (2s − 1)I, r = 2, 3, . . . ,M; s = 1, . . . , r − 1, r + s is odd

O, otherwise

and I,O is a 2k′−1M ′
× 2k′−1M ′ identity matrix.

Theorem 3. Let 9 (x, y) be the two-dimensional Legendre wavelets vector defined in Eq. (2.15), we have

∂9 (x, y)
∂y

= Dy9 (x, y) , (2.17)

in which

Dy =


D O′

· · · O′

O′ D · · · O′

...
...

. . .
...

O′ O′
· · · D

 ,
where Dy is 2k−12k′−1MM ′

× 2k−12k′−1MM ′ and O′,D is an MM ′
× MM ′ matrix and is given as

D =


F O · · · O
O F · · · O
...

...
. . .

...
O O · · · F


in which O and F is an M ′

× M ′ matrix, and F is defined as follows:

Fr,s =


2k′

(2r − 1) (2s − 1), r = 2, . . . ,M ′

; S = 1, . . . , r − 1; and r + s is odd
0, otherwise.

Corollary 1. By using Eqs. (2.16) and (2.17) the operational matrices for nth derivative can be derived as

∂n9 (x, y)
∂xn

= Dn
x9 (x, y) ,

∂m9 (x, y)
∂ym

= Dm
y 9 (x, y) (2.18)

∂n+m9 (x, y)
∂xn∂ym

= Dn
xD

m
y Ψ (x, y) (2.19)

where Dn is the nth power of matrix D.
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3. Legendre wavelets spectral collocation method (LWSCM)

Mehrdad Lakestani [19] presented effective and accurate numerical techniques based on the finite difference by employ-
ing cubic B-spline scaling functions for the solution of nonlinear Klein–Gordon equation. Motivated and inspired by their
work, we propose a new effective and exponential convergent method, which combines the spectral method with the Leg-
endre wavelets method, for numerical solution of Klein\Sine-Gordon equations. Compared with the cubic B-spline scaling
functions, the operational matrices of the Legendre wavelets are sparse, equal on every subinterval, and most importantly,
easy to compute. What is more, the hierarchical scale structure of Legendre wavelets can be exploited to develop a fast
algorithm.

3.1. One-dimensional LWSCM

Consider the following form of equation:

utt − αuxx + g (u) = f (x, t) , x ∈ Ω =

xL, xR


, t ≥ 0. (3.1)

The initial condition is

u (x, 0) = g1 (x) , x ∈ Ω, t > 0
∂u (x, 0)
∂t

= g2 (x) , x ∈ Ω, t > 0,
(3.2)

and boundary condition is

u (x, t) = h (x, t) , x ∈ ∂Ω, t > 0. (3.3)

In order to use Legendre wavelets basis defined for X ∈ [0, 1]. Hence on the arbitrary interval x ∈ Ω = [xL, xR], one can use
the transform

x : [xL, xR] → [0, 1] , X (x) =
x − xL
xR − xL

.

By employing θ-weighted scheme, Eq. (3.1) can be discretized as

un+1
− 2un

+ un−1

(∆t)2
− θ


α
∂2un+1

∂x2


− (1 − θ)


α
∂2un

∂x2


+ g


un

= f n, (3.4)

where 0 ≤ θ ≤ 1,∆t is the time step size and note that un (x) = u (tn, x) , tn = n ×∆t .
Eq. (3.4) can be rewritten as

un+1
− θ (∆t)2


α
∂2un+1

∂x2


= 2un

+ (1 − θ) (∆t)2

α
∂2un

∂x2


− (∆t)2 g


un

+ (∆t)2 f n − un−1. (3.5)

According to Eq. (2.4), the term un can be expanded by Legendre wavelets as

un(x) = CT
n9(x). (3.6)

By substituting Eq. (3.6) into Eq. (3.5), one can have

CT
n+1HLΨ (x) =


CT
n HR − CT

n−1


Ψ (x)− (∆t)2 g


CT
nΨ (x)


+ (∆t)2 f n (3.7)

in which HL = I − αθ (∆t)2 D2 and HR = 2I + α (1 − θ) (∆t)2 D2, where D is the derivative matrix defined in Eq. (2.7).
Using the boundary condition (3.3), one can get

