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incorporated. Ternary hybrid nanofluids are described with mixture model [42] expressions
based on the Tiwari and Das model [43]. Constant pressure gradients and viscous forces
drive the flow. The Oberbeck-Boussinesq approach results in the governing equations
for two-phase flow by assuming a constant pressure gradient along the channel length.
Moreover, we assume that the interface has a continuous temperature, velocity, shear stress,
and heat flux.

x

N

Different shaped
Nanoparticles

Figure 1. Flow geometry.

2.1. Governing Equations
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Region-II
d*u’, Hinf op
‘uthan + (Pthnfgﬁthnf) (T2 = Tup) cos() — —¢ u'y — 3 =0 3)
2T, dw's\?  Mumf o 9q
kthan"‘,uthnf(d_y,) T”'z - a_yr =0 4)

Boundary and interface conditions as implemented are

W'y (=h) = 0,u'1 (0) = u'2(0), py LD = pyp, 220 5 () = 0 5
T (=h) = Tuz, T1(0) = T2(0), k™ = ks T2, To(h) = T

Additionally, we assessed the effect of nanoparticles with spherical, platelet, and cylin-
drical shapes on the base fluid’s capacity to transfer heat. The thermophysical properties of
nanoparticles and base fluids are calculated using a mixture model [42].

2.2. Thermophysical Properties

Density punr = (1 —¢1 — ¢2 — ¢3)pps + P101 + P202 + P3p03 (6)
Specific Heat
(0Cp) s = (0Cp)yp (1= @1 — g2 — ¢3) + (0Cp) 11 + (0Cp) 92 + (0Cp) 33 (D)
Coefficient of thermal expansion

(BT s = (1= @1 = 2 = ¢3) (0BT)p + P1(0BT)1 + P2(0BT), + P3(0BT)5  (8)

Maxwell Garnett model [42]
Thermal conductivity

kp + (m — D)kg + (m — 1)¢(kp - kf)
kng = kyy )
Ky + (m = 1)k — ¢ (kp — ky )
For spherical nanoparticles-ZrO,
K1+ (3 — ks + (3 — 1)y (k1 - kf)
kup1 = kys (10)
ki + (3 — ks — ¢y (k1 - kf)
For platelet -shaped nanoparticle-MgO
ks + 4.7k + 4.7¢» (k2 — kf)
ko = kps (11)
ko + 4'7kf — ¢ (kz — kf)
For cylindrical-shaped nanoparticle-SWCNT
ks +3.9k; +3.9¢3 (k3 - kf)
ks = kps (12)
ks +3.9k; — ¢3 (k3 - kf)

Viscosity in terms of the Einstein-Batchelor equation [44,45]
For spherical nanoparticles -ZrO,

Hup1 = g (1+25¢1 +62¢7) (13)




Symmetry 2023, 15,1615

7 of 22

For platelet-shaped nanoparticle-MgO
Huf2 = i f(1 +37.1¢ + 612.64>§> (14)
For cylindrical-shaped nanoparticle-SWCNT
nfs = i f(1 +13.5¢3 +904.4¢3) (15)
Dynamic viscosity of ternary hybrid nanofluid.
Hinf = Hnfl X @1+ Puf2 X P2+ Pngz X §3 (16)
Effective thermal conductivity of ternary hybrid nanofluid

knpipr + kngao + knpas

17
(Phnf ( )

khnf =

where ¢p,p = P1 + P2 + ¢3.
Rosseland’s estimate [46] provides the formula for the radiant heat flux [47] in the

direction of i/ P
Os

%:_ﬁﬁﬁﬁg (18)

The scope of the current analysis is restricted to optically thick fluids as a result of the
Rosseland approximation’s application. If the temperature changes within the flow are
modest enough, expanding T* into the Taylor series about Te, while ignoring higher-order
variables allows us to construct a linear form of Equation (13) as shown below.

T — 4(T3;T) _ 3T (19)
Further, the term %Zi, in (2) and (4) will become

ty 16 (1) 2T
a3\ ky Joy?

(20)

Since ternary hybrid nanofluid is composed of spherical, platelet-shaped, and cylin-
drical nanoparticles, Table 2 displays the relevant sphericity and shape parameters.

Table 2. Values of sphericity and shape factor [39].

