Example of 20-sim using a dll function

20-sim program

Dynamic DLL functions

This demo shows the use of the dildynamic function. This function allows yvou to run
dll-functions which may contain states. The demonstration dll-function that is used
here represents a second order system. The same system is also modeled by a
linear system. The C++files that where used to create this dil (Visual C++ version

4 or higher) are included in the directory.

24
L' 55+ 65 + 34 E
EfepZignsl LinSys Monifary

Dymnamic =
DLL fumction ul E

Monitor2

Dy namic Submodel

1. Startthe simulator (Model - Starnt Simulator).
2. Run a simulation (Simulator Window - Simulation - Run).

Call of the dll function in 20-sim

barameters
string dllName = 'demoDynamicDll.dl1*;
gtring functioniName = 'SFunctionCalculate’;
equations

output = dlldynamic (dllName, functionMName, input):;

"stdafx.h"
"SimulatorSFunctionStruct.h"

#include
#include

/KRR sk sk R sk K R sk R sk R K K Sk R Sk R SRR K kR Sk R SRR Sk K s K Sk R KK R sk K sk Rk K ok ok ok k ok ok ok ok 5k % % % K K ok ok ok k ok

* in this source file we are gonna describe a linear system which is defined by
* the following transfer function description:

which has two poles on (-3 + 5i) and (-3 -5i)

steady state = 1

sk ks sk sk ok ok sk sk sk sk s ok ok sk ok ok stk ok sk skl skt sk sk sk sk kol ok skl sk ok sk sk ok skl sk sk sk sk ok skl ok skl ok ok

tdefine D11Export declspec(dllexport)

// called at begin of the simulation run
D11Export int Initialize()

// you can perform your own initialization here.

return TRUE;

// called at end of the simulation run
D11Export int Terminate()

D11Export int SFunctionInit (SimulatorSFunctionStruct *s)

// tell our caller what kind of dll we are
s->nrIndepStates = 2;

s->nrDepStates = 0;

s->nrAlgloops = 0;

// dubious information, since 20-sim itself does not check and need this info
s->nrInputs =

s->nrOutputs = 1;

// return 1, which means TRUE
return 1;

D11lExport int SFunctionGetInitialStates (double *x@, double *xd®, double *xa@,
SimulatorSFunctionStruct *s)

// fill in the x@ array here. Since we specified no Dependent states, and No
algebraic loop variables

// the xd@ and xa® may not be used.

// initial value is zero.

-3.4 * x[1] -3.4 * u[0];
= 10 * x[0] -6 * x[1];

// return 1, which means TRUE
return 1;

}// extern "C"

BOOL APIENTRY D11Main(HANDLE hModule,
DWORD ul_reason_for_call,
LPVOID lpReserved

return TRUE;

Code of the structure called

// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently,

are changed infrequently

#if MSC_VER > 1000

#endif // MSC_VER > 1000

// Insert your headers here
#define WIN32 LEAN_AND MEAN

// Exclude rarely-used stuff from Windows headers

#tinclude <windows.h>

#ifndef _ SIMULATION_SFUNCTION_STRUCT]
itdefine _ SIMULATION_SFUNCTION_STRUCT]

BOOL;

struct SimulatorSFunctionStruct
double versionNumber;

nrOutputs;

nrIndepStates;

nrDepStates;

nrAlglLoops;
double simulationStartTime;
double simulationFinishTime;
double simulationCurrentTime;
BOOL major;
BOOL initialOutputCalculation;

This structure is both used for initialization of the DLL
SFunction as for the calling of the SFunction funtion itself

the versionNumber in the structure is to be able to detect changes in the structure
definition for future use. New options and fields will be added to the end of the

structure, so that older dll's will remain working.

.Initialization:

In de DLL the function "int SFunctionInit(SimulatorSFunctionStruct *simStruct)"
is called.

Return value is © means error. every other value succes

Argument is a pointer to the simstructure.

On initialization the following fields should be filed in:

nrIndepStates

The following fields already have valid values:

simulationStartTime : giving the start time of the simulation

simulationFinishTime : giving the finish time of the simulation

simulationCurrentTime : giving the current time (actually the start time
at the moment of initialization)

2.Initial values for the states:
Return value is © means error. every other value succes

int SFunctionGetInitialStates(double *initialIndepStates,
double *initialDepRates,
double *initialAlgloopIn,
SimulatorSFunctionStruct *simStruct);

The initial value for the independent states, dependent rates and algebraic

loop variables can be specified by the dll in this function. It is just called
before the initial output calculation function in step 3. If all the initial values
are zero, nothing has to be specified.

3.Initial Output Calculation
It is possible that the DLL-function can give an initial output.
A separate function is called so that the DLL can
calculate it's initial output values.
The boolean initialOutputCalculation in the simulatorSFunction structure
is used. Just the sFunction is called. as in point 4|

4.SFunction calling:

Here all the fields of the SimulatorSFunctionStruct are

input for the function. The inputArray, stateArray, outputArray and rateArray

are always given as arguments of the function. Dependent on the number of dependent
states and algebraic loop variables more arguments can be given as shown

in the functions below (sFunctionName is the name defined by the parameter name

by the user):
Return value is @ means error. every other value succes

case: no dependent states, no algebraic loop variables
int sFunctionName(double *inputArray,
double *stateArray,
double *outputArray,
double *rateArray,
SimulatorSFunctionStruct *simStruct);

case: dependent states, no algebraic loop variables
int sFunctionName(double *inputArray,
double *stateArray,
double *dependentRateArray,
double *outputArray,
double *rateArray,
double *dependentStateArray,
SimulatorSFunctionStruct *simStruct);

case: no dependent states, algebraic loop variables
int sFunctionName(double *inputArray,
double *stateArray,
double *alglLoopInArray,
double *outputArray,
double *rateArray,
double *algloopOutrray,
SimulatorSFunctionStruct *simStruct);

case: dependent states, algebraic loop

int sFunctionName(double *inputArray,
double *stateArray,
double *dependentRateArray,
double *alglLoopInArray,
double *outputArray,
double *rateArray,
double *dependentStateArray,
double *algloopOutrray,

tendif