CT
n+19 (0) = h (0, tn+1) , CT

n+19 (1) = h (1, tn+1) , (3.8)

Collocating Eq. (3.7) in 2k−1M − 2 Gauss–Legendre points {xi}2
k−1M−1

i=2 , one can obtain

CT
n+1HLΨ (xi) =


CT
nHR − CT

n−1


Ψ (xi)− (∆t)2 g


CT
n9 (xi)


+ (∆t)2 f n (xi, tn) . (3.9)

Eqs. (3.8) and (3.9) can be written as matrix form

ACn+1 = B, (3.10)

where A and B are 2k−1M × 2k−1M and 2k−1M × 1 matrices, respectively.
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Using the first initial condition of Eq. (3.2), we have

CT
09 (x) = g1 (x) . (3.11)

By using the second initial condition of Eq. (3.2), one can get

u1
− u−1

2∆t
= g2 (x) , x ∈ Ω. (3.12)

Eq. (3.12) can be rewritten as

CT
−19 (x) = CT

19 (x)− 2∆tg2 (x) . (3.13)

Eq. (3.10) using Eq. (3.11) gives a linear system of equations with 2k−1M unknowns and equations, which can be solved to
find Cn+1 in each step n = 0, 1, 2, . . ., so the unknown functions u (x, tn) in any time t = tn can be found.

3.2. Two-dimensional LWSCM

Consider the following form of equation:

utt − αuxx − βuyy + g (u) = f (x, y, t) , (x, y) ∈ Ω, t ≥ 0. (3.14)

The initial condition is

u (x, y, 0) = g1 (x, y) , x ∈ Ω, t > 0, (3.15)
∂u (x, y, 0)

∂t
= g2 (x, y) , x ∈ Ω, t > 0, (3.16)

and boundary condition is

u (x, y, t) = h (x, y, t) , (x, y) ∈ ∂Ω, t > 0. (3.17)

In order to use Legendre wavelets basis defined for (X, Y ) ∈ [0, 1] × [0, 1]. Hence on the arbitrary interval (x, y) ∈ Ω =

[xL, xR] × [yL, yR], one can use the transform

(X, Y ) : [xL, xR] × [yL, yR] → [0, 1] × [0, 1] , X (x) =
x − xL
xR − xL

, Y (x) =
y − yL
yR − yL

.

By employing θ-weighted scheme, Eq. (3.14) can be discretized as

un+1
− 2un

+ un−1

(∆t)2
− θ


α
∂2un+1

∂x2
+ β

∂2un+1

∂y2


− (1 − θ)


α
∂2un

∂x2
+ β

∂2un

∂y2


+ g


un

= f n (3.18)

where 0 ≤ θ ≤ 1,∆t is the time step size and note un (x, y) = u (tn, x, y) , tn = n ×∆t . Eq. (3.18) can be rewritten as

un+1
− θ (∆t)2


α
∂2un+1

∂x2
+ β

∂2un+1

∂y2


=

2un
+ (1 − θ) (∆t)2


α
∂2un

∂x2
+ β

∂2un

∂y2


− (∆t)2 g


un

+ (∆t)2 f n − un−1.

(3.19)

According to Eq. (2.13), the term un can be expanded by Legendre wavelets as

u(x, y) ∼= CT9(x, y). (3.20)

By substituting Eq. (3.20) into Eq. (3.19), one can have

CT
n+1HL9 (x, y) =


CT
nHR − CT

n−1


9 (x, y)− (∆t)2 g


CT
n9 (x, y)


+ (∆t)2 f n (3.21)

with HL = I − θ (∆t)2

αD2

x + βD2
x


and HR = 2I + (1 − θ) (∆t)2


αD2

x + βD2
x


, in which I is an N × N ′ identity matrix,

whereN = 2k−1M andN ′
= 2k′−1M ′, whereD2

x = (Dx)
2 andDy =


Dy
2, matricesDx andDy are two-dimensional derivative

matrices with respect to x and y, respectively.
Using the boundary condition (3.17), one can get

CT
n+19


0, yj


= h


0, yj, tn+1


, CT

n+19

1, yj


= h


1, yj, tn+1


, j = 1, 2, . . . ,N ′,

CT
n+19 (xi, 0) = h (xi, 0, tn+1) , CT

n+19 (xi, 1) = h (xi, 1, tn+1) , i = 1, 2, . . . ,N.
(3.22)

