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a b s t r a c t

A class of recurrent neural networks is investigated in the vicinity of the Bogdanov–Takens bifurcation

point in the parameter space when the slope of the transfer function of the neurons at the origin is not

equal to one. It will be shown that two different bifurcation diagrams can be constructed. In each

bifurcation diagram, there are critical values for the parameters of the network for which curves of

describes the network, has a pair of simple zero eigenvalues. As curves of homoclinic and heteroclinic

bifurcation emanate from the Bogdanov–Takens point, a complicated behavior is observed by the

variation of weights in the recurrent neural network.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction and problem statement

Recurrent neural networks (RNNs) including Cohen–Grossberg
neural networks (CGNNs), Hopfield neural networks (HNNs) and
cellular neural networks (CNNs) have been used extensively in
different areas such as signal processing, pattern recognition,
optimization and associative memories [5,13] in which the
stability of equilibrium in the network is widely investigated.
They are also one of the best choices for learning input and output
data which dynamically vary by time [6,21,31]. One of the main
focuses of research on RNNs has always been the existence of
periodic solutions and mechanisms under which such solutions
emerge. Studies related to the existence of periodic solutions in a
certain type of cyclic recurrent neural configurations can be found
in [1,8,12]. One of the natural features of recurrent neural
networks is the presence of time delays in their dynamical
models. Many rich mathematical investigations and results on
recurrent neural networks with time delays are available in the
literature. These investigations include the global asymptotic and
exponential stability of equilibria and also the existence and
stability of periodic solutions with and without time delays; see
for example [2–4,10,16–19,23–25,27–29] and also [32] for some
ll rights reserved.
recent references on RNNs with both constant and time-varying
delays. In [11], Haschke et al. have given analytical expressions for
bifurcation manifolds in the input space of general discrete-time
RNNs for the case of three-neuron networks.

In this paper, we study a three-neuron recurrent neural
network in feedback configuration. Ruiz et al. studied this model
in [22] for the first time. Fig. 1 illustrates the class of recurrent
neural networks that they considered in their investigations. In
Fig. 1, u(t) is the input and y(t) is the output of the network. This
network can be described by the following system:

_x1ðtÞ ¼�x1ðtÞþ f ðx2ðtÞÞ,

^
_xn�1ðtÞ ¼�xn�1ðtÞþuðtÞ,

_xnðtÞ ¼�xnðtÞþw1f ðx1ðtÞÞþ � � � þwn�1f ðxn�1ðtÞÞ,

yðtÞ ¼ f ðxnðtÞÞ:

8>>>>>><
>>>>>>:

ð1Þ

Here, xðtÞARn is the state variable, wiAR, i¼1,y,n�1 are the
network parameters or weights, u(t) is the input and y(t) is
the output. The function f ð�Þ represents the transfer function of
the neurons. Ruiz et al. [22] showed that a three-neuron network
of the form (1), with f ð�Þ ¼ tanhð�Þ, has the capability of learning a
specific class of time-varying periodic signals. According to [22],
system (1) receives the input u(t) as an unknown signal and then
after a period of length T40, during which wi(t), i¼ 1, . . . ,n�1 are
adapted, with the intention that y(t) tracks u(t), the input u(t) is
replaced by the output y(t). The three-node network studied in
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Fig. 1. Class of recurrent neural networks studied in [22].

Fig. 2. The bifurcation diagram presented in [22]. In the shaded region, the

linearization of system (2) with f ð�Þ ¼ tanhð�Þ at the unique equilibrium (0,0,0) has

a negative real eigenvalue and a pair of complex conjugate eigenvalues with

positive real part.

Fig. 3. The bifurcation diagram presented in [7]. The shaded region is determined

by inequalities (5). The two dashed curves S and H in the shaded region, represent

the saddle-node and the Hopf bifurcation curves, respectively. The point E(�2,3)

denotes the Bogdanov–Takens bifurcation point in the parameter space.
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[22] and [26] in feedback configuration, with u(t)¼y(t), is as
follows:

_x1ðtÞ ¼�x1ðtÞþ f ðx2ðtÞÞ,

_x2ðtÞ ¼�x2ðtÞþ f ðx3ðtÞÞ,

_x3ðtÞ ¼�x3ðtÞþw1f ðx1ðtÞÞþw2f ðx2ðtÞÞ,

8><
>: ð2Þ

where w1AR and w2AR, are fixed. It is important to note that
system (2) with f ð�Þ ¼ tanhð�Þ, is Z2-symmetric; in other words, it
is invariant under the rotation through the angle p; see [15]. Ruiz
et al. [22] considered system (2) with the transfer function
f ð�Þ ¼ tanhð�Þ and proved that in a specific region in the
(w1,w2)-space determined by inequalities

2w2�w1Z8 and 27w2
1�4w3

240, ð3Þ

the linearization of system (2) with f ð�Þ ¼ tanhð�Þ at the unique
equilibrium (0,0,0) has a negative real eigenvalue and a pair of
complex conjugate eigenvalues with positive real part. In
particular, they showed that the curve 2w2�w1¼8, with
w1o�2, is the Hopf bifurcation curve in the two-dimensional
parameter space on which the two complex conjugate eigenva-
lues become purely imaginary. Fig. 2 depicts the bifurcation
diagram presented in [22] and also the region (shaded area)
determined by inequalities (3). It is easy to check that the
linearization of system (2), with f ð�Þ ¼ tanhð�Þ, at the equilibrium
(x1*, x2*, x3*)¼(0,0,0) has a pair of simple zero eigenvalues at
(w1*, w2*)¼(�2,3) where the two curves 27w1

2
�4w2

3
¼0 and

2w2�w1¼8 intersect each other.
Recently, Hajihosseini et al. [10] studied system (2) with

distributed delays when f ð�Þ ¼ tanhð�Þ is taken as the transfer
function of the neurons. By using the strong kernel and applying
the Moiola and Chen formulation of the frequency domain [20], it
was shown that for a fixed choice of the mean delay as the
bifurcation parameter, there are corresponding values of the
network parameters w1 and w2 for which system (2) undergoes a
Hopf bifurcation at the origin. Thereby, even with the presence of
time delays, this class of recurrent neural networks was proved to
have the capability of learning given periodic signals.