Shape Spherical Platelets Cylindrical
Sphericity (1) 1 0.52 0.612
Shape factor (1) 3 5.7 49

2.3. Non-Dimensional Parameters for Region-I and II

3
Y (N, o Ti—Twe . _ 8Bf(Tw1 — Tun)h
y_h/ul_”z< )h’el_Twl—TwzlGﬂ_ sz,r ’
3 3
Hy h pfh” op
Grt = G,1Cos(7y), Br = c=—,P=-2L_"
" ™) P%hz(Twl_Twz)kf \/K y} ox

_M e 160, TS,

o=t R= 00 (21)
I s 3Kk

Upon substituting above-mentioned dimensionless parameters into Equations (1)—(5),
we get
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Region-I
d2M1 0 o
W_F(Grt 1)+ P=0 (22)
426, duq \ 2
Nld_1/2+Br{ (W) =0 (23)
Region-II
d2u2 2 _
d—y2+aGrt92 — 0 u2+P1 =0 (24)
d292 du2 2
de—1/2+BrC (d_y) —i—O'ZZ,{% =0 (25)
For Region-I and Region-II, these are the boundary and interface conditions:
_ up =
At y=-1 o, — }
B Uy = Uy
At y=0 6, = 6,
duy _ P dity (26)
At =0 vk
7= doy _ kug do,
dy f dy
o Upy = 0
At y=1 6y — 1 }

3. Method of Solution

The nature of the transport Equations (22)-(26) are non-linear where exact analytical
solutions are not possible. Therefore, by employing the Regular perturbation technique, the
approximate solution for temperature and velocity is obtained. The perturbation parameter

considered here is the Brinkmann number.

u; = ujo + Bruy + Briup + . ..
0; = 0ip + Bro;; + B?’ZQ,'Z +...

(27)

Upon substituting (22)-(26) in (27) and equating equal powers of the Brinkmann

number to zero, we get following equations.

Region-I
Zeroth order 2u
dy}) + (Grtby0) + P =0
d2e
00 o
dy
First order
d2y
2 1 + (llGl’tGll) =0
d2911 du10 2
N _— =
Vap " ( dy >
Region-II
Zeroth order

d?uz0 2
dy2 + aGrtbyy — o uyy+ P =0

dy? =0

(28)

(29)

(32)

(33)
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First order

d*uy by
d_y2 + aGrtGZl — 0 Uy = 0 (34)
20 ding \ 2
b (42) ] o

For the zeroth and first order, conditions at the boundary and interface are

uo(—1) = 0,u10(0) = uzo, ﬂfds—jo(o) = Vthnfdg%(o)/uzo(l) =0 )
010(—1) = 0,010(0) = 920@%’%%(0) = kthnf%(o)lgm(l) =1
u11(—1) = 0,u11(0) = u21(0)rﬂf%%(0) = P‘thnf%;_l(o)/uﬂ(l) =0 )
011(—1) = 0,011 (0) = 021(0), k%41 (0) = Kipnp 2424 (0), 01 (1) = 1

where, u;, 0; (i = 1,2) are functions of y.
The zeroth and first order solutions for the distributions of temperature and velocity are
Temperature distribution

610 = b1y + by (38)
020 = b3y + by (39)
1

611 = _E (LSyé —+ L6y5 —+ L7y4 —+ L8y3 —+ L9y2) + c31Y + c32 (40)
by — —C( Laocosh20y 4 Lysinh2oy + Losy coshoy + Losysinhoy 1\ 0 g

- N, +Ly4 cosh oy + L25sir1h¢7y —+ L26]/4 + L27]/3 + L28_1/2 41Y 42

Velocity distribution
u10 = L1y° + Loy® + ey + c1 (42)
1

Uy = Cp1 cosh oy + cppsinhoy — p(LW + Ly) (43)
= OO (g + Lagy” + Laoy® + Laoy® + Luny* + Lioy® + Lisy? 44
i = N, 37y” + Lagy” + Laoy” + Laoy” + La1y™ + Laoy” + Lagy™ ) +c51y + 52 (44)

ce1 cosh oy + cgasinhoy + Lpg cosh 20y
+Lagsinh2cy + L3jy*sinhoy — Lapy cosh oy + Lazy*coshoy

uz = —aGrt +Lagysinhoy + Lassinhoy + Lagy cosh oy

-5 (L26y4 + Lozy® + Logy* + 25 (12Laey® + 6Lozy + 2L28)) — L (cay + o)
where by, by, b3,b4, L1, Ly, . .. .Lyz are constants given in the Appendix A, and c11, ¢12, €21, €22,

€31, €32, €41, C42,C51, C52, Co1, Co2 are the constants obtained during integration.
Consequently, the result of the temperature and velocity equation will be

91 = 910 + 37’911

46
92 = 920 + B7’921 ( )
u1 = uqg + Bruqq 47)
Uy = upg + Bruy,

where, u;, 0;(i = 1,2) are functions of y.