Collocating Eq. (3.21) in (N − 2)×

N ′

− 2

Gauss–Legendre points {xi}N−1

i=2 ×

yj
N ′

−1
j=2 , one can obtain

CT
n+1HLΨ


xi, yj


=

CT
nHR − CT

n−1


9

xi, yj


− (∆t)2 g


CT
n9

xi, yj


+ (∆t)2 f n


xi, yj, tn


. (3.23)
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Table 1
Errors of Example 1 for difference time with∆t = 0.0001.

t L∞-error L2-error RMS Time (s)
RBFs LWSCM RBFs LWSCM RBFs LWSCM RBFs LWSCM
(100) (24) (100) (24) (100) (24) (100) (24)

1 5.0705e−5 9.4526e−5 2.9474e−4 1.7947e−4 2.0789e−5 3.6633e−5 23 05.16
2 5.0260e−4 9.7933e−4 2.7082e−3 2.0683e−3 1.9102e−4 4.2219e−4 51 10.33
3 2.0612e−3 3.9740e−3 9.7246e−3 7.9118e−3 6.8592e−4 1.6150e−3 84 15.21
4 6.5720e−3 1.2960e−2 2.7881e−2 2.4427e−2 1.9666e−3 4.9861e−3 120 20.41
5 1.9067e−2 3.7224e−2 7.7337e−2 6.9930e−2 5.4549e−3 1.4274e−2 160 26.03

Eqs. (3.23) and (3.22) can be written as matrix form

ACn+1 = B, (3.24)

where A and B are

N × N ′


×

N × N ′


and


N × N ′


× 1 matrices, respectively.

By employing the initial condition of Eq. (3.15), we have

CT
09 (x, y) = g1 (x, y) . (3.25)

By using the initial condition of Eq. (3.16), one can get

u1
− u−1

2∆t
= g2 (x, y) , (x, y) ∈ Ω. (3.26)

Eq. (3.26) can be rewritten as

CT
−19 (x) = CT

19 (x)− 2∆tg2 (x) . (3.27)

Eq. (3.24) using Eq. (3.27) gives a linear system of equations with N × N ′ unknowns and equations, which can be solved to
find Cn+1 in each step n = 0, 1, 2, . . . , so the unknown functions u (x, y, tn) in any time t = tn can be found.

4. Numerical examples

In this section, three 1-D examples and one 2-D example are discussed to validate the presentedmethod. Error functions
are defined as

ej = (uexact)j −

uapprox


j , e = uexact − uapprox,

∥e∥L∞ = max
j

ej , ∥e∥L2 =

 N
j=1

ej2, ∥e∥RMS =

 1
N

N
j=1

ej2.
4.1. 1D cases

Example 1. Consider the following one-dimensional nonlinear Klein–Gordon equation [17]:

∂2u
∂t2

−
∂2u
∂x2

+ u + u3
= f (x, t) , x ∈ Ω = [−1, 1] ⊂ R, 0 < t ≤ T , (4.1)

where f (x, t) =

x2 − 2


cosh (x + t)− 4x sinh (x + t)+ x6 cosh3 (x + t), subject to the initial conditions

u (x, 0) = x2 cosh (x) , −1 ≤ x ≤ 1
ut (x, 0) = x2 sinh (x) , −1 ≤ x ≤ 1,

(4.2)

and the Dirichlet boundary condition

u (x, t) = h (x, t) , x ∈ ∂Ω, 0 < t ≤ T . (4.3)

The exact solution of Eq. (4.1) is

u (x, t) = x2 cosh (x + t) . (4.4)

Table 1 gives the errors at difference time by using RBFsmethod [17] and LWSCM. Fig. 1 presents the numerical solutions
of Example 1 at time t = 2, 3, 4 and 5withN = 24 and∆t = 0.0001. FromTable 1, it can be found that L2-error of LWSCM is
smaller than RBFs while L∞-error of LWSCM is bigger than RBFs. Although RMS error is only a little bigger than one obtained
by RBFs, LWSCM needs much less number of grid points and time than RBF.
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Fig. 1. Numerical solutions of Example 1 at different times with∆t = 0.0001,N = 24.