In this paper, we consider system (2) with a general transfer
function. We replace tanhð�Þwith a function with the Taylor series
expansion at the origin of the form

f ðxÞ ¼
X1
i ¼ 1

a2i�1x2i�1, ð4Þ

where a2i�140 for i odd and a2i�1o0 for i even. This new transfer
function still preserves the same properties of oddity, continuity,
monotonicity and smoothness and is assumed to be bounded. If
we take tanhð�Þ as the transfer function, Eq. (4) will represent the
Taylor expansion of this function with a1 ¼ 1, a3 ¼�1=3, etc.
System (2) with transfer function (4) is a Z2�symmetric system.
By using Eq. (4) as the transfer function of the neurons, we
investigate a broader class of periodic signals that networks of the
form (2) can learn. Our investigation improves and broadens
previous results in [7,10,22] and shows that when a1 ¼ 1, some
results in [7] are not generic.

Recently, Gao et al. [7] studied system (2) with f ð�Þ ¼ tanhð�Þ
and obtained a single equation for the equilibria of this system by
using the iterates of the transcendental transfer function, tanhð�Þ.
They showed that in a specific region in the bifurcation diagram in
Fig. 2, the number of equilibria of system (2) changes from one to
five. This region is determined by inequalities

27w2
1�4w3

2o0 and w1þw2o1 and w243: ð5Þ

Based on their studies on the equilibria of system (2), Gao et al. [7]
introduced two bifurcation curves in the region determined by
inequalities (5). These curves include a saddle-node and a Hopf
bifurcation curve. The two curves are illustrated in Fig. 3. The
saddle-node and the Hopf bifurcation curves are labeled with
S and H, respectively.

We analyze system (2) with transfer function (4) in the
neighborhood of the Bogdanov–Takens codimension two bifurca-
tion point in the (w1,w2)-space. We will show that if a1a1 in
transfer function (4), system (2) can be reduced to the following
system:

_x1ðtÞ ¼ x2ðtÞ,

_x2ðtÞ ¼ m1x1ðtÞþm2x2ðtÞþa3x3
1ðtÞþb3x2

1ðtÞx2ðtÞ,

(
ð6Þ

where m1 and m2 are the unfolding parameters and are functions
of w1, w2 and a1. System (6) has at most three equilibria and does
not undergo the saddle-node and the Hopf bifurcation in the
region determined by inequalities (5). In other words, the two
bifurcation curves, labeled with S and H in Fig. 3, vanish when
a1a1; as a result, their presence in the parameter space is not
generic for systems with Z2-symmetry. In addition, we will show
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that there are other bifurcation curves along with the Hopf
bifurcation curve in the parameter space emanating from the
Bogdanov–Takens point. These include a curve of pitchfork,
homoclinic and heteroclinic bifurcation and a fold bifurcation
curve for limit cycles.

This paper is organized as follows. In Section 2, we first reduce
the original system to the center manifold corresponding to a pair
of simple zero eigenvalues. Then by applying appropriate change
of variables, we obtain the normal form of the system at the
bifurcation point and introduce the unfolding parameters. In
Section 3, a full investigation is carried out on the reduced system
in the vicinity of the bifurcation point, and all possible bifurca-
tions that take place in this system, are analyzed. In Section 4,
bifurcation diagrams for different choices of a3, according to its
sign, are presented. By using the parameter values in different
regions, determined by the bifurcation curves, several phase
portraits of the system are constructed.
2. Center manifold reduction and the normal form

Consider system (2) with transfer function (4). Thus,

_x1ðtÞ ¼�x1ðtÞþa1x2þa3x3
2þOðx5

2Þ,

_x2ðtÞ ¼�x2ðtÞþa1x3þa3x3
3þOðx5

3Þ,

_x3ðtÞ ¼�x3ðtÞþw1ða1x1þa3x3
1þOðx5

1ÞÞ

þw2ða1x2þa3x3
2þOðx5

2ÞÞ:

8>>>><
>>>>:

ð7Þ

Linearization of system (7) at the equilibrium (x1*, x2*, x3*)¼(0,0,0)
is given by

Jðw1,w2Þ ¼

�1 a1 0

0 �1 a1

a1w1 a1w2 �1

0
B@

1
CA, ð8Þ

with the characteristic equation

l3
þ3l2

þð3�a2
1w2Þlþð1�a2

1w2�a3
1w1Þ ¼ 0: ð9Þ

According to Eq. (9), if we set w1 ¼w�1 ¼�2=a3
1 and

w2 ¼w�2 ¼ 3=a2
1, the roots of Eq. (9) will be l1 ¼ 0,l2 ¼ 0 and

l3 ¼�3. In other words, at ðw�1,w�2Þ ¼ ð�2=a3
1,3=a2

1Þ, the linearized
system has a pair of simple zero eigenvalues. We will study
system (2) in the neighborhood of the point (w1*, w2*) in the
(w1, w2)-space. To this end, we need to reduce system (7) to the
center manifold corresponding to this pair of simple zero
eigenvalues. For this, we consider the following transformations:

x1

x2

x3

0
B@

1
CA¼

a2
1 0

1

4
a2

1

a1 a1 �
1

2
a1

1 2 1

0
BBBB@

1
CCCCA

y1

y2

y3

0
B@

1
CA, ð10Þ

y1

y2

y3

0
B@

1
CA¼ 1

9a2
1

8 2a1 �a2
1

�6 3a1 3a2
1

4 �8a1 4a2
1

0
B@

1
CA

x1

x2

x3

0
B@

1
CA: ð11Þ

Using transformations (10) and (11), we put system (7) into the
standard form

_y1

_y2

_y3

0
B@

1
CA¼

0 1 0

0 0 0

0 0 �3

0
B@

1
CA

y1

y2

y3

0
B@

1
CAþ

F1ðy1,y2,y3Þ

F2ðy1,y2,y3Þ

F3ðy1,y2,y3Þ

0
B@

1
CA, ð12Þ

where

F1ðy1,y2,y3Þ ¼ a300y3
1þa210y2

1y2þa120y1y2
2

þa030y3
2þa201y2

1y3þa102y1y2
3þa021y2

2y3

þa012y2y2
3þa003y3

3þa111y1y2y3þOðjðy1,y2,y3Þj
5Þ,
and

F2ðy1,y2,y3Þ ¼ b300y3
1þb210y2

1y2þb120y1y2
2þb030y3

2

þb201y2
1y3þb102y1y2

3þb021y2
2y3þb012y2y2

3

þb003y3
3þb111y1y2y3þOðjðy1,y2,y3Þj

5Þ,

and

F3ðy1,y2,y3Þ ¼ c300y3
1þc210y2

1y2þc120y1y2
2þc030y3

2

þc201y2
1y3þc102y1y2

3þc021y2
2y3þc012y2y2

3þc003y3
3

þc111y1y2y3þOðjðy1,y2,y3Þj
5Þ,

where

a300 ¼
a3

9a1
ð2þ5a2

1þ2a4
1Þ, a210 ¼

a3

3a1
ð4þ5a2

1Þ,

a120 ¼
a3

3a1
ð8þ5a2

1Þ,

a030 ¼
a3

9a1
ð16þ5a2

1Þ, a201 ¼
a3

6a1
ð4�5a2

1þa
4
1Þ,

a111 ¼�
a3

3a1
ð�8þ5a2

1Þ,

a012 ¼
a3

12a1
ð16þ5a2

1Þ, a003 ¼
a3

288a1
ð64�20a2

1þa
4
1Þ,

a021 ¼�
a3

6a1
ð�16þ5a2

1Þ, a102 ¼
a3

24a1
ð16þ10a2

1þa
4
1Þ,

and

b300 ¼�
a3

3a1
ð�1�a2

1þ2a4
1Þ, b210 ¼

a3

a1
ð2þa2

1Þ, b120 ¼
a3

a1
ð4þa2

1Þ,

b030 ¼
a3

3a1
ð8þa2

1Þ, b201 ¼�
a3

2a1
ð�2þa2

1þa
4
1Þ,

b111 ¼�
a3

a1
ð�4þa2

1Þ,

b012 ¼
a3

4a1
ð8þa2

1Þ, b003 ¼�
a3

96a1
ð�32þ4a2

1þa
4
1Þ,

b021 ¼�
a3

2a1
ð�8þa2

1Þ, b102 ¼�
a3

8a1
ð�8�2a2

1þa
4
1Þ,

and

c300 ¼�
8a3

9a1
ð1�2a2

1þa
4
1Þ, c210 ¼

16a3

3a1
ð�1þa2

1Þ,

c120 ¼
16a3

3a1
ð�2þa2

1Þ,

c030 ¼
16a3

9a1
ð�4þa2

1Þ, c201 ¼�
2a3

3a1
ð4þ4a2

1þa
4
1Þ,

c111 ¼�
16a3

3a1
ð2þa2

1Þ,

c012 ¼
4a3

3a1
ð�4þa2

1Þ, c003 ¼�
a3

72a1
ð64þ16a2

1þa
4
1Þ,

c021 ¼�
8a3

3a1
ð4þa2

1Þ, c102 ¼�
a3

6a1
ð16�8a2

1þa
4
1Þ:

We reduce system (12) to a two-dimensional center manifold
which corresponds to the pair of simple zero eigenvalues. Since
the stable eigenspace (Es) is one-dimensional, the center manifold
is of the form y3¼h(y1,y2); see [9,14,15,30] for more details on
center manifold theorem. It can easily be seen that the coefficients
of the second order terms in the center manifold are zero.
Therefore, we consider the center manifold

y3 ¼ hðy1,y2Þ ¼ ay3
1þby2

1y2þcy1y2
2þdy3

2þOðjðy1,y2Þj
5Þ: ð13Þ

By putting the center manifold (13) into the third equation of (12)
and then by equating powers of y1

3, y1
2 y2, y1y2

2 and y2
3 on both
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sides, we can calculate the coefficients of the center manifold as
follows:

a¼�
8a3

27a1
ð�2a2

1þa
4
1þ1Þ, b¼

8a3

27a1
ð4a2

1þa
4
1�5Þ,

c¼�
16a3

81a1
ð�5a2

1þa
4
1þ13Þ, d¼

16a3

243a1
ð4a2

1þa
4
1�23Þ:

Therefore, system (12) is reduced to the following system:

_y1 ¼ y2þb30y3
1þb21y2

1y2þb12y1y2
2þb03y3

2þOðjðy1,y2Þj
5Þ,

_y2 ¼ s30y3
1þs21y2

1y2þs12y1y2
2þs03y3

2þOðjðy1,y2Þj
5Þ,

(
ð14Þ

where

b30 ¼
a3

9a1
ð5a2

1þ2a4
1þ2Þ, b21 ¼

a3

3a1
ð5a2

1þ4Þ,

b12 ¼
a3

3a1
ð5a2

1þ8Þ, b03 ¼
a3

9a1
ð5a2

1þ16Þ,

and

s30 ¼�
a3

3a1
ð�a2

1þ2a4
1�1Þ, s21 ¼

a3

a1
ða2

1þ2Þ,

s12 ¼
a3

a1
ða2

1þ4Þ, s03 ¼
a3

3a1
ða2

1þ8Þ:

Now, according to [15], we introduce the new variables (u1,u2) by

u1 ¼ y1,

u2 ¼
~F1 ðy1,y2Þ,

(
ð15Þ

where

~F1 ðy1,y2Þ ¼ y2þb30y3
1þb21y2

1y2þb12y1y2
2þb03y3

2þOðjðy1,y2Þj
5Þ.