Physical Quantities

The non-dimensional derived quantities are determined as follows due to engineer-
ing understanding.
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Nusselt Number:
dao do
o) = () vy = (2) 9)
Y y=-1 y y=1
Skin Friction coefficient:
duy duy
Ski) = (—> , (Sko) = (—) (49)
sk = (G ), = (G7)
Further,
The dimensionless total volume flow rate can be calculated using

QVol = QVoll + QVolZ (50)

0 1
where Qu,1 = [ w1dy, Quoiz = [ uady.
e 0

The dimensionless total heat rate added to the flow is calculated using

0 1

E= /uleldy—i-/uzf)zdy (51)
~1 0

4. Results and Discussions

In-depth discussion of ternary hybrid nanofluids’ relevance and potential applicability
to practical issues is provided in this article. The interaction between three differently
shaped nanoparticles and PEG water is examined in this work. We have blended the
PEG water with a combination of spherical ZrO,, platelet-shaped MgO, and SWCNT.
In order to completely comprehend the flow model, the solution of temperature and
velocity is obtained using the regular perturbation method. Tables and graphs are used
to display the data. The thermal Grashof number (1 < Gr < 15), the Brinkman number
(0 < Br < 1), the radiation parameter, the porosity parameter (2 < ¢ < 8), and the ¢,
¢2, ¢3 are the nanoparticle volume fractions of ZrO,, MgO, and SWCNT, respectively,
and were used as non-dimensionalized constraints to supervise the flow. The following
values of the non-dimensional parameters are considered for graphs and tables except
the varying parameter. In this context, clear fluid denotes PEG-water, ternary hybrid
nanofluid denotes PEG-Water + MgO + ZrO,, and y = —1 and y = 1 denote the upper and
bottom plates, respectively.

Grt=5,P=50=4,¢1 = ¢ = ¢p3 = 0.02, Br = 05, = 1/6, R = 0.6

The thermal Grashof number greatly impacts both the temperature and velocity fields,
as shown in Figure 2. As Grt increases, the temperature of the fluid rises in both regions.
However, temperature enhancement is primarily substantial in the ternary nanofluid region.
Although viscosity forces work against natural convection, they become less powerful as
Grt increases. Natural convection will therefore start when the Grt is big enough since
the buoyancy forces will be stronger than the viscosity forces. As a result, the fluid’s
temperature increases. The second region is also filled with a ternary hybrid nanofluid,
which has a higher thermal conductivity than clear fluid. The ternary hybrid nanofluid
area consequently exhibits the highest enhancement. The impact of on the velocity field is
shown in Figure 2. While Grt in this case exhibits behaviour akin to that of temperature, it
is discovered that velocity is greatest in the region of clear fluid. Because hybrid ternary
nanofluid has a high density, it resists flow. As a result, the velocity in the area of clear
fluid rises. The results attained are identical to those of Malashetty et al. [48]. The efficiency
of the system as a whole can be increased by incorporating natural convection and heat
transfer into solar collectors or heat storage devices.
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Clear Fluid Region Ternary Hybrid Nanofluid Region Clear Fluid Region Ternary Hybrid Nanofluid Region
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Figure 2. The impact of Grt on 6(y) and u(y).

As seen in Figure 3, porous media have an impact on temperature and velocity
profiles. As ¢ increases, both regions experience a sudden drop in temperature and fluid
velocity. Additionally, the lowering effect has a greater impact in the clear fluid zone for
the temperature profile as compared to the ternary nanofluid region. Additionally, the
ternary nanofluid zone exhibits a greater reduction in fluid velocity. Complex flow patterns
may result from the interaction of the fluid with the porous material. Porous media are
frequently used in the oil and gas sector. Optimum oil recovery may be achieved by using
porous media with reasonable porosity values, understanding fluid flow, and heat transfer.
Similar results have been observed with Umavathi and Hemavathi [49] for all three regions.