Table 2
Errors of Example 2 for c = 0.5, 0.05 at different times t with∆t = 0.0001.

t L∞-error L2-error RMS
RBFs (50) LWSCM (9) RBFs (50) LWSCM (9) RBFs (50) LWSCM (9)

c = 0.5
1 5.9964e−06 6.1162e−06 4.0761e−05 1.0686e−05 4.0559e−06 3.5619e−06
2 2.1973e−05 2.2173e−05 1.5769e−04 4.0545e−05 1.5691e−05 1.3515e−05
3 9.0893e−05 9.1296e−05 6.4792e−04 1.6246e−04 6.4470e−05 5.4154e−05
4 8.2945e−04 7.7859e−04 5.3572e−03 1.3453e−03 5.3306e−04 4.4843e−04

c = 0.05
1 3.6497e−07 1.0784e−07 1.7861e−06 1.6653e−07 1.7772e−07 5.5509e−08
2 3.8952e−07 1.9920e−07 1.5383e−06 3.5710e−07 1.5306e−07 1.1903e−07
3 4.2123e−07 2.3722e−07 1.7275e−06 4.1971e−07 1.7190e−07 1.3990e−07
4 4.5928e−07 1.9190e−07 2.0097e−06 3.2353e−07 1.9997e−07 1.0784e−07

Example 2. Consider the following one-dimensional nonlinear Klein–Gordon equation [17,19]

∂2u
∂t2

− 2.5
∂2u
∂x2

+ u + 1.5u3
= 0, x ∈ Ω = [0, 1] ⊂ R, 0 < t ≤ T , (4.5)

subject to the initial conditions
u (x, 0) =


β

γ
tan


−

β

2

α + c2

x , 0 ≤ x ≤ 1

ut (x, 0) = c


β

γ


−

β

2

α + c2

 sec2 −
β

2

α + c2

x , 0 ≤ x ≤ 1,

(4.6)

and the Dirichlet boundary condition

u (x, t) = h (x, t) , x ∈ ∂Ω, 0 < t ≤ T . (4.7)

The exact solution of Eq. (4.5) is

u (x, t) =


β

γ
tan


−

β

2

α + c2

 (x + ct)


. (4.8)
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Fig. 2. Numerical solution of Example 2 with c = 0.05,N = 24 and∆t = 0.0001 for t = 1–10. From bottom to top are the numerical results at the time
of 1–10, respectively.

Fig. 3. Numerical solution of Example 2 with c = 0.5,N = 24 and∆t = 0.0001 for t = 1–4.

Fig. 2 shows the numerical solution from t = 1 to 10 by using LWSCM with c = 0.05,N = 24 and ∆t = 0.0001. Fig. 3
depicts the numerical solution from t = 1 to 4 by using LWSCM with c = 0.5,N = 24 and ∆t = 0.0001. Table 2 lists the
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Fig. 4. Numerical solution of Example 3 for difference t .

Fig. 5. Root-mean-square errors (in log form) of Example 3 as a function of N at t = 1.0 with∆t = 0.0001 and as a function of∆t at t = 1.0 with N = 32.

numerical solutions of Example 2 at t = 1–4 with N = 24 and ∆t = 0.0001 for c = 0.5 and 0.05. From Table 2, it can be
found that LWSCM is more accurate than RBFs [17] while only need much less grid points than RBFs.

Example 3. Consider the following one-dimensional nonlinear Sine-Gordon equation [11,13–15]:

∂2u
∂t2

−
∂2u
∂x2

+ sin u = 0, x ∈ Ω = [−10, 10] ⊂ R, 0 < t ≤ T , (4.9)
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Table 3
L∞, L2 and RMS errors using the explicit method, the RBF method and LWSCM with∆t = 0.001.

t Explicit method RBF method (N = 56 × 56) LWSCM (N = 24 × 24) LWSCM (N = 32 × 32)
L2 L∞ L2 L∞ RMS L2 L∞ RMS L2 L∞ RMS

1 0.7221 0.0350 0.2860 0.0670 0.0050 0.0178 0.0046 0.0007 0.0051 0.0008 0.0002
3 0.7877 0.0431 0.5872 0.0834 0.0103 0.0424 0.0090 0.0018 0.0153 0.0022 0.0005
5 0.5167 0.0404 0.8288 0.1015 0.0145 0.0598 0.0094 0.0025 0.0307 0.0048 0.0010
7 0.6531 0.0353 1.0706 0.1516 0.0187 0.0801 0.0121 0.0033 0.0504 0.0090 0.0016

(a) Numerical results for LWSCM at time t = 1.0.