Transformation (15) brings system (14) into

_u1 ¼ u2,

_u2 ¼ h30u3
1þh21u2

1u2þh12u1u2
2þh03u3

2þOðjðu1,u2Þj
5Þ,

(
ð16Þ

where

h30 ¼�
a3

3a1
ð�a2

1þ2a4
1�1Þ, h12 ¼

a3

3a1
ð13a2

1þ20Þ,

h21 ¼
2a3

3a1
ð4a2

1þa
4
1þ4Þ, h03 ¼

2a3

3a1
ð3a2

1þ8Þ:

System (16) can be rewritten as

_U ¼ J
BT

UþG3ðUÞþOðjUj5Þ, ð17Þ

where

U ¼
u1

u2

 !
, J

BT
¼

0 1

0 0

� �
,

G3ðUÞ ¼
0

h30u3
1þh21u2

1u2þh12u1u2
2þh03u3

2

 !
:

To simplify the third order terms in system (17), we consider the
change of coordinates introduced in [9,30]; that is,

U ¼ VþHðVÞ, ð18Þ

where

V ¼
v1

v2

 !
, HðVÞ ¼

f30v3
1þ f21v2

1v2þ f12v1v2
2þ f03v3

2

g30v3
1þg21v2

1v2þg12v1v2
2þg03v3

2

 !
,

with

f30 ¼
a3

18a1
ð13a2

1þ20Þ, f21 ¼
a3

3a1
ð3a2

1þ8Þ,
g21 ¼
a3

6a1
ð13a2

1þ20Þ, g12 ¼
2a3

3a1
ð3a2

1þ8Þ,

and f12¼ f03¼ g30¼g03¼0. Transformation (18) puts system (17)
into the following system:

_v1 ¼ v2þOðjðv1,v2Þj
5Þ,

_v2 ¼ a3v3
1þb3v2

1v2þOðjðv1,v2Þj
5Þ,

(
ð19Þ

where

a3 ¼�
a3

3a1
ð2a4

1�a
2
1�1Þ, b3 ¼

2a3

3a1
ða4

1þ4a2
1þ4Þ:

In system (19), the coefficient a3 will be nonzero if a1a1.
According to [9,15,30], the higher order terms can be omitted in
system (19) due to the structural stability; therefore, the
following system will be taken into account:

_v1 ¼ v2,

_v2 ¼ a3v3
1þb3v2

1v2:

(
ð20Þ

System (20) represents the normal form of system (7) at the
Bogdanov–Takens bifurcation point where
ðw�1,w�2Þ ¼ ð�2=a3

1,3=a2
1Þ. Since a140 and a3o0, b3 is always

negative. If a1o1, then a3o0 and if a141, then a340. In the
case of a1 ¼ 1, the nondegeneracy condition of the Bogdanov–
Takens bifurcation, that is a3a0, will be violated and therefore
we need to consider higher order terms in the normal form of the
system at the Bogdanov–Takens bifurcation point. By using tanhð�Þ
as the transfer function of the neurons, Gao et al. [7] have shown
the existence of two bifurcation curves in a specific region in the
parameter space determined by inequalities (5); see Fig. 3. By
using the normal form (20), one can study system (7) in the
neighborhood of the Bogdanov–Takens bifurcation point in the
parameter space and show that those two bifurcation curves
vanish when a1 takes positive values other than one.

Now, if we repeat the same procedure of reducing to center
manifold and applying the change of coordinates (15) and (18) in
the vicinity of (w1*, w2*) for a1a1, we will obtain the normal form
whose coefficients are functions of w1 and w2. Thus, the unfolding
terms will automatically emerge. Therefore, system (7) takes the
form

_v1 ¼ v2,

_v2 ¼ m1ðw1,w2Þv1þm2ðw1,w2Þv2þ ~a3ðw1,w2Þv
3
1þ

~b3ðw1,w2Þv
2
1v2,

(

ð21Þ

with

m1ðw1,w2Þ ¼
1

3
ðw1a3

1þw2a2
1�1Þ,

m2ðw1,w2Þ ¼
1

9
ð�w1a3

1þ2w2a2
1�8Þ, ð22Þ

and

m1ðw
�
1,w�2Þ ¼ m2ðw

�
1,w�2Þ ¼ 0, ~a3ðw

�
1,w�2Þ ¼ a3, ~b3ðw

�
1,w�2Þ ¼ b3:

ð23Þ

Since we have applied the change of coordinates (10), (11), (15)
and (18) in a small neighborhood of (w1*, w2*), the coefficients ~a3

and ~b3 preserve the sign of a3 and b3 due to their continuous
dependence on parameters. By introducing the change of
variables and rescaling of time

x1 ¼
~b3ffiffiffiffiffiffiffi
j ~a3

p
j
v1, x2 ¼�

~b
2

3

j ~a3j
ffiffiffiffiffiffiffi
j ~a3

p
j
v2, t¼� j

~a3j

~b3

t, ð24Þ
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system (21) becomes

_x1 ¼ x2,
_x2 ¼ ~m1x1þ ~m2x2þsx3

1�x
2
1x2,

(
ð25Þ

where s¼ sgnð ~a3Þ, and

~m1 ¼ ~m1ðw1,w2Þ ¼
~a3

~b3

 !2

m1ðw1,w2Þ,

~m2 ¼ ~m2ðw1,w2Þ ¼ �
j ~a3j

~b3

m2ðw1,w2Þ: ð26Þ

By using system (25), we can study the qualitative behavior of the
original system (7) in the neighborhood of the Bogdanov–Takens
codimension two bifurcation point, ðx�1,x�2,x�3,w�1,w�2Þ ¼ ð0,0,0,
�2=a3

1,3=a2
1Þ, and study all possible codimension one bifurcations

and obtain their corresponding curves in the (w1,w2)-space.
3. Bifurcation analysis