Clear Fluid Region Ternary Hybrid Nanofluid Region Clear Fluid region Ternary Hybrid Nanofluid Region
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Figure 3. The impact of o on 8(y) and u(y).

The impact of Br on temperature and velocity can be viewed in Figure 4. The fluid’s
temperature rises as Br’s value increases. The ternary hybrid nanofluid region exhibits the
greatest temperature increase. The capacity of the fluid to transfer heat slows down as Br
rises, which enhances the heat generated via viscous dissipation. As a result, the fluid’s
temperature increases. Furthermore, the impact of Br on the velocity profiles is also shown
in Figure 4. In contrast to the ternary hybrid nanofluid region, the clear fluid region has
a higher velocity. As Br increases, the viscous dissipation overrides the external heat by
conduction. Thus, some kinetic energy in the fluid is converted into thermal energy by its
viscosity, which in turn results in an increase in velocity.
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Figure 4. The impact of Br on 6(y) and u(y).
The consequence of R on temperature and velocity profiles is shown in Figure 5.
Increasing R results in a decreasing fluid temperature, as seen in Figure 5. The fluid’s
temperature is anticipated to drop as radiation slows the rate of energy transfer into the
fluid. A similar phenomenon is observed for the velocity profiles depicted in Figure 5. In
contrast to the previous observation, the velocity in the region of the ternary nanofluid
decreased. The results are in accordance with those of Das et al. [50].
Clear Fluid Region Ternary Hybrid Nanofluid Region Clear Fluid Region Ternary Hybrid Nanofluid Region
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Figure 5. The impact of R on 6(y) and u(y).

< O b

The temperature and velocity profiles are affected by the volume fraction of ZrO,,
as seen in Figure 6. The value of ¢, is varied by considering ¢, and ¢3 as constants.
Figure 6 makes clear that as ¢; is increased, the fluid’s temperature increases. As particle
concentrations increase, the fluid’s resistive forces also grow, which amplifies kinetic energy
and raises the fluid’s temperature. The velocity profiles illustrated in Figure 6 exhibit a
similar effect. But the velocity of the fluid is relatively high in the clear fluid region.
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Figure 6. The impact of ¢1 on 0(y) and u(y).

The effects of MgO and SWCNT volume fractions on temperature and velocity are
illustrated in Figures 7 and 8. The value of the volume fractions of other nanoparticles
is kept constant except for varying ones. In Figure 7, respectively, the effects of ¢ on
temperature and velocity are shown. As the solution’s MgO concentration rises, the
temperature falls. This is because of the material property of MgO, which reduces the
fluid’s temperature. As shown in Figure 7, the fluid’s velocity decreases as the volume
fraction of MgO increases. The fluid’s temperature and velocity are affected by increasing
the volume fraction of SWCNTs, as seen in Figure 8. With escalating ¢3 levels, both show a
diminishing nature. A possible surface area for heat transfer is provided by the inclusion of
various nanoparticle morphologies into the base fluid. In contrast, it stabilises the nanofluid,
raising the fluid’s temperature. Because of the nature of the substance, a few nanoparticles
may have a cooling effect.

Clear Fluid Region Ternary Hybrid Nanofluid Region Clear Fluid Region Ternary Hybrid Nanofluid Region
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Figure 7. The impact of ¢ on 6(y) and u(y).
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Figure 8. The impact of ¢3 on 0(y) and u(y).

Figure 9 shows the impact of Grt and Br on Nu at both plates. According to Figure 9,
Nu aty = —1 increases with Grt and Br. The colour transition in the graphs indicates that
maximum Grt and Br values result in the highest heat transmission. Figure 9 illustrates
how Grt and Br affect the Nusselt number at y = 1. Physically, rising levels of Grt
and Br strengthen buoyancy and kinetic energy from viscous dissipation, strengthening
convectional heat transmission. The fluid consequently acquires heat from the plate. The
rate of heat transmission is considered to be at its maximum aty = —1.

Figure 9. The effect of Grt and Br on Nusselt numberaty = —landy = 1.

The effects of o and R on Nu at both plates are depicted in Figure 10. Figure 10 in
particular shows that as ¢ and R rise, Nu rises. On the other side, as permeability enhances,
there is an increase in friction between the particles, which raises the temperature. In
contrast, as R increases, the fluid’s thermal conductivity decreases. These two elements
have an impact on Nu. So, compared to Figure 9, Nu is lower.