(b) Numerical results for LWSCM at time t = 2.0.

Fig. 6. Numerical solutions and error for LWSCM at times t = 1, 2, 3 and 4 with∆t = 0.001 and N = N ′
= 24 for Example 4.

where f (x, t) = 0 and subject to the initial conditions
u (x, 0) = 0, 0 ≤ x ≤ 1
ut (x, 0) = 4 sech (x) , 0 ≤ x ≤ 1, (4.10)

and the Dirichlet boundary condition

u (x, t) = h (x, t) , x ∈ ∂Ω, 0 < t ≤ T . (4.11)
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(c) Numerical results for LWSCM at time t = 3.0.

(d) Numerical results for LWSCM at time t = 4.0.

Fig. 6. (continued)

The exact solution of Eq. (4.9) is

u (x, t) = 4 tan−1 (sech (x) t) . (4.12)

Fig. 4 shows the numerical solutions of Example 3 by using LWSCMwith N = 24 and∆t = 0.0001. From Fig. 4, it can be
found that the accuracy of LWSCM is higher than one-iterate solution of the variation iterational method. Fig. 5 shows the
RSM errors (in log form) as a function of N at t = 1.0 with∆t = 0.0001 and as a function of∆t at t = 1.0 with N = 32 for
Example 3. From Fig. 5, one can conclude that LWSCM still keeps the exponential convergence property.

4.2. 2D case

Example 4. Consider the following two-dimensional nonlinear Sine–Gordon equation [4,14,31]

∂2u
∂t2

+ β
∂u
∂t

=
∂2u
∂x2

+
∂2u
∂y2

− sin (u) , −7 ≤ x, y ≤ 7, t > 0, (4.13)
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with initial conditions

u (x, y, 0) = 4 tan−1 (exp (x + y)) , −7 ≤ x, y ≤ 7, t > 0,
∂u (x, y, 0)

∂t
= −

4 exp (x + y)
1 + exp (2x + 2y)

, −7 ≤ x, y ≤ 7, t > 0,
(4.14)

and boundary conditions

∂u
∂x

=
4 exp (x + y + t)

exp (2t)+ exp (2x + 2y)
, for x = −7 and x = 7, −7 ≤ y ≤ 7, t > 0, (4.15)

∂u
∂y

=
4 exp (x + y + t)

exp (2t)+ exp (2x + 2y)
, for y = −7 and y = 7, −7 ≤ x ≤ 7, t > 0. (4.16)

The theoretical solution of this problem, in which the parameter β = 0 is given by

u (x, y, t) = 4 tan−1 (exp (x + y − t)) . (4.17)

The solution was computed for (x, y) ∈ [−7, 7] × [−7, 7] and t > 0. The errors in the L2, L∞ norms and root-mean-square
(RMS) of errors at time t = 1, 3, 5 and 7 are given in Table 3. The graphs of numerical solutions for t = 1, 2, 3 and 4 are given
in Fig. 6. From Table 3, one can find that LWSCM is more accurate than the explicit method [31] and the RBF method [14]
while only needs a few number of grid points.

5. Conclusion

In this paper, a newspectral collocationmethodbasedon Legendrewavelets basis is proposed and successfully applied for
the solution of 1D and 2D Klein/Sine-Gordon equations. The exponential convergence property and error characteristics are
shown in these examples. There are three important points to make here. First, LWSCM can provide good spatial resolution
and spectral resolution, so can get a high accuracy solution. Second, LWSCM is computer oriented and can establish a connec-
tion with fast algorithms. Third, LWSCM can save more memory and computation time benefit from the advantage of Leg-
endre wavelets operational matrices. The numerical results presented here suggest that the Legendre wavelets spectral
collocation method is very effective, accurate and easy to implement for the numerical solution of partial differential equa-
tions.
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