The equilibria of system (25) are given by

x2 ¼ 0 and ~m1x1þsx3
1 ¼ 0: ð27Þ

Therefore, one obtains

E1ðsÞ ¼ ð0,0Þ and E2,3ðsÞ ¼ 8

ffiffiffiffiffiffiffiffiffiffiffi
�
~m1

s

r
,0

 !
: ð28Þ

The point E1(s) is always an equilibrium of system (25), but the
existence of the two equilibria E2,3(s) depends on the sign of both
s and ~m1. In what follows, we consider system (25) in two
different cases s¼1 and �1, and investigate all possible bifurca-
tions that take place in the system. According to Eqs. (26), we can
express ~m1 and ~m2 in terms of m1 and m2 with which we
can achieve the equations for the bifurcation curves in the
(w1,w2)-space by using Eqs. (22).
3.1. The case s¼1

In this case, the equilibria (28) take the following form:

E1ð1Þ ¼ ð0,0Þ and E2,3ð1Þ ¼ ð8
ffiffiffiffiffiffiffiffiffiffi
� ~m1

p
,0Þ: ð29Þ

It is clear that the two equilibria E2,3(1) vanish when ~m140. This
implies that the curve ~m1 ¼ 0 can be taken as a pitchfork
bifurcation curve in the (w1,w2)-space on which the two equilibria
E2,3(1) collide with each other at the equilibrium E1(1) and as a
result, the origin will be the only equilibrium of system (25). To
study system (25) around the curve ~m1 ¼ 0, we consider the
linearization of system (25) at E1(1); that is,

J½E1ð1Þ� ¼
0 1

~m1 ~m2

 !
: ð30Þ

In the Jacobian matrix (30), if we put ~m1 ¼ 0, the eigenvalues will
be l1 ¼ 0 and l2 ¼ ~m2 when ~m2a0. We can reduce system (25) to
the center manifold corresponding to the zero eigenvalue. To this
end, we have to first put the system into its standard form. For
this, we apply the following change of coordinates for small j ~m1j

x1

x2

 !
¼

1 1

0 ~m2

 !
z1

z2

 !
, ð31Þ

z1

z2

 !
¼

1 �1= ~m2

0 1= ~m2

 !
x1

x2

 !
: ð32Þ
Then the standard form of system (25) will be given by

_z1 ¼ �
1
~m2

ð ~m1z1þ ~m1z2þz3
1þð3� ~m2Þz

2
1z2þð3�2 ~m2Þz1z2

2

þð1� ~m2Þz
3
2Þ,

_z2 ¼
1
~m2

ð ~m1z1þð ~m1þ ~m
2
2Þz2þz3

1þð3� ~m2Þz
2
1z2þð3�2 ~m2Þz1z2

2

þð1� ~m2Þz
3
2Þ:

8>>>>>>>><
>>>>>>>>:

ð33Þ

Since the coefficient of z1
3 in the first equation of system (33) is

nonzero, we can consider the trivial center manifold z2¼h(z1)¼0;
see [15] for more details. The reduced system then takes the
following form:

_z1 ¼Nðz1, ~m1Þ ¼ �
1
~m2

ð ~m1z1þz3
1Þ: ð34Þ

It is easy to check that genericity conditions hold for the pitchfork
bifurcation [15]; that is, transversality and nondegeneracy
conditions

@3N

@z3
1

ðz1, ~m1Þ

�����
z1 ¼ 0, ~m1 ¼ 0

¼�
6
~m2

a0,
@2N

@z1 ~m1

ðz1, ~m1Þ

����
z1 ¼ 0, ~m1 ¼ 0

¼�
1
~m2

a0:

ð35Þ

Conditions (35) state that a generic pitchfork bifurcation takes place
in system (25) at the equilibrium E1(1) as the parameter ~m1 passes
zero. In other words, in the (w1,w2)-space when ~m2a0, system (25)
undergoes a generic pitchfork bifurcation on the curve ~m1 ¼ 0.

Consider the Jacobian matrix (30) again. If ~m2 ¼ 0 and ~m1o0,
the linear part of system (25) will have a pair of purely imaginary
eigenvalues; this is the necessary condition for the Hopf
bifurcation. In order to show that a generic Hopf bifurcation
takes place in system (25) and also to find its direction, we need to
focus our attention on the genericity conditions again, this time
for the Hopf bifurcation [15]; that is,

d

d ~m2

Rel1,2ð ~m2Þ

����
~m2 ¼ 0

a0 and Re½c1ð ~m2Þ�j ~m2 ¼ 0a0, ð36Þ

where

l1,2 ¼
~m27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2

2þ4 ~m1

q
2

,

and Re½c1ð�Þ� is the leading coefficient in the normal form of the
Hopf bifurcation. The transversality condition holds, because it
can easily be shown that

d

d ~m2

Rel1,2ð ~m2Þ

����
~m2 ¼ 0

¼
1

2
a0: ð37Þ

For calculating Re½c1ð ~m2Þ� at ~m2 ¼ 0, we need to put system (25)
into its standard form. Under the change of coordinates

x1

x2

 !
¼

0 1ffiffiffiffiffiffiffiffiffiffi
� ~m1

p
0

 !
z1

z2

 !
, ð38Þ

z1

z2

 !
¼

0 1=
ffiffiffiffiffiffiffiffiffiffi
� ~m1

p
1 0

 !
x1

x2

 !
, ð39Þ

for small j ~m2j, system (25) will be brought into

_z1 ¼ ~m2z1þ
~m1ffiffiffiffiffiffiffiffiffiffi
� ~m1

p z2�z1z2
2þ

1ffiffiffiffiffiffiffiffiffiffi
� ~m1

p z3
2;

_z2 ¼
ffiffiffiffiffiffiffiffiffiffi
� ~m1

p
z1:

8><
>: ð40Þ

Now, by using the stability formula [9]

Re½c1ð ~m2Þ�j ~m2 ¼ 0 ¼
1

16
½Fz1z1z1

þFz1z2z2
þGz1z1z2

þGz2z2z2
�
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þ
1

16o ½Fz1z2
ðFz1z1

þFz2z2
Þ�Gz1z2

ðGz1z1
þGz2z2

Þ

�Fz1z1
Gz1z1
þFz2z2

Gz2z2
�, ð41Þ

for

F ¼�z1z2
2þ

1ffiffiffiffiffiffiffiffiffiffi
� ~m1

p z3
2, G¼ 0, and o¼

ffiffiffiffiffiffiffiffiffiffi
� ~m1

p
, ð42Þ

one obtains

Re½c1ð ~m2Þ�j ~m2 ¼ 0 ¼�
1

8
o0: ð43Þ

Inequality (43) indicates that the Hopf bifurcation is supercritical;
that is, a family of stable periodic solutions emerge as the
bifurcation parameter, ~m2, passes its critical value, zero. In other
words, system (25) undergoes a generic supercritical Hopf
−0.95 −0.9 −0.85 −0.8 −0.75 −0.7 −0.65 −0.6 −0.55 −0.5

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Fig. 4. Bifurcation diagrams of system (7). (a) When s¼1 and f ð�Þ ¼ 3
2tanhð�Þ is taken

heteroclinic bifurcation curves are labeled with PE1 ð1Þ , HE1 ð1Þ and HeteroE2,3 ð1Þ , respectively

The pitchfork and Hopf (at E1(�1)), Hopf (at E2(�1) and E3(�1)) and homoclinic bifurca
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Fig. 5. Numerical results for system (7) in region (II) of Fig. 4a when (w1,w2)¼ (�0.6,1

appear. The phase portrait (a) and its corresponding waveform graph (b) show that th
bifurcation at E1(1) on the curve ~m2 ¼ 0. In addition, when
~m140, the origin is a saddle. We already know that the two
equilibria E2(1) and E3(1) will exist if ~m1o0. The linearization of
system (25) at these two equilibria is given by

J½E2,3ð1Þ� ¼
0 1

�2 ~m1 ~m1þ ~m2

 !
: ð44Þ

Since ~m1o0, detJ½E2,3ð1Þ�o0. Thus, both equilibria E2(1) and E3(1)
are saddles.

According to [9], there is a curve of heteroclinic bifurcation
given by the following equation:

~m2 ¼�
1

5
~m1þOð ~m

2
1Þ: ð45Þ

On this curve, two heteroclinic orbits will emerge to connect the two
equilibria E2(1) and E3(1) through their stable and unstable manifolds.
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3.2. The case s¼�1

In this case, the equilibria (28) become

E1ð�1Þ ¼ ð0,0Þ and E2,3ð�1Þ ¼ ð8
ffiffiffiffiffiffi
~m1

p
,0Þ: ð46Þ

The linearization of system (25) at E1(�1) is the same as the
Jacobian matrix (30) and therefore, similar to the previous case,
system (25) undergoes a pitchfork bifurcation on the curve ~m1 ¼ 0
when ~m2a0 and a Hopf bifurcation on ~m2 ¼ 0 when ~m1o0. The
genericity conditions can similarly be shown for both bifurca-
tions.

Consider the situation when system (25) has three equilibria,
that is when ~m140. The Jacobian matrix of system (25) at
E2,3(�1) is then given by

J½E2,3ð�1Þ� ¼
0 1

�2 ~m1 ~m2� ~m1

 !
: ð47Þ
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Fig. 6. Numerical results for system (7) in region (III) of Fig. 4a (near the curve HE1 ð1Þ) w

will emerge around E1(1) and the equilibrium itself becomes unstable; because, on the c

cycle is illustrated in the phase portrait (a) and its corresponding waveform graph (b)
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Fig. 7. Numerical results for system (7) in region (III) of Fig. 4a (near the curve Hetero

waveform graph (b) show that as (w1, w2) gets closer to the curve HeteroE2,3 ð1Þ , the l

connecting E2(1) and E3(1).
The Jacobian matrix (47) has a pair of purely imaginary
eigenvalues when ~m2 ¼ ~m1. To show that system (25) generically
undergoes a Hopf bifurcation at the two nonzero equilibria
E2(�1) and E3(�1), we consider the same procedure to calculate
conditions (36) at ~m2 ¼ ~m1. Here, we show the
genericity conditions only for E3ð�1Þ ¼ ð

ffiffiffiffiffiffi
~m1

p
,0Þ. Similar results

can be achieved for E2(�1). Consider the following change of
variables:

ðx1,x2Þ ¼ ðZ1þ
ffiffiffiffiffiffi
~m1

p
,Z2Þ, ð48Þ

Z1

Z2

 !
¼

0 1ffiffiffiffiffiffiffiffiffi
2 ~m1

p
0

 !
z1

z2

 !
, ð49Þ

z1

z2

 !
¼

0 1=
ffiffiffiffiffiffiffiffiffi
2 ~m1

p
1 0

 !
Z1

Z2

 !
: ð50Þ
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If we apply (48)–(50) for small j ~m2� ~m1j, system (25) will become

_z1 ¼ ð ~m2� ~m1Þz1�
ffiffiffiffiffiffiffiffiffi
2 ~m1

p
z2�2

ffiffiffiffiffiffi
~m1

p
z1z2�

3

2

ffiffiffi
2
p

z2
2�z1z2

2�
1ffiffiffiffiffiffiffiffiffi
2 ~m1

p z3
2,

_z2 ¼
ffiffiffiffiffiffiffiffiffi
2 ~m1

p
z1:

8><
>:

ð51Þ

After some calculations, one obtains

d

d ~m2

Rel1,2ð ~m2Þ

����
~m2 ¼ ~m1

¼
1

2
a0: ð52Þ

By applying the stability formula (41) for

F ¼�2
ffiffiffiffiffiffi
~m1

p
z1z2�

3

2

ffiffiffi
2
p

z2
2�z1z2

2�
1ffiffiffiffiffiffiffiffiffi
2 ~m1

p z3
2, G¼ 0, and

o¼
ffiffiffiffiffiffiffiffiffi
2 ~m1

p
, ð53Þ

one gets

Re½c1ð ~m2Þ�j ~m2 ¼ ~m1
¼

1

4
40: ð54Þ
−0.1 −0.05 0 0.05 0.1

−0.05

0

0.05
−1
−0.8
−0.6
−0.4
−0.2
0

0.2
0.4
0.6
0.8
1

Fig. 8. Numerical results for system (7) in region (IV) of Fig. 4a when (w1, w2)¼(�0.6

phase portrait (a) and the waveform graph (b) show that E1(1) remains unstable and rep

and E3(1).

−0.2 −0.15 −0.1
−0.05 0

0.05 0.1 0.15 0.2
−0.2

−0.1
0

0.1
0.2

0.3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Fig. 9. Numerical results for system (7) in region (I) of Fig. 4b when (w1, w2)¼(�16.5,1

the phase portrait (a) and its corresponding waveform graph (b).
Inequality (54) implies that a generic subcritical Hopf bifurcation
occurs in system (25) at E3(�1); that is, a family of unstable
periodic solutions emanates from E3(�1), as the bifurcation
parameter, ~m2, passes its critical value, ~m1.

According to [9], there are two global bifurcation curves in this
case, one for a homoclinic bifurcation on which two homoclinic
orbits to the origin emerge, and the other for a fold bifurcation for
limit cycles on which two limit cycles collide with each other and
disappear. The homoclinic bifurcation curve is given by the
equation:

~m2 ¼
4

5
~m1þOð ~m

2
1Þ, ð55Þ

and the curve of fold bifurcation for limit cycles is given by the
equation:

~m2 ¼ c ~m1, ð56Þ

where c� 0:752.
Now, by using Eqs. (22) and (26), all bifurcation curves can be

illustrated in the (w1,w2)-space and as a result, several phase
portraits of system (7) can be constructed.
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Fig. 10. Numerical results for system (7) in region (II) of Fig. 4b when (w1, w2)¼(�16.5,12). As (w1, w2) crosses the curve HE1 ð�1Þ , a stable limit cycle will emerge around

E1(�1) due to the occurrence of a supercritical Hopf bifurcation at E1(�1) and the equilibrium itself becomes unstable. The limit cycle is illustrated in the phase portrait (a)

and its corresponding waveform graph (b).
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Fig. 11. Numerical results for system (7) in region (III) of Fig. 4b when (w1, w2)¼(�16.5,12.265). In this region, two nonzero saddles, E2(�1) and E3(�1), appear inside the

stable limit cycle which is previously generated by the Hopf bifurcation. The phase portrait (a) and its corresponding waveform graph (b) show that all trajectories, starting

from an arbitrary point in a neighborhood of the origin outside of the big stable limit cycle, are attracted by the stable limit cycle. The phase portrait (c) and its

corresponding waveform graph (d) show the attraction of the two one-dimensional unstable manifolds of the equilibrium E1(�1) by the stable limit cycle.
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4. Bifurcation diagrams and phase portraits

In this section, bifurcation diagrams of two cases s¼1 and �1
are presented in Fig. 4.

In Fig. 4a, s¼1 and the transfer function of the neurons is taken as
f ð�Þ ¼ 3

2tanhð�Þ; therefore, in Eq. (4) we have a1 ¼ 3=2 and a3 ¼�1=2.
In Fig. 4a, the pitchfork and Hopf bifurcation (at E1(1)) curves are
labeled with PE1ð1Þ and HE1ð1Þ, respectively. Also there is a heteroclinic
bifurcation curve, labeled with HeteroE2,3ð1Þ, on which system (7)
possesses two heteroclinic orbits connecting E2(1) and E3(1). Several
phase portraits and their corresponding waveform graphs are given in
Figs. 5–8 by choosing different values for the parameters in different
regions of Fig. 4a. In region (I), system (7) has the unique saddle, E1(1).
As (w1,w2) passes the curve PE1ð1Þ, the equilibrium E1(1) becomes
stable and two nonzero equilibria E2(1) and E3(1) appear. Fig. 5
depicts the phase portrait and its corresponding waveform graph for
the values of parameters in region (II) and close to the Hopf
bifurcation curve HE1ð1Þ. As parameters pass HE1ð1Þ, system (7)
undergoes a supercritical Hopf bifurcation at E1(1); therefore, a stable
limit cycle emerges around E1(1) and the equilibrium itself becomes
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Fig. 12. Numerical results for system (7) in region (IV) of Fig. 4b when (w1,w2)¼ (�16.5

a subcritical Hopf bifurcation at E2(�1) and E3(�1); as a result, two unstable limit c

become stable. The phase portrait (a) and its corresponding waveform graph (b) show

unstable limit cycle (outside of the small limit cycles), are attracted by the big stable lim

attraction of the two one-dimensional unstable manifolds of the equilibrium E1(�1) b
unstable. This can be seen in Fig. 6 for the values of parameters in
region (III) and close to the curve HE1ð1Þ. As the two parameters w1 and
w2 get closer to the curve HeteroE2,3ð1Þ, the limit cycle, generated by
the Hopf bifurcation, tends to form two heteroclinic orbits connecting
E2(1) and E3(1). Fig. 7 illustrates the onset of the two heteroclinic
orbits formation. Fig. 8 shows that these heteroclinic orbits vanish
when parameters take values in region (IV).

In Fig. 4b, s¼�1 and the transfer function of the neurons is taken
as f ð�Þ ¼ 1

2 tanhð�Þ; therefore, in Eq. (4) we have a1 ¼ 1=2 and
a3 ¼�1=6. In Fig. 4b, there are one pitchfork bifurcation (at
E1(�1)) curve and two Hopf bifurcation (one at E1(�1) and the
other at E2,3(�1)) curves which are labeled with PE1ð�1Þ, HE1ð�1Þ and
HE2,3ð�1Þ, respectively. Also, there are a homoclinic bifurcation curve,
labeled with HomoE1ð�1Þ, on which system (7) has two homoclinic
orbits to E1(�1), and a curve of fold bifurcation for limit cycles which
is denoted by FLC. In Figs. (9)–(14), several phase portraits and their
corresponding waveform graphs are given by choosing different
values for the parameters in different regions of Fig. 4b. Fig. 9 shows
that in region (I), system (7) has the unique stable spiral E1(�1). As
(w1,w2) passes the curve HE1ð�1Þ, system (7) undergoes a supercritical
3
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Hopf bifurcation at E1(�1); therefore, a stable limit cycle emerges
around E1(�1) and the equilibrium itself becomes unstable. This can
be seen in Fig. 10 for the values of the parameters in region (II). As the
two parameters w1 and w2 cross the curve PE1ð�1Þ and enter region
(III), two nonzero equilibria E2(�1) and E3(�1) appear. In Fig. 11, the
phase portraits (a) and (c) and their corresponding waveform graphs
(b) and (d) illustrate that the stable limit cycle, generated by the Hopf
bifurcation, surrounds the three equilibria. Fig. 12 shows that when
w1 and w2 pass the curve HE2,3ð�1Þ and take their values in region (IV),
a subcritical Hopf bifurcation simultaneously takes place at the two
nonzero equilibria E2(�1) and E3(�1); as a result, two small unstable
limit cycles appear around these two equilibria and the equilibria
themselves become stable. Fig. 13 shows that as (w1, w2) crosses the
curve HomoE1ð�1Þ and enters region (V), not only the two small
unstable limit cycles disappear, but also a big unstable limit cycle (not
shown in the figure) emerges inside the big stable limit cycle. The
phase portraits (a) and (c) and their corresponding waveform graphs
(b) and (d) show that trajectories, starting from an arbitrary point in a
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Fig. 13. Numerical results for system (7) in region (V) of Fig. 4b when (w1, w2)¼(�16.

limit cycles disappear, but also a big unstable limit cycle (not shown in the figure) em

waveform graph (b) show that trajectories, starting from an arbitrary point in a neighb

stable limit cycle. Also, all trajectories near E2(�1) and E3(�1), are attracted by one of t

eliminated. The phase portrait (c) and its corresponding waveform graph (d) show t

attracted by the two nonzero equilibria E2(�1) and E3(�1).
neighborhood of the origin outside of the big stable limit cycle, will be
attracted by the stable limit cycle. Also, all trajectories near E2(�1)
and E3(�1) are attracted by one of these nonzero equilibria. This, in
particular, indicates that the two small unstable limit cycles are
eliminated. As the values of parameters are set in region (VI), the two
big limit cycles (one stable and the other unstable) disappear as a
result of a collision on the curve FLC. Fig. 14 indicates that system (7)
has no limit cycle in region (VI); therefore, all trajectories, starting
from an arbitrary point in a neighborhood of the origin, will converge
to one of the two nonzero equilibria.
5. Summary and further work

A three-neuron recurrent neural network has been studied in
the neighborhood of the Bogdanov–Takens codimension two
bifurcation point where the linear part of the system has a pair of
simple zero eigenvalues. It has been shown that if the slope of the
5
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Fig. 14. Numerical results for system (7) in region (VI) of Fig. 4b when (w1, w2) ¼ (�16.5,12.3). As parameters enter this region, the two big limit cycles (one stable and the

other unstable) disappear as a result of a collision on the curve FLC. In this case all trajectories, starting from an arbitrary point in a neighborhood of the origin, will be

trapped in the basin of attraction of one of the two nonzero equilibria. This can be seen for two trajectories in phase portrait (a) and its corresponding waveform graph (b).
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transfer function of the neurons at the origin takes positive
values other than one, system (7) can be reduced to the
Bogdanov–Takens normal form (20) when the two network
parameters are fixed at their critical values. By introducing the
unfolding parameters, a full investigation has been carried out on
system (25) in two different cases. In the first case when s¼1, that
is when a141, it has been shown that system (25) undergoes a
generic pitchfork and a generic supercritical Hopf bifurcation at
the origin. It has also been shown that in a specific region in the
parameter space where system (25) has three equilibria, there is a
curve on which system (25) possesses two heteroclinic orbits
connecting the two nonzero equilibria. In the second case when
s¼�1, that is when a1o1, it has been shown that in addition to
the pitchfork and Hopf bifurcation curves for the origin, there
exists a bifurcation curve on which system (25) undergoes a
generic subcritical Hopf bifurcation at the two nonzero equilibria.
Moreover, the existence of a homoclinic bifurcation curve on
which system (25) possesses two homoclinic orbits to the origin,
and also a curve of fold bifurcation for limit cycles has been
shown. If the slope of the transfer function at the origin is not
equal to one, then system (25) will have at most three equilibria
and therefore some bifurcation curves presented in [7] will
vanish. If the slope at the origin is equal to one, the coefficient of
x3

1 will become zero and as a result, we have to consider higher
order terms in the normal form of system (7). This suggests that in
addition to the two parameters w1 and w2, the parameter a1,
introduced in transfer function (4), can be considered as the third
bifurcation parameter in the study of system (7). In other words,
in the ðw1,w2,a1Þ-space, the point ðw�1,w�2,a�1Þ ¼ ð�2=a3

1,3=a2
1,1Þ is a

codimension three bifurcation point for system (7) at the origin.
In this case, the normal form of system (7) contains fifth order
terms and its unfolding is provided by the three-parameter family

_x1 ¼ x2,
_x2 ¼ m1x1þm2x2þm3x

3
1þb3x

2
1x2þa5x

5
1þb5x

4
1x2,

(
ð57Þ

where mi (i¼1,2,3) are functions of wi (i¼1,2) and ai (i¼1,3,5,y).
The investigation of system (57) with three bifurcation para-
meters is interesting but that is beyond the scope of this paper.
